Formal Methods in System Design, 6, 1-35 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Property Preserving Abstractions for the

Verification of Concurrent Systems *

CLAIRE LOISEAUX CLAIRE.LOISEAUX@IMAG.FR
SUSANNE GRAF SUSANNE.GRAF@IMAG.FR
JOSEPH SIFAKIS JOSEPH.SIFAKIS@IMAG.FR
AHMED BOUAJJANI AHMED.BOUAJJANIQIMAG.FR
SADDEK BENSALEM SADDEK.BENSALEM@IMAG.FR

VERIMAG® , Rue Lavoisier, F-38330 Monbonnot, France

Received October 1, 1992; Revised February 1, 1994

Editor: David Probst

Abstract. We study property preserving transformations for reactive systems. The main idea is
the use of simulations parameterized by Galois connections (o,), relating the lattices of properties
of two systems. We propose and study a notion of preservation of properties expressed by formulas
of a logic, by a function o mapping sets of states of a system S into sets of states of a system
S’. We give results on the preservation of properties expressed in sublanguages of the branching
time p-calculus when two systems S and S’ are related via {«,v)-simulations. They can be used
to verify a property for a system by verifying the same property on a simpler system which is an
abstraction of it. We show also under which conditions abstraction of concurrent systems can be
computed from the abstraction of their components. This allows a compositional application of
the proposed verification method.
This is a revised version of the papers [2] and [16]; the results are fully developed in [27].

Keywords: abstract interpretation, simulation, property preservation, model-checking.

1. Introduction

The growing complexity of distributed and reactive systems requires rigorous de-
velopment methodologies and automatic verification techniques. A well-known lim-
itation of automatic verification techniques is their applicability only to relatively
small finite state programs because of the exponential blow-up of the size of the
models that have to be constructed for their application. Many techniques have
been developed in order to push further the limits of model-checking. One of them
consists in using property preserving abstractions: Given a program and a property
to be verified, find a (simpler) abstract program such that the satisfaction on the

*This work was partially supported by ESPRIT Basic Research Action “REACT”

*Verimag is a joint laboratory of CNRS, Institut National Polytechnique de Grenoble, Université
J. Fourier and Verilog SA associated with IMAG

2 LOISEAUX ET AL.

abstract program implies the satisfaction on the initial program, called concrete
program in this context. An important point is, given a concrete program, how to
construct an abstract program that is both, simple enough in order to be verified
by available tools, and that still contains enough relevant details for the satisfaction
of the considered properties.

The framework of abstract interpretation (see for example [7], [8]) addresses ex-
actly this problem. Programs are represented by functions F on some lattice of
properties. Given some abstract lattice of properties and a pair of functions (e, 7),
forming a Galois connection [33] from the concrete to the abstract lattice, a func-
tion GG on the abstract lattice is an abstraction of F if « o F oy C G holds. This
guarantees that greatest and least fixpoints of (G represent upper approximations
of corresponding fixpoints of F'. Until recently, this approach has only been applied
for the verification of invariance properties of sequential programs. However, in
[38], [39], the idea of abstract interpretation has been applied to programs repre-
sented by transition systems, where the lattice of properties is the powerset of states.
There, results showing preservation of fragments of CTL [9] from the abstract to
the concrete system have been given.

In the framework of process algebras, the problem of property preserving pre-
orders and equivalences has also been widely studied. In this framework, the no-
tions of abstractions are generally defined in terms of variants of simulation [29]
and bisimulation [30]; the problem of the construction of abstract programs has
only been addressed for notions of abstractions defined by equivalences.

In the linear semantics framework, the intuitive notion of abstraction is inclu-
sion (respectively equality) of observable computation sequences (see for example
in [25], [1], [28]). However, this notion of abstraction does not directly induce a way
of computing an abstract program for a given concrete program and observability
criterion.

Here, we take up again the approach followed in [38], [39]. We define a notion of
abstraction on transition systems as a simulation parameterized by Galois connec-
tions («,y). We show that the notion of abstraction induced by {«,v)-simulation
coincides exactly with the notion of abstraction defined by simulation in the sense of
Milner [29], parameterized by the relation p corresponding to the Galois connection
(a, 7).

Then, we give preservation results for fragments of a future and past version of
the branching time p-calculus defined in [24] for the following notion of property
preservation : an arbitrary function « from the powerset of the states of a transition
system 57 to the powerset of the states of a transition system S» preserves a property
f if for any state of S which satisfies f, all the states of S in its image also satisfy
f. If the converse also holds, then we say that « strongly preserves f. A preservation
result of particular practical interest, says that if two systems are related via (e, ¥)-
simulation, then all formulas of the p-calculus using no negation and only universal

PROPERTY PRESERVING ABSTRACTIONS 3

quantification over computation sequences (called OL,) are preserved by ¥ from
the abstract to the concrete system (where ¥ is the dual of 7).

These preservation results generalize results given in [10] where this problem is
studied in the particular case where the property preserving function « defines a
structure homomorphism from the concrete to abstract system.

Our preservation results together with the fact that, given some concrete system
and some connection (o, %), an abstract system can be computed, allow the use
of the following verification method. In order to verify a property — expressed
as a formula f of OL, — on a system S, provide a connection («,) between the
powersets of concrete and abstract states, compute the associated abstract system

S4 and verify f on S4. If f holds on Sy, it also holds on S.

Finally, we give a result concerning compositionality of simulation over parallel
composition, which is important for the application of this method in practice.
From a practical point of view, there are two reasons for building an abstract pro-
gram of a composed system by composition of abstractions of its components. It
is easier to define connections («,7) separately for each component than for the
compound system; proceeding this way allows also to avoid building a representa-
tion of the global transition system associated with the composed system. As well
for synchronous as for asynchronous parallel composition (allowing shared variables
between components), we give compositionality results, that means rules, allowing
to deduce {«, v)-simulation for a compound system from {c, 7;)-simulations for its
components, where (o,) is expressed in terms of (o, ;).

The paper 1s organized as follows. In Section 2, we give some notations and recall
the definition of Galois connections and some interesting properties of them. In
Section 3, the definition of {«,y)-simulation is given. We show that this notion
coincides with the usual notion of simulation. In Section 4, we define a notion
of abstract program obtained from a given function « or its associated relation p.
Section b presents the notion of property preservation and general results allowing
to prove that a function preserves the validity of formulas of a given language.
Section 6 gives results concerning the preservation of fragments of the p-calculus
when transition systems are related via (o, y)-simulation. Section 7, gives results
concerning the compositionality of simulation with respect to parallel composition.
Finally, Appendix A contains some technical proofs.

2. Preliminary definitions

In Section 3, we study the relationship between the notions of abstraction in the
frameworks of process algebras and of abstract interpretation. In this section, we
define the basic notions, necessary for this comparison. In process algebras pro-
grams are modeled as transition systems, that means as binary relations on the set
of states. In the framework of abstract interpretation, programs are represented by
predicate transformers, 1. e., functions transforming sets of states into sets of states.

4 LOISEAUX ET AL.

With any transition relation R can be associated different predicate transformers,
the forward and backward image functions, which we denote here by pre[R], respec-
tively post[R]. In the abstract interpretation framework, the notion of abstraction
is based on the existence of a Galois connection between the lattices of properties.
We recall here the definition of Galois connection and some well-known properties
concerning them, which are used in the proofs later on.

2.1. Transition systems and predicate transformers

Definition 1 (Transition systems)
A transition system is a pair S = (Q, R), where Q is a set of states and R is a
transition relation on @ (R C @ x Q).

Notation 1 We adopt the following conventions and notations:

o We identify a unary predicate on Q with its characteristic set since the lattice
of unary predicates is isomorphic to 29. Thus, for a unary predicate P and a
state ¢ € @, the notations P(q) = true, P(q) and ¢ € P are equivalent.

o We denote by Idg the identity function on 29,

o (liven two relations R C QxQ’ and S C Q' x Q" and two functions [: Q—Q’
and g : Q'—Q", then denote the composition of the relations R and S by RS
and the composition of the functions f and g by g o f, respectively g(f(q)) if
go f is applied to some argument ¢ € Q.

In the sequel, we consider always properties to be state properties, 1. e., interpreted
as a set of states (or a corresponding unary predicate). Therefore, in the sequel
property lattice i1s always the same as powerset on the set of states.

Definition 2 (The predicate transformers pre and post)
Given a relation p C Q1 X Qo, we define pre[p] : 292—2% and post[p] : 291 —29=
by,

de
prelll X A€ Qi - I e X i paz)
de
postlp] & AN {2 € Qs+ 3q1 € X g1 p)
That means, for Q2'CQ2, pre[p](Q2") represents the set of predecessors of the

states of)2’ via the relation p and for Q1" CQ1, post[p](Q1') represents the set of
successors of the states of ;" via p. Notice also that we have post[p] = pre[p™!].

The following propositions give some useful results concerning the predicate trans-
formers pre and post which can for example be found in [39].

Proposition 1 For any relation p from a set Q1 1o a set Q2 (p C Q1 x Q2), we
have:

PROPERTY PRESERVING ABSTRACTIONS 5

1. prelAl(0) = 0,
2. For any X1, Xa subsets of Qa, pre[pl(X1 U Xa) = pre[p](X1) U pre[p](X2),

Notation 2 (Dual of a function)
We denote by & the dual of a function o : 291 —292 that is

& Y ax.a@).

Proposition 2 Let be p C Q1 X Q2 and 0 C Q2 X Q3. Then,

o pre[po] = pre[p] o pre[o], o e[po] = prep] o pielo],

e postpa] = postlo] o post[f], o Fostlpo] = postlo] o pastls].

2.2. Galols connections

We give hereafter the definition of Galois connections and some useful well-known
results about them. More information can, e. g., be found in [33], [37].

Definition 3 (Connections)

Let Q1 and Qs be two sets of states. A connection from 291 to 292 is a pair of
monotonic functions («,v), where a : 291 — 292 and v : 292 — 291 such that
Idg, Cvyoa and oy C Idg,.

Proposition 3 For any connection («,v) from 291 {0 292 we have,
o o) =10,
o « distributes over U and vy distributes over N,
e voyoa=a, and yoaoy =1,

(¥,&) is a connection from 292 to 291,

VRCQ1,Q'CQ: - a(Q) C Q' off Q@ C Q).

Proposition 4 Let F': 291 — 291 and G : 292 — 292 be two functions and («,7)
a connection from 291 to 292, Then,

aoF oy C G fand onlyof F CyolGoa

Proposition 5 For any connection («,7v) from 291 $0 292 we have,

o Y= XY .U{X €29 : o(X) C Y},

6 LOISEAUX ET AL.

e a=AX.N{Y €29 : X Cy(Y)}

That means that o and 7 determine each other in a unique manner. These
characterizations allow to deduce the following two propositions showing the links
between the connections from 29! to 292 and the binary relations from Q1 to Q-.

Proposition 6 (Connections generated by a binary relation on states)
If p C Q1 x Q2, then the pair (post[p], pre[p]) is a connection from 29 to 292 and
(prelp], post[p]) is a connection from 292 to 291,

Proposition 7 (Relations induced by connections)
If (o,7) is a connection from 29t to 292, then there exists a unique relation
p C Q1 X Q2 such that « = post[p] and v = pre[p].

Proof: Let (a,7) be a connection from 29t to 292. Consider the relation p defined
by (g1,92) € p if and only if ¢2 € a(q1). Since a(@) = § and « distributes over U
(Proposition 3), we have o = post[p].

Furthermore, by the Proposition 5, we have y = AY. [J{X € 29 : o(X) C YV},
and as « distributes over U, we can write y = AY.{¢ € @1 : a({q}) C Y}. Now,
since o = post[p], it is easy to deduce that v = pre[p]. [|

Proposition 8 If («,7) is a connection from 29t to 292 and (o’,7') is a connec-
tion from 292 to 291, then we have,

1. Id CYyoa and Idpya) C o7,

Im(y)

2. Y o507 =% ifand only if &’ oo’ = o',

Proof: Consider the relation p C @1 X Q2 such that o = post[p] and v = pre[p],
which exists by Proposition 7.
Now, it is easy to see that Idg, C pre[p] o post[p] for any p C Q1 x Q> that is
total on Q1 and Idg, C post[p] o pre[p] for any p C Q1 x ()2 that is total on Q.
By Proposition 7, the equation 3’ 05 05 =5’ is equivalent to
pre[p’] o pre[p] o pre[p’] = pre[p’] for some appropriate relations p, p’. By Proposi-
tion 2, this is equivalent to pre[p’pp’] = pre[p'], that is p' = p'pp’.
Symmetrically, p’ = p’pp’ is equivalent to post[p’] = post[p’pp’], that is to
post[p'] = post[p’] o post[p] o post[p’], 1. e., ¢’ = o’ oo’ [|

3. Simulations

In this section, we define a notion of simulation based on Galois connections (e, 7),
called {«, v)-simulation. Tts definition is inspired by the notion of abstract interpre-
tation in the sense of Cousot [7], [8]. There, a program is represented by a function
F mapping properties into properties. A function G, mapping abstract properties

PROPERTY PRESERVING ABSTRACTIONS 7

into abstract properties, is an abstraction of F' if there exists a connection («,7)
from the concrete to abstract lattice of properties, such that a o Foy C (.

In our framework, where a program is a transition system S; = (@1, R1), a possi-
ble choice for the function F' is taking one of the predicate transformers associated
with the transition relation R. We consider that the expressions S is an abstrac-
tion of S and S sumulates S are equivalent. We show that the notion of abstraction
induced by the choice F' = pre[R;] coincides with the notion of abstraction induced
by simulation in the sense of Milner [29] which is used in the framework of process
algebras.

3.1. Simulations induced by connections

First, we define simulation (and bisimulation) parameterized by a connection (e,)
relating the property lattices of two transition systems S1 = (Q1, R1) and S2 = (@2, R2),
i. e., a connection from 29 to 292,

Definition 4 (T,) and ~(4)
Let S1 = (Q1, Ry) and Sy = (Q2, R2) be two transition systems and (o, 7y) be a
connection from 291 to 292, Define,

o 51 C(any Sz if and only if oo pre[Ry] oy C pre[Rs],

® S1 ay) OS2 tf and only if S1 C(s 4y S2 and S EG,E Sy.

)

If S1 C(a,y) S2, we say that S (a, y)-simulates Sy or S5 is an {«,y)-abstraction of
S1. A useful dual condition for the definition of {«, y)-simulation can be deduced
from Proposition 4.

3.2. Relating {«,~)-simulation and behavioural simulation

We recall first the definitions of behavioural simulation and bisimulation in the
sense of Milner which are based on a binary relation p between the sets of states
1 and Q5. In Propositions 9 and 10 we show that these two notions of simulation
coincide.

Definition 5 (Cp and ~p)
Let S1 = (Q1, Ry) and S2 = (Q2, R2) be two transition systems and p be a relation
from Q1 to Q2 (p C Q1 X Q2). Define,

e S1 C, 5 if and only ifR p Cp R,

[Sl = Sz Zf and only ZfSl Ep Sz and Sz Ep—l Sl.

8 LOISEAUX ET AL.

If 5 Cp Ss, we say that Sy p-simulates S5 or S3 1s a p-abstraction of 5.

S1 simulates (respectively, bisimulates) the system Sy if there exists a relation p
such that S; T, Sy (respectively S1 ~, S3). We show now that {«,~)-simulation
and p-simulation coincide.

Proposition 9 (From T, 4y to Cp)

Let S1 = (@1, R1) and Sy = (Q2, Ra) be two transition systems. For any relation
p C Q1 X Q, there exists a connection (av,y) from 29t to 292 such that

S1 B, Sz 4f and only if S1 B) Sa-

Proof: Weshow that the intended connection is (post[p], pre[p]) (by Proposition 6,
this pair is indeed a connection). Suppose that S E(;;ost[p],[;}?z[p]) Sa,1. e,

post[p] o pre[Ry] o prelp] C pre[Rs].
Then, as post[p] is monotonic and Idg, C pre[p] o post[p], we obtain,

post[p] o pre[Ry] o pre[p] o post[p] C pre[Ry] o post[p] which implies
post[plopre[Ry] C pre[Rs]opost[p] which is equivalent to Ry ' p C p Ry~

It can be shown in a similar way that the converse also holds. This proves,

S1 :<post[p],[;}2[p]) Sy if and only if 57 ~, S». |
Proposition 10 (From Cp to Ca,4))

Let S1 = (Q1, R1) and So = (Q2, R2) be two transition systems. For any connection
(a,7) from 291 to 292 there exists a relation p C Q1 X Q2 such that

S1 Cayy) S2 of and only if 51 E, Ss.
Proof: Direct from Propositions 7 and 9. []

This result clarifies the relationship between the approach of abstract interpre-
tation and that chosen in the framework of process algebra. In fact, the notion of
abstraction in the case where program models are transition systems is the same.
Therefore, we do not distinguish in the sequel between simulations parameterized
by relations and those parameterized by connections; in any context we use the
notion which allows to present the results in the simplest way.

4. Computing program abstractions

In the framework of process algebra and of program refinement, the notion of sim-
ulation is in general used in order to decide for two given programs if one of them
simulates the other. But our aim is, given a program P and a relation p relating
concrete and abstract states, to construct an abstract program P4 such that P
p-simulates P4. Obviously, there are many programs which are p-abstractions of

PROPERTY PRESERVING ABSTRACTIONS 9

P. In particular the program Chaos defined by the universal transition relation on
the abstract set of states is a trivial p-abstraction of any P. We are interested in
an abstract program satisfying — for a given p — as many properties as possible,
i.e. which 1s as close as possible to the concrete program.

In our framework, where P is represented by a transition system S = (Q, R)
the abstract program must also be representable by some transition relation of the
form Sa = (Qa, Ra), where Q4 is the set of abstract states. In this case the
obvious minimal function post[p] o pre[R] o pre[p] — obtained from the definition of
simulation — does not necessarily correspond to a solution, that means a function
of the form pre[R4] for some transition relation R 4.

It is easy to see that in general, there may exist several minimal p-abstractions
of S. In Section 4.1, we define first the criterium of faithfulness which is satisfied
by all transition systems on @4 which are bisimilar to any smaller (in the sense
of inclusion) p-abstractions of S. Using the results of Section 5, we will see that
faithful abstractions are the set of abstract programs which satisfy all properties
which are possibly satisfied by any p-abstraction of S and which are preserved from
Sato 5.

We will see that the abstract program defined by S, = (Qa, R,) with R, =
p~t R pis a faithful abstraction if p is total and moreover p = p p~! p holds. In
the case that p is a total function, pre[p] = pre[p] holds, which trivially implies that
S, 1s the least abstraction. Then, p defines a structure homomorphism from S to
S,; this case has been widely studied in the literature (see for example in [25], [10]).

S, is induced in an obvious manner by a slightly stronger notion of simulation than
C, which we denote by <,. Under some conditions <, coincides with the notion of
forward and backward simulation for which we obtain stronger preservation results
than for C,.

In Section 4.2, we show how S, can be computed if transition relations as well as
abstraction relations p are represented by predicates over sets of program variables
and illustrate this on a small example.

4.1. Faithful abstractions

Definition 6 (Faithful abstractions)

Given S = (Q,R) and p C Q x Qa, we say that Sy = (Qa, Ra) is a faithful
abstraction of S via p if S T, Sa and ¥S' = (Qa,R) . SC, S and R'CR4
implies Ip" C Qa X Q4 .Sa ~p 5.

Notation 3 (The system S,)
Given S = (Q,R) and p C Q X Qa, total on Q, we define S, = (Qa,R,) where
R, =p~' R p (or equivalently, pre[R,] = post[p] o pre[R] o pre[p]).

Proposition 11 Let S = (@, R) be a transition system and p C Q x Q4.

o If p s total on Q, then SC, S,.

10 LOISEAUX ET AL.

o If furthermore p = p p~' p, then S, is a faithful abstraction of S via p.

o Ifpis a (total) function, then S, is the least p-abstraction of S.

Proof: The first and the third items follow directly from the fact that pre[p] C pre[p]
if p is total on @ (respectively pre[p] = pre[p] if p is a function). For the second
item, we show that for any transition system Sa = (Qa, Ra) such that S C, S4 and
RACR,, we have Sy ~,-1, S,, the proof of which is given in the Appendix A.1.

|

Notice that p = pp~'p if and only if any two states of having a common
successor by p, have the same successors by p. This means that p defines a function
from the partition on () induced by pp~! into the partition of @4 induced by p~!p.
There exist examples of interesting abstraction relations p such that p is not a
function. If p = pp~!p does not hold, then S, is not necessarily faithful, and in [12]
is given a way to compute faithful abstractions.

S, is induced by a slightly stronger notion of simulation than T, (respectively
C(a,y)) which coincides with the notion of forward and backward simulation used,
e. g. in [21], [22] if p is total.

Definition 7 (<, and <4))
Let S = (Q,R) and Sq = (Qa, Ra) be transition systems, and p C Q x Qa total
on @ and (a,7) a total connection from 29 to 294. Then,

o S=,S4ifand only if p ' Rp C Ry

® S =<(ay) Sa if and only if o pre[R] o7 C pre[R4]

Lemma 1 (Characterization of <,)
Let S = (Q,R) and Sq = (Qa, Ra) be transition systems, and p C Q x Qa total
on @Q; denote S™1 = (Q, R™Y) and analogously for Sa. Then,

S =<, Sa if and only if ST, Sa and S™' C, S3'.

4.2. Symbolic computation of program abstractions

Now, we consider the particular case where transition relations and abstraction
relations are represented by predicates over program variables. The sets of states
@ are the Cartesian product of the domains of a tuple of program variables. For
example, if X = (#,y), then we have, @ = Dom(X) = Dom(z) x Dom(y).

Then, binary relations on Dom(X) can be represented by binary predicates of
the form R(X, X') where X' = (2', ') is a “copy” of X, i.e., Dom(X) = Dom(X").
X encodes the source state and X’ the target state of any transition in R. For
example., if Dom(z) = N and Dom(y) = Bool, then R = y A (¢/ = z + 1)

PROPERTY PRESERVING ABSTRACTIONS 11

represents the transition relation relating any (n,true) € N x Bool with (n+1,¥)
where b may take any boolean value as y' is not constraint in the expression R.
This approach is used, e. g., in [26], [35]. In the same way a relation p from Dom(X)
to Dom(X4) is represented as a binary predicate of the form p(X, X4).

In this setting, operations on sets (respectively relations) are expressed by logical
connectives. For example, the fact that a relation R; is included in R is expressed
by Ri= R, and Ri A R, represents the intersection of Ry and R» if they are defined
on the same set of variables.

We consider that a program is a family of transition relations represented by sets
of binary predicates on the same tuple of variables, S = {R;(X, X")};er where i € T
are used as labels (names) for synchronization purposes in parallel composition in
Section 7.

Then, given an abstraction relation p(X,Y"), where YV is a tuple of abstract vari-
ables, the abstraction S, of S is computed as

S, = {(AXIX' . p(X,Y) A p(X",Y") A Ri(X, X")ies

containing expressions in which, at least in the case where Dom(X) and Dom(Y")
are finite, all occurrences of variables X and X’ can be eliminated.

Example : a reader/writer problem

We describe a simple readers/writers system by the following “program” RW; in
fact RW defines a family of labeled transition relations where for readability reasons
an explicit label ((b-read),(e-read),...) of each action is put between parentheses in
front of the expression defining the transition relation.

RW = {

(b-read) (Wr > 0)A(Aw =0) A (Wr=Wr—DAWu =Wuw) A
(Ar' = Ar + 1) A (Av' = Aw),

(e-read) (Ar > 0) A (W =Wr+)A(Wuw' = Ww) A
(Ar' = Ar — 1) A (Av' = Aw),

(b-write) (Ww > 0) A (Aw = 0)A

(Ar =0) A (Wr=WrnA(Ww =Ww—1) A
(Ar' = Ar) A (Aw' = Aw + 1),
(e-write) (Aw > 0) A (Wr'=Wr)A(Ww' =Ww+1) A
(Ar' = Ar) A (Aw' = Aw — 1),
(n-wait) (Wr'=Wr+1)V(Ww =Ww+1)) A
(Ar' = Ar) A (Aw’ = Aw)

1

where Wr and Ww are positive integer variables representing respectively the num-
bers of waiting readers and waiting writers, Ar and Aw respectively the numbers
of active readers and active writers. The transition relation associated with RW
has an infinite number of states as Wr and Ww can always be increased by action
(n-wait).

12 LOISEAUX ET AL.

We want to prove mutual exclusion between readers and writers. Then, the only
relevant information is, whether the number of active readers and writers is posi-
tive or not. Therefore, we define an abstraction relation p mapping the program
variables on two boolean variables b; and b, meaning respectively there s no active
reader and there is no active writer, by

p(Wr, Ww, Ar, Aw), (b1,b2)) := (b1 = (Ar = 0)) A (b2 = (Aw = 0)).

As pis a total function, RW, is a faithful abstraction of RW via p. For each one of
the five transition relations R; of RW we have to compute the abstract transition
relation

(Ri), = 3X 3X' . p(X,Y) A p(X'Y') A Ri(X, X)

For the transition relation R; (labeled by (b-read)) one obtains the following ex-
pression:

(R1), =3(Ar, Aw, Wr, Ww) I(Ar', Aw', W', Wu') .
(b1 =Ar=0)A(ba = (Aw=0)) A (0] =(Ar =0)) A (b
(Wr>0)A(Aw=0)A(Wr =Wr—1)A
(Wuw' = Ww) A (Arf = Ar 4+ 1) A (Aw' = Aw)
—by A b A B

I
N
S\
[

=
>

By doing a similar computation for all R; we obtain the following family of abstract
transition relations:

RW,={ (bread) b A by A b,
(e-read) —by A (b = ba),
-write 1 ANby A A=
(bwrite) b Abs A B A-bh,
(e-write) —bsg A (b = by),

(n-wait) (b =b1) A (b, =bs) }

The finite global transition relation represented by RW, is given graphically in
Figure 1.

5. General results on property preservation

Now we have defined a notion of abstraction and a way to compute abstract pro-
grams. An important point is to know for which properties we can deduce from
the satisfaction on the abstract system its satisfaction on the concrete system. In
order to answer this question, we consider first the general problem of property
preservation between two systems. If the property lattices of the two systems are
related via some monotonic function « : 291—2%2 then the satisfaction of some
state property f is preserved from 57 to S» via « if for any state of)y satisfying f
all states of (J» in its image by « satisfy property f. We have strong preservation
if the converse holds also; this means intuitively that whenever a state of)1 does
not satisfy f, then there exists a state in its image by « which does not satisfy f.

PROPERTY PRESERVING ABSTRACTIONS 13

b-read

e-read

Figure 1. Readers/Writers abstraction

We give useful characterizations of these definitions if there exists a function ¥ such
that (o,) is a connection, because in Section 6 we apply this notion of preservation
to systems related via {«, y)-simulation. We give also a theorem allowing to deduce
strong preservation from preservation in both directions.

Let us first introduce some notations. We suppose that program properties are
expressed by formulas of a logical language F(P) where P = { Py, Pa, ...} is a set of
propositional variables interpreted as sets of states. For a given system S = (Q, R)
and an interpretation function T : P—29, the semantics of F(P) is given by means
of a function | |s 7 : F(P)—29, associating with each formula its characteristic set,
1. e., the set of states satisfying it. This function is such that VP € P .|P|s, = Z(P).
To simplify notations, either one or both of the subscripts S and 7 in |f|5 - will be
omitted whenever their values can be determined by the context.

Definition 8 (Preservation)

Let f € F(P) be a formula, S1 = (Q1, R1) and Sa = (Q2, Ra2) be two transition
systems, ICQ1, T : P—291 an interpretation function and o : 291 —292. We say
that o preserves (respectively strongly preserves) f for T on 11 if and only if for
any q € 11,

q € |fls, « implies (respectively if and only if) a({q}) C |fls,, a0z
If I = Q1, we omit to mention that the preservation is on 1II.

In this definition, the function « establishes a correspondence between properties
of S; and properties of S3. Preservation means that the function « is compatible
with the satisfaction relation. In the sequel, where the function « under consid-
eration is always monotonic, and even such that there exists a function 7, such
that («v,7) is a connection, we use the following characterizations of the notion of
preservation in order to establish preservation results.

14 LOISEAUX ET AL.

Lemma 2 (Characterization of preservation)
Let f € F(P) be a formula, S1 = (@1, R1) and S2 = (Q2, Ra2) be two transition

systems, T : P—291 be an interpretation function and o : 291 —292,

1. if « is monotonic then

a(|fls,,z) C |fls,,a0r implies o preserves f for T
and if o distributes over U, the converse also holds.

2. if there exists v such that (o, 7) is a Galois connection, then

(A) « preserves f for I if and only if

|fls1,2 © (I f]ss,a07)
(B) « strongly preserves f for T if and only if
|f|5171 = 7(|f|52,a01)

Proof: The first direction of (1) is immediate: from ¢ € |f|s, z, We obtain by
monotonicity of «, a({q}) C «(|f|s,,z) C |fls, aoz- If @ distributes over U, then

o] fls, z) = a(qu|f|5 I{q}) = qu|f|5) a({q}) which establishes the result.

The proof of (2A) is direct from (1) and the last item of Proposition 3. (2B) can
be deduced from the fact that («({¢}) C |fls,,a0r) = ¢ € |fls, = is equivalent to

U{a((])g|f|52,aoz}{Q} < |f|51’z and o
Ul (1) = 71f1e001) by Propsition 5 .

The following theorem gives conditions under which preservation by « from S; to
Sy and preservation by o’ from S, to S; implies strong preservation by a from .S
to S3. Notice that this theorem uses only the monotonicity of « and «o’; the fact
that there exists functions v, 4’ such that («,y) and (a’,4) are connections does
not allow to weaken the conditions required here. Therefore, we use exactly this
theorem in order to obtain the strong preservation results in the following section.

Theorem 1 (Preservation and strong preservation)

Let S1 = (@1, R1) and S2 = (Q2, Ra) be two transition systems. For any set
I C Q1 and for any monotonic functions o : 291 — 292 qnd o : 292 — 291 syuch
that &' oo’ = o and Idy C o' o «, if o preserves f for T : P—Im(a') and o'
preserves f for a o then « strongly preserves f for T on II.

Proof: In order to show strong preservation by « suppose that, for ¢ € II,

a({Q}) - |f|52,ozo 7. We haVe,

o' oa({q}) C &/(|f|s,,a0r) (monotonicity of o),
q € O/(|f|52,aoz) (Idl‘[g O/ (¢} a)’
q € |fls,,at0a0r (o preserves f for o oZ and Lemma 2).

Since Z : P—Im(a’), there exists an interpretation function Z : P—292 such that
Z=a'oZ'. Thusd’oaol = a’oaoa’ol’ = o/ oI’ =7 which implies ¢ € |f|s, z.
|

PROPERTY PRESERVING ABSTRACTIONS 15

6. Preservation of the p-calculus

Now we can tackle the problem of preservation between systems related by (e, 7)-
simulation as defined in Section 3. The universe of properties that we consider is
the set of properties expressible in the propositional branching-time p-calculus [24]
augmented by past time modalities, which we denote L.

This logic subsumes in expressiveness the commonly used specification logics,
such as the branching-time temporal logics CTL [9] and CTL* [14] and also the
linear-time temporal logics as PTL [34] and ETL [40].

We define fragments of the pi-calculus called L,,, OL,, OLF, GLy, and OLE (where
p stands for logics containing past time operators). We show for two systems S; and
Sy that, if S E(q,4) S2, then a preserves &Ly, from Sy to Sy and 5 preserves OL,
from Sy to Sp. If moreover S; o) S5 holds, then stronger preservation results
for the fragments augmented by the corresponding past time modality hold also.
We obtain strong preservation of these fragments in case of simulation equivalence,
1. e., existence of simulations in both directions.

In the case where the two systems are (o, ~)-bisimilar, the two functions men-

tioned above preserve LLP) and, under some conditions, they strongly preserve it.

In the first subsection, we recall the definition of the p-calculus and its fragments
and in the second subsection we give the preservation results. In the third subsec-
tion, we reformulate the verification method sketched in the introduction and apply
it to the small example introduced in Section 4.2.

6.1. The propositional p-calculus and its fragments

We recall the syntax and the semantics of the future and past propositional p-calculus
Li,. Let P be a set of atomic propositions and X" a set of variables. The set of the
formulas of Lf, is defined by the following grammar:

fo=TIPeP|XeX|Of[FfIFVII-fIpXf

where f is syntactically monotonic on X, i. e., any occurrence of X in f is
under an even number of negations.

