On the composition of hybrid systems

Sébastien Bornot and Joseph Sifakis
Sebastien.Bornot@imag.fr Joseph.Sifakis@imag.fr

VERIMAG, 2 rue Vignate, 38610 Gieres, France

1 Introduction

Concurrent systems can be usually specified as systems of communicating pro-
cesses obtained by composing sequential processes by means of binary parallel
composition operators. The latter express process interaction in terms of action
composition. Their semantics is usually defined by two types of rules.

— Synchronization rules that specify how an action of the product process is
defined as the result of the (simultaneous) occurrence of two actions in two
component processes.

— Interleaving rules, that specify how an action of a component process is an
action of the product process. These rules allow some component processes
to be idle while the others progress.

Combining synchronization and interleaving rules is essential for the spec-
ification of systems as process coordination requires both synchronization and
waiting. However, their adequate combination must satisfy two conflicting re-
quirements :

Deadlock-freedom : Deadlocks may appear in the product process as a re-
sult of enforcing synchronization, for instance, when two processes are at states
from which only non matching synchronization actions can be performed. Such
deadlocks can be avoided by using “escape” transitions generated by applica-
tion of interleaving rules. However, the presence of both synchronization and
interleaving actions may imply non maximal progress.

Mazimal progress : When synchronization of two actions is possible, inter-
leaving rules, used precisely to avoid deadlocks, may be applicable. Maximal
progress means that synchronization is preferred to interleaving when both are
possible. This is sometimes achieved by using restriction or hiding operators that
prune out interleaving actions.

The above problems are amplified for timed or hybrid systems where time
progress is synchronous and waiting times are bounded. This can be easily ob-
served when hybrid specifications are obtained by adding timing constraints to
untimed communicating systems specifications, as it has been pointed out in
[SY96].

In [SY96,BS97Db] it is claimed that specifying time progress conditions inde-
pendently from discrete transitions may be source of inconsistencies in specifica-
tions. We propose a model where time progress constraints are associated with

actions and thus time progress is directly related with the ability of a system to
perform actions. This model satisfies the property of time reactivity in the sense
that if no action is enabled at a state, time can progress.

Following the process algebra approach, we consider discrete (untimed) sys-
tems represented as terms generated from a set of abstract actions by using
operators such as prefixing, non deterministic choice and parallel composition.
We extend the semantics of these operators to hybrid actions.

For a given abstract action a, a hybrid action extension of a, is defined as a
triple (ga, da, fo) where g, and d, are unary predicates and f, is a total function
on a continuous set of states. The predicate g, is a guard characterizing the states
from which a is enabled while d, is a deadline satisfied by all the enabling states
at which the action a becomes urgent (time progress is stopped). The function
fa represents the effect of the action when it is executed.

As usually, for a given n-ary operator op, the hybrid actions of the term
op(ty,...,t,) are obtained by composing the hybrid actions of the arguments ¢;.
We show that the semantics of operators on abstract actions can be extended to
hybrid actions in different manners. The extensions have the same semantics for
discrete transitions but may differ in urgency (ability to perform actions within
a given delay).

We assume that parallel composition of two discrete systems can be expressed
as the non-deterministic choice of terms starting with interleaving or synchro-
nization actions (by means of some expansion theorem [BK85]). The expansion
theorem is extended to hybrid actions in the following manner :

— To guarantee maximal progress, non-deterministic choice is replaced by pri-
ority choice that gives higher priority to synchronization actions over inter-
leaving actions.

— Synchronization operators between abstract actions are extended to hybrid
actions. The guard and the deadline resulting from the synchronization of
two hybrid actions depend on the guards and deadlines of the synchronizing
hybrid actions. We show that for hybrid actions different synchronization
operations of practical interest can be defined by taking as synchronization
guards and deadlines modal formulas. In particular, we identify three im-
portant synchronization modes : AND-synchronization where the guards of
the synchronization action is the conjunction of the guards of the contribut-
ing actions. MAX-synchronization used to model synchronization with wait-
ing and for which the synchronization action occurs as soon as all of the
contributing actions have been completed. MIN-synchronization where the
synchronization action occurs as soon as one of the contributing actions is
completed.

The paper is organized as follows. In section 2, we define hybrid extensions of
discrete systems as a labeling homomorphism that extends prefixing and choice
operators. Section 3 presents a framework for parallel composition of hybrid
systems as an extension of parallel composition of untimed systems. For the

three basic synchronization modes parallel composition rules are proposed that
guarantee both local deadlock-freedom and maximal progress. We conclude by
indicating possible application directions.

2 Hybrid extensions of discrete systems

We consider a simple (discrete) algebra of terms S4 with prefixing and non-
deterministic choice. We show that a hybrid extension of S4 can be defined
as a labeling of the underlying transition system associating with a state s, an
evolution function > and with any action a a hybrid action h(a).

2.1 Discrete systems

Consider the language of terms S4 defined by the grammar
su= Nil | as | s+s

where Nil is a constant and a € A, a set of atomic actions.

With a term of S4 we associate transition relations subsets of S4 x A X Sz
defined by

a.s s

s1 5 s’ implies s1 + 2 — 51’ and 2 + 51 — 51

We consider that + is an associative commutative operator with N+l as zero
element. Any term s is congruent (strongly bisimilar) to a term of the form :

s = Z a;.5; (taken to be Nil if T =)
i€l

2.2 Hybrid extension of S4
A hybrid extension of S4 is defined as a pair (V, h) where

— V is a continuous state space isomorphic to R" for some n > 0
— his a labeling of S4 such that :
e h(s) =(s,>s), wherebs : V xRy — V is an evolution function. We write
vy t for >g(v,t). We require that >y is additive, i.e.,
Yv € V Vi, ts € Ry vpg (t1 +t2) = (U D> tl) D> ta.
e h(a) = (a,9,d, f) where g and d are two unary predicates on V and
f V. — V. We suppose that d = g. We call g,d, f the guard, the
deadline and the jump respectively of the hybrid action h(a) associated
with a.

The hybrid extension of the term s =). a;.s; is represented by the term
h(s) =3, h(a;).h(s;).

We define hereafter the semantics of h(s) in two steps. First, we associate
transition relations with hybrid actions h(a;) on the continuous state space V.
Then, we define the transition relation of the hybrid extension.

Definition 1. Let b = (a, g,d, f) be a hybrid action associated with a in some

transition s — s’ of S4. We define transition relations L for ¢t € Ry and 2 for
a € Asubsetsof V x V :

—bivboungt if V<t —d(vpgt')
—b:v3 flv) if g(v)

tThe two relations describe the behavior of b from a continuous state v. b :
v — v bg t means that the execution of b can be delayed for ¢ time units and
b:v > f(v) represents the effect of a jump.

Definition 2.

The semantics of h(s) =", b;.h(s;) where b; = (as, i, d;, f;) and h(s) = (s,>s
is defined as a family of labeled transitions, subsets of (Sa4 x V) x (AURy) x
(Sa x V) by the rules

— If by : v % v; then (s,v) 5 (s, ;)
—IfVieI b :v-5vb,tthen (s,v) 4 (s,v >4 t).

Remark 3.

Notice that the projection of the transition relations on discrete state compo-
nents agrees with the transition relations of the associated discrete system. This
justifies the use of the term “extension”.

Time can advance in h(s) for s =). a;.s; only if all the hybrid actions
h(a;) agree to let time advance. This rule determines a time progress condition
associated with s similar to the “invariants” in [ACHT95] and “time progress
conditions” in [KMP96]. Associating time progress with actions is an important
feature of the presented model as it will be shown throughout the paper. For a
given hybrid action, its guard characterizes the states from which the action is
possible while its deadline characterizes the subset of the states where the action
is enforced by stopping time progress.

The condition d = ¢ guarantees that if no action is enabled from a state
then time can progress. In fact, time progress can stop only at states where a
guard is enabled. Using terminology from synchronous language [JM94] we call
this property time reactivity.

The relative position of d with respect to the corresponding g determines the
urgency of an action. For a given g, the corresponding d may take two extreme
values: d = g which means that the action is eager and d = false which means
that the action is lazy. A particularly interesting case is the one of delayable
action where d is the falling edge of g (cannot be disabled without enforcing its
execution) (figure 1).

2.3 Choice operators

Let B = {b;}icr be a set of actions b; = (a;, g;,d;, fi) labeling transitions issued
from a term with evolution function »>. We use the modal operators $<j p

d=g eager
d=gl delayable
d = false lazy

Fig. 1. using deadlines to specify urgency

(eventually p within k) and & <, p (once p since k) where p is a unary predicate
onV, and k € Ry U {oo}.

C<ep()if R eRL 0<t<k. plvrt)
CS<crpifIHeRL 0<t<Ek I eV.v=vptApk)

As usual, we write Op and © p for O<o p and © < p respectively, and Op
and G p for =<O—p and =& —p respectively.

We have already defined a non-deterministic choice operator), b;.s; which
combines the semantics of hybrid actions in a very simple manner. The discrete
transition relation is the union of the discrete transition relations of the hy-
brid actions b; and the timed transition relation is the intersection of the timed
transition relations of the b;’s. This semantics corresponds to a maximally ur-
gent behavior in the sense that an action may occur when V;g; holds and time
progress stops as soon as V;d; holds. In practice, it is often useful to define
other choice operators with less prompt semantics ([BS97a]). We define a choice
operator taking into account priorities between actions. Instead of considering
non-deterministic choice between actions b; = (a;, ¢, d;, fi), for i = 1,2, one can
consider that, for instance, by has higher priority than b; which leads to restrict-
ing the guard and the deadline of b; to g’ and d;’ respectively. One may take
g1’ = g1 Ags and di' = di A g1’ to resolve conflicts between b; and b, in favor of
b2. This is a well-known manner to give priority to actions in untimed systems.
However, for timed systems priority can concern not only instantaneous conflict
resolution but also take into account possibility of waiting. For instance, if we
take g1’ = g1 A O=gy and di' = di A g1, we restrict the enabling states of b; to
only those states from which b, will never be enabled.

Definition 4. priority order
Counsider the relation <C Ax (NU{oo})x A. We write a; <i az for (a1, k,az) €<
and suppose that

<}, is a partial order relation for all £ € N U {oo}
a; <p Az = VE' < k. a1 <pr as
a1 <p a2 Nax <paz = a1 <p4 a3

Property : The relation a1 < as = 3k a; <j as is an order relation.

Definition 5. priority choice operator
Given <, a priority order and {b;.s;}ics, a set of term, we define the priority
choice operator) _ such that :

Z<{bi-5i}iel => Vs
iel
whereