
Fine Grain QoS Control for Multimedia Application Software

Jacques Combaz1,2, Jean-Claude Fernandez1, Thierry Lepley2,

Joseph Sifakis1

1Verimag, Centre Equation - 2 avenue de Vignate F38610 Gières, France
2STMicroelectronics Central R&D 850, rue Jean Monnet 38921 Crolles Cedex, France

Abstract

We propose a method for fine grain QoS control of data-
flow applications. We assume that the application software
is described as the composition of actions (C-functions)
with quality level parameters. The method allows to com-
pute a QoS controller from this description, and average
execution times, worst case execution times and deadlines
for its actions. The controller computes dynamically fea-
sible schedules and quality assignments for their actions.
Furthermore, the control policy ensures optimal time bud-
get utilization. A prototype tool implementing the method is
shown as well as experimental results for a non trivial ex-
ample. The results show the interest of fine grain QoS con-
trol for video encoders.

1. Introduction

Cost-effective development of embedded software
should be based on the extensive reuse of generic soft-
ware components. It should also be supported by tools
and methodologies for guaranteeing given functional and
extra-functional properties. In particular for multime-
dia embedded software the fast evolution of market needs,
user requirements and platforms requires reliable adap-
tation of standard features at minimal costs. Currently,
adaptation of available application software to target plat-
forms and needs is too costly. To meet given QoS re-
quirements a significant amount of experimentation is
needed on virtual or real prototypes involving fine tun-
ing of parameters of the components of the application
software. After tuning, the behavior of application soft-
ware can be modified only by changing user-defined in-
put parameters. Thus, adaptability is coarse grain as it can
be achieved only by modifying global parameters. Further-
more, some delay is necessary for adaptation due to limited
controllability of the application software over the underly-
ing execution system.

In this paper, we study a method for fine grain QoS con-
trol of multimedia applications meeting both soft and hard
real-time requirements. For these applications uncertainty
about execution times, makes necessary the use of control
(dynamic scheduling) techniques [2],[10],[8]. The behavior
of the controlled system is adapted by adequately choos-
ing the values of quality levels for its actions. The objec-
tive of the control policy is both to respect deadlines for ac-
tions and to make optimal use of the time budget so as to
reach best quality. The considered method allows to gen-
erate from an application software a controlled application
software that meets given QoS requirements, as follows.
• The initial application software performs cyclically in-
put/output transformations of data streams. It is described
by a precedence graph modeling dependency between ac-
tions (C-functions) and from which all the possible execu-
tion sequences can be extracted. Its execution during a cycle
can be controlled by choosing quality levels which are pa-
rameters of the actions. We assume that the execution times
of actions are increasing with quality.
• We consider single threaded implementations of the ap-
plication software on a platform for which it is possible by
using timing analysis and profiling techniques, to compute
estimates of worst-case execution times and average exe-
cution times of actions for the different levels of quality.
Action execution is assumed to be atomic (non interrupt-
ible). A compiler is used to generate from the initial appli-
cation software, for given QoS requirements and execution
times, the controlled software. QoS requirements are dead-
lines on the termination of actions since the beginning of a
cycle.

The controlled software can be considered as the com-
position of the initial application software with a controller
(see figure 1).
• The controller monitors the progress of the computation
in a cycle and chooses the next action to run and its qual-
ity level. It uses the model of the application software as
well as knowledge for each action of its deadline and aver-
age worst case execution times.
• At some state of a cycle, the controller chooses quality

levels guided by two kinds of constraints. Safety constraints
ensuring that no deadline is missed during the cycle. Opti-
mality constraints ensuring optimal time budget utilization,
that is, the available time for completing an action is used
as much as possible to achieve the best quality (without vi-
olating safety).

Our method significantly differs from existing ones for
QoS control and adaptive scheduling. The main difference
is fine grain control of the execution. Existing control tech-
niques act at higher level e.g. at the beginning of a cycle, and
their reactivity is slow. They do not require any deep knowl-
edge of the data-flow structure of the application software.
Our method consists in controlling execution during a cy-
cle; the controlled software is produced by compilation (au-
tomatic code instrumentation).

Another important difference is that fine granularity al-
lows combination of optimality and safety of the produced
schedules. Most control techniques focus on optimality cri-
teria and are adequate only for soft real-time. The integra-
tion of safety criteria is useful in applications where qual-
ity should remain above some minimal level [6],[3] or hard
deadlines must be respected e.g. communications of cellu-
lar phones.

Buttazzo et al. propose the elastic tasks model [5], but
there approach is based on worst case execution times. An-
other common and simple way to treat CPU overload is
to skip an instance of a task [7]. Lu et al. [8] propose a
feedback scheduling based on PID controllers, but dead-
line misses remain possible. Steffens et al. [10],[9] min-
imize deadline misses of an MPEG decoder by applying
Markov decision process and reinforcement learning tech-
niques, combined with structural load analysis.

The paper is organized as follows. Section 2 presents the
method including a technical definition of the studied prob-
lem, an abstract control algorithm and its quality manage-
ment policy. Section 3 reports on experimental results. A
prototype tool is presented for generating controlled appli-
cation as well as a non trivial example.

2. QoS Control

2.1. The Problem to be Solved

We need the following definitions about real-time sys-
tems and their scheduling.

Definition 2.1 A real-time system is modeled by:
• a model of its application software, partial order on the
vocabulary of its actions A, represented by its precedence
graph G = (A,→), where →⊆ A×A. We write a → a′ for
(a,a′) ∈→.
•C : A → R+∪{+∞}, a function which associates with ac-
tions a their execution time C(a).

• D : A →R+∪{+∞}, a function which associates with ac-
tions a their absolute deadline D(a).

An action a′ can start only if the execution of all its pre-
decessors a, a → a′, is completed. Execution times of ac-
tions depend on the speed of the execution platform. Dead-
lines are user requirements that must be met by execution
sequences formally defined below.

An execution sequence of a precedence graph G is a se-
quence of distinct actions α = α(1) . . .α(n) such that the
order induced by α is compatible with the precedence rela-
tion of G, that is α(i) → α(j) ⇒ i ≤ j, and for any pre-
fix of α the set of the actions occurring in the prefix con-
tains all its predecessors by the precedence relation.

For a given execution sequence α of G, an integer i,0 ≤
i ≤ |α|, defines a (control) location. If σ is a sequence over
the non negative reals R+, then σ̂ denotes the sequence of
length |σ| where the i-th element is the sum of all the el-

ements of rank j ≤ i: σ̂(i) =
i

∑
j=1

σ(j). We write min(σ) to

denote the minimum of the elements of σ.
We extend the functions C and D to execution sequences.

If α is an execution sequence of length n, then C(α) =
C(α(1)), . . . ,C(α(n)) is the sequence of the execution times
of the elements of α. Similarly, D(α) is the sequence of the
deadlines of the elements of α.

Definition 2.2 Let G be a precedence graph, C an execu-
tion time function and D a deadline function. A schedule
of G is an execution sequence α where occur all the ac-
tions of A. A schedule α is feasible with respect to C and D
if:

min
(
D(α)−Ĉ(α)

)
≥ 0

Notice that the above definition means that the schedule
respects the deadlines for the given execution times.

For systems with known execution times, feasible
schedules can be computed statically e.g. by comput-
ing EDF schedules [4]. When execution times are not
precisely known, static computation of feasible sched-
ules requires the use of worst case execution times.
This may lead to solutions that are far from being opti-
mal, especially in the case where uncertainty about ex-
ecution times is high, that is the difference between
average and worst case execution times can be signifi-
cant.

We present a method for computing a controller which
composed with the application software, ensures satisfac-
tion of deadlines as well as optimal use of the available time
budget by adapting the quality levels of actions. The con-
troller uses an abstract model of the real-time system to be
implemented.

Definition 2.3 A parameterized real-time system is de-
fined by:

• a precedence graph G,
• a finite set Q 6= /0 of integers, called quality levels
• for each quality level q ∈ Q, Cav

q and Cwc
q , such that

Cav
q ≤ Cwc

q , are execution time functions which are not de-
creasing in q. They give for any action a its average execu-
tion time Cav

q (a) and its worst case execution time Cwc
q (a)

• for each quality level q ∈ Q, Dq is a deadline function as-
sociating for any action a, its deadline Dq(a).

For a family of time functions {Xq}q∈Q and θ : A → Q a
quality assignment function, Xθ is a time function such that
Xθ(a) = Xθ(a)(a). Let qmin ∈ Q be min(Q).

The problem to be solved can be formalized as follows.
Problem: Consider a parameterized real-time system such
that the set of the feasible schedules with respect to Cwc

qmin
and Dqmin is non empty. Find a controller which computes
schedules α and quality assignment θ such that for any ex-
ecution time function C, C ≤Cwc

θ :

• α is a feasible schedule with respect to C and Dθ

• θ is an optimal quality assignment (in a sense to be de-
fined later).

Notice that in the above definition, C is an arbitrary ex-
ecution time function that describes the unpredictable exe-
cution times of the controlled system. We call C actual ex-
ecution time function. The requirement C ≤ Cwc

θ is essen-
tial for safe control. It says that execution times of the con-
trolled system cannot be longer than the worst case execu-
tion times (for the same quality).

2.2. Abstract Control Algorithm

The controller computes incrementally a schedule αn

and a quality assignment θn for n = |A|. This is carried out
by computing successively pairs (αi,θi) for i = 1, . . . , |A|
corresponding to the i-th computation step. Clearly, two
successive pairs (αi,θi) and (αi+1,θi+1) must be compat-
ible in the sense that the prefixes of length i of αi and αi+1

are the same, and the restrictions of θi and θi+1 on their el-
ements, agree.

Figure 1 illustrates the principle of computation of a new
pair (αi+1,θi+1) = (α′,θ′) from the current pair (αi,θi) =

(α,θ) and the actual time Ĉ(α)(i) = t. By construction, at
step i, all the elements of αi after the i-th position have a
constant quality assignment. The controller is decomposed
into two cooperating components, a Scheduler and a Qual-
ity Manager. For a schedule α, we denote by α[i, j] the se-
quence α(i) . . .α(j), and define the following predicates:
• Qual Constav(α,θ, t, i) =

t ≤ min
(

Dθ(α[i+1,n])− ̂Cav
θ (α[i+1,n])

)

• Qual Constwc(α,θ, t, i) =

t ≤ min
(

Dθ′(α[i + 1,n])− ̂Cwc
θ′ (α[i+1,n])

)
where

θ′(α(j)) = qmin, for j > i + 1, θ′(α(j)) = θ(α(j)) other-
wise.
• Qual Const = Qual Constav ∧Qual Constwc.

Notice that Qual Constav (resp. Qual Constwc) means
feasibility for α with respect to C′ (resp. C′′) and Dθ (resp.
Dθ′). The functions C′ and C′′ are such that C′ = C′′ = C for
α(1), . . .α(i), and C′ = Cav

θ , C′′ = Cwc
θ′ otherwise.

The Scheduler and the Quality Manager cooperate in the
following manner:

1. For different quality values q the Quality Man-
ager computes θq := θ Bi q, quality assignments
which agree with the current quality assignment θ for
the first i elements of α and give q for all the oth-
ers.

2. For each θq, the Scheduler computes, by using some
optimal scheduling algorithm, e.g EDF, a schedule αq

which has the same prefix of length i with α.

3. The Quality Manager computes the quality level qM

which is maximal and meets the quality constraint
Qual Const(αq,θq, t, i) which characterizes all the ac-
ceptable schedules and quality assignments.

Scheduler
αq = Best Sched(α,θq, i)

Quality Manager

(α,θq) αq

t = Ĉ(α)(i)

qM := max
{

q | Qual Const(αq,θq, t, i)
}

t

System

:= (αqM ,θqM)(α′,θ′)

Controller

Figure 1.

The controller executes the following abstract algorithm.
We use a variable i to represent the current computation step
and variables α and θ such that, at step i, α = αi and θ = θi.
Furthermore, we use sets of variables {θq}q∈Q and {αq}q∈Q

such that at step i their values are θq = θi
q and αq = αi

q.

i := 0
while i < |A| do

for q ∈ Q do θq := θBi q
for q ∈ Q do αq := Best Sched(α,θq, i)
qM = max

{
q | Qual Const(αq,θq, t, i)

}

(α,θ) := (αqM ,θqM)
i := i+1

end while

We proved the following proposition:

Proposition 2.1 For any schedule α and quality assign-
ment θ computed by the algorithm,

• safety: α is a feasible schedule with respect to C and
Dθ

• optimality: the time budget utilization

Ĉ(α)(n)/Dθ(α)(n) is maximized.

3. Experimental Results

We applied these results to an MPEG 4 encoder pro-
vided by STMicroelectronics and written in C (more than
7000 loc). The encoder treats frames cyclically. Each frame
is split into N macroblocks of 256 pixels. It can be consid-
ered as the iteration N times of a body whose precedence
graph is given in figure 2. The overall architecture is shown
in figure 3. It uses input and output buffers of the same size
K, to cope with changes of load and avoid as much as pos-
sible frame skips. These may happen when the input buffer
is full.

Grab_Macro_Block

Motion_Estimate

Discrete_Cosine_Transform

Quantize

Inverse_Discrete_Cosine_Transform

Inverse_Quantize

Reconstruct

Compress

Intra_Predict

Figure 2.

...

camera

encoder
video

...

output bufferscreen

input buffer

Figure 3.

We developed a prototype tool (figure 4) that allows the
generation of controlled application software when the or-
der between the deadlines is independent of the quality. The
inputs of the tool are
• the precedence graph G corresponding to the treatment of
a macroblock and its iteration parameter N,

• tables describing the functions Cav and Cwc for the ac-
tions of G,
• the order relation between the deadlines.

From these inputs the tool computes
• C code corresponding to an EDF schedule α.
• tables containing pre-computed values used by the
controller for the computation of Qual Constav and
Qual Constwc.

A compiler is used to link the following items and gen-
erate the controlled application software from
• the schedule and the tables generated by the tool
• application code for the actions of the schedule
• a generic controller mainly consisting of a quality man-
ager.

SW Platform
QoS

requirements

Dataflow

analysis

Timing

analysis

Cav ,Cwc

Tables

Compiler

generic
controllerα

G D

SW
Controlled

tool
Prototype

Figure 4.

The overhead due to the instrumentation of the applica-
tion software in the size of the compiled code is of the or-
der of 2% for the considered benchmarks. During execu-
tion, the corresponding overhead in memory allocation is
not more than 1%. Finally, the overhead in runtime is es-
timated less than 1.5% of the overall execution time. For
all these estimates we assume that the application software
runs on a single processor without OS and that it is possi-
ble to read a register counting the number of cycles elapsed.

For the considered example, the execution times of the
action Motion Estimate depend on the quality level as
specified in figure 5. The execution times of all the other ac-
tions are independent of the quality levels, and are given in
same figure 5.

We provide experimental results for a platform consist-

Motion Estimate
Quality Average Worst case

0 215 1000
1 30000 100000
2 50000 200000
3 95000 350000
4 110000 500000
5 120000 1200000
6 150000 1200000
7 200000 1500000

Action Average Worst case
Grab Macro Block 12000 24000

Discrete Cosine Transform 16000 16000
Quantize 6000 13000

Intra Predict 4000 4000
Compress 5000 50000

Inverse Quantize 4000 5000
Inverse Discrete Cosine Transform 20000 50000

Reconstruct 10000 13000

Figure 5.

ing of a single XiRisc processor [1] running at 8 GHz. This
corresponds to the computing power of embedded parallel
architectures used for video encoding. The platform is simu-
lated by using the eliXim tool of STMicroelectronics. Time
unit is a CPU cycle.

We consider a benchmark of 582 frames, consisting of
9 sequences produced by a camera every P = 320 Mcycle
(i.e. constant framerate of 25 f rame/s). The target bitrate is
set to 1.1 Mbit/s.

The buffers of size K allow a maximal latency of P ·K.
The time budget allocated to the encoder for the treatment
of a frame depends on the buffer occupancy, and is in aver-
age P. As our method guarantees safety, we can take K = 1
for the controlled encoder without deadline miss.

We measure PSNR between the input frames and out-
put frames, as well as the utilization of the average time
budget which is the ratio between the time for encoding a
frame and P, as a function of the number of treated frames.
PSNR characterizes single frame quality and is used to mea-
sure the effect on video quality of the encoding process. We
compare the controlled encoder generated by our prototype
and the same encoder for constant quality level (this corre-
sponds to standard industrial practice).

Time budget utilization is shown in figures 6 and 7, for
controlled quality, constant quality q = 3 and K = 1, and
constant quality q = 4 and K = 2. Notice the presence of
two kinds of jumps: eight jumps corresponding to changes
of video sequences (encoding of I-frames); two bursts of
jumps corresponding to frame skips due to buffer overflow
occuring for constant quality only.

PSNR for the same test cases are given in figures 8 and
9. Notice again the two kinds of jumps due to changes of
video sequences and frame skips. When a frame is skipped,
the immediately previous frame is displayed by the decoder,
and the comparison to the input frame gives a low PSNR

500

400

(P) 320
300

200

100

0
 0 100 200 300 400 500 600

en
co

d
in

g
 t

im
e

(M
cy

cl
e)

frames

controlled quality, buffer size K=1
constant quality q=3, buffer size K=1

Figure 6. Time budget utilization.

500

400

(P) 320
300

200

100

0
 0 100 200 300 400 500 600

en
co

d
in

g
 t

im
e

(M
cy

cl
e)

frames

controlled quality, buffer size K=1
constant quality q=4, buffer size K=2

Figure 7. Time budget utilization.

value (e.g lower than 25).
In figure 8, PSNR is higher for controlled quality than for
constant quality q = 3, except for regions where frames
are skipped. For these regions, the bits corresponding to
skipped frames are used to achieve better quality. Although
the PSNR is higher in these regions for constant quality, the
video quality is affected as the frame rate is divided by two.
In figure 9, using buffers of size K = 2, allows to acti-
vate constant quality 4 with a reasonable amount of skipped
frames. As in the figure 8, the PSNR of the controlled appli-
cation is higher except in regions where frames are skipped.

Experimental results show that for constant quality lev-
els load fluctuation can lead to poor video quality in ab-
sence of sufficiently large buffers. Poor video quality means
low PSNR or frame skips (or both). For controlled quality
levels, there are no frame skips. Thus, overloads result in
low PSNR. Furthermore, using buffers may not completely
eliminate frame skips, implies additional cost and increases
latency. The comparison between constant and controlled

 30

 32

 34

 36

 38

 40

 42

 44

 0 100 200 300 400 500 600

P
S

N
R

frames

controlled quality, buffer size K=1
constant quality q=3, buffer size K=1

Figure 8. PSNR between input and output.

 30

 32

 34

 36

 38

 40

 42

 44

 0 100 200 300 400 500 600

P
S

N
R

frames

controlled quality, buffer size K=1
constant quality q=4, buffer size K=2

Figure 9. PSNR between input and output.

quality shows that for controlled quality we get better video
quality even for buffer size 2. Controlled quality completely
avoids frame skips; overloads lead to smooth reduction of
PSNR.

4. Conclusion

The presented method uses fine grain control for hard
and soft real-time requirements. It overcomes some of the
limitations of hard real-time approaches where strict respect
of deadlines implies poor time budget utilization. This is
possible because of the use of fine grain control, which al-
lows adaptation to changing load during a cycle instead of
using a priori known global execution time estimates. No-
tice also that our method can be applied to systems with
hard and soft deadlines. For soft deadlines, the Quality
Manager applies only the average quality constraint.

The method relies on a solid theoretical base. We proved
that the control policy is safe under some reasonable as-

sumptions about the controlled system — actual execution
times are less than worst case execution times. We also
proved optimal budget utilization. Furthermore, we stud-
ied specific conditions guaranteeing smoothness in terms of
variations of quality levels chosen by the controller.

Experimental results confirm the interest of the method
and its low overhead. Given their importance, we actively
work in several directions to improve the prototype tool:
compositional generation of EDF schedules for iterative
programs, specialization of the Best Sched function, appli-
cation of learning techniques for better estimation of the av-
erage execution times as well as heuristics for optimal con-
trol.

In parallel, we explore theoretical foundations of this
control technique and its interrelations with existing ones.
The most important difference is fine grain QoS control,
not at system or task level, but at software execution level.
This requires a fine analysis of the application software to
extract its model as well as the use of compilation tech-
niques to generate the controlled application. A crucial is-
sue in this low level control is efficiency of the implementa-
tion to avoid overhead and probe effects due to instrumen-
tation.

References

[1] http://xirisc.deis.unibo.it/.
[2] K.-E. Arzen, B. Bernhardsson, J. Eker, A. Cervin, K. Nils-

son, P. Persson, and L. Sha. Integrated control and schedul-
ing. Technical report.

[3] R. J. Bril, M. Gabrani, C. Hentschel, G. C. van Loo, and
E. F. M. Steffens. Qos for consumer terminals and its sup-
port for product families. In Proceedings of the International
Conference on Media Futures, 2001.

[4] G. C. Buttazzo. Hard Real-Time Computing Systems.
Kluwer Academic, 2000.

[5] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task model
for adaptive rate control. In RTSS, pages 286–295, 1998.

[6] D. Isovic, G. Fohler, and L. Steffens. Timing constraints of
mpeg-2 decoding for high quality video: misconceptions and
realistic assumptions.

[7] G. Koren and D. Shasha. Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips. Technical
Report TR1996-715, , 1996.

[8] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback control
real-time scheduling: Framework, modeling and algorithm.
special issue of RT Systems Journal on Control-Theoric Ap-
proach To Real-TIme Computing, 23(1/2):85–88, 2002.

[9] L. Papalau, C. M. O. Pérez, and L. Steffens. In S. Goddard,
editor, Work-In-Progress Session of the 16th Euromicro Con-
ference on Real-Time Systems, pages 33–36, 2004.

[10] C. C. Wüst, L. Steffens, R. J. Bril, and W. F. Verhaegh.
Qos control strategies for high-quality video processing. In
Euromicro Conference on Real-Time Systems, pages 3–12.
IEEE, 2004.