As usually, the notion of free occurrences of variables in a formula is defined as in
the first-order predicate calculus by considering the operator p as a quantifier. A
formula is closed if there are no variables occurring free in it. L, is the fragment
in which the past operator <¥ is not allowed.

The semantics of the formulas is defined for a given transition system S = (Q, R)
and an interpretation function for the atomic propositions 7 : P—29. A formula f
with n free variables is interpreted as a function |f|s ; : (29)"—29. In particular,
a closed formula is interpreted as a set of states. The interpretation function is

16 LOISEAUX ET AL.

inductively defined as follows, for a valuation V = (V1,...,V,,) € (29)" of the vari-
ables occurring free in it.

|T|s,z = Qa

|P|S,I = I(P)a

| X [5,2(V) =V,

|f1 \/f2|5,2(v) = |f1|571(V)U |f2|572(V),

|_'f|s,z(v) = Q- |f|s,z(v)a

|Ofls,z(V) = pre[R](|f]s=(V)),

|F fls, (V) = post[R](|f]s,z(V)),

X fls=(V) = (HQ'CQ : |fls:Q/XIV) C Q'}.

We extend L% by adding as usually the formulas L, fAg, f=¢, vX.f(X), Of and
0P f which are respectively abbreviations for =T, =(=fV-g), 7 f Vg, "puX.=f(=X),
=O=f and =P f.

A formula of this extended language is in positive normal form if and only if all
the negations occurring in it are applied to atomic propositions. It can be shown
that any formula of Lf, has an equivalent formula in positive normal form.

We define fragments of LI, called OL,, OLL, &Ly, and OLE . Their sets of formulas
are given respectively by the two following grammars where the past time modalities
OF and <¥ are not allowed in the future fragments OL,,, respectively OL,.

gu=T[L|P|-P|X|0g|0fg|gVglgng|pXg|vXy
hu=T|L|P|=P|X|Oh|<Ph|hVh|hAh|pX.h|vX.h

Notice that properties expressed by formulas of DLEJP) involve only universal quan-
tification over computation sequences (due to the use of the O (or OP) operator)

whereas those expressed by formulas of OLLP) involve only existential quantification
over computation sequences.

We consider the positive fragments DLLp)Jr and <>LEf>+ obtained from the above
languages by forbidding the use of the negation even on atomic propositions. We
consider also the fragments LLpH corresponding to the subset of LLp) formulas in
positive normal form without negations. We can translate any formula of LLp) which
1s in positive normal form into an equivalent formula in LLPH by replacing negated
atomic propositions, 1. e., formulas in the form =P, by new atomic propositions.
Thus, since any formula of LLP) has an equivalent formula in positive normal form,
LLPH 7t

we can express in any property expressible in L; ’, modulo this encoding of

the formulas =P. Obviously, the same translation can be done from *LLP) to >0<LEf>Jr

for x € {0,

In OL, we can express branching-time properties as for instance the safety prop-
erties with respect to the simulation preorder [3]. The class of these properties
corresponds to the fragment of OL, without the least fixpoint operator y.

PROPERTY PRESERVING ABSTRACTIONS 17

Furthermore, it can be shown that any w-regular linear-time property, i. e.; ex-
pressible by a nondeterministic Blichi automaton [6], can be expressed in OL,
[4]. For example, the safety property always P can be expressed by the formula
v X (PAOX). Moreover, the guarantee property (according to [32]) eventually P in
any infinite computation sequence can be expressed by the formula pX.(P Vv OX).
Properties in the other classes in the hierarchy given in [32] are obtained by using
alternations of the p and the v operators. The properties of YCT L* can be ex-
pressed in OL, if we restrict ourselves to models whose transition relation is total
as YCT'L* allows to express general eventuality. Notice that if the transition rela-
tion of the considered models is not necessary total, “eventually P” is expressed by
the formula pX.(P Vv Otrue A OX), which is neither in OL, nor in OL,.

The formulas of CL, are negations of formulas of 0L, and conversely.

Past time modalities can be used for two different aims: they allow to express
properties which cannot be expressed using only future modalities, e. g.,
puX.(inét vV OP X) holds exactly in the set of states reachable from a state satisfying
tnit. Moreover, they may be used in order to define alternative computation algo-
rithms for invariants and eventually properties which in some cases converge much
faster. For example, the formula inét=vX.(P A OX) is equivalent to
“P=vX.(—init AOPX).

6.2. Preservation results

First, we define the notion of consistency which expresses that a chosen function
relating two property lattices, o : 291—292 preserves the meaning of the atomic
propositions defined by an interpretation function Z on 29'. « is consistent with
T if for all atomic propositions the images of Z(P) and Z(P) by « are disjoint,
1. e., the images by « of the interpretation of P and of =P are non contradictory.
Lemma 3 says that — in the case that («,7) is a connection — consistency of

o with 7 expresses the fac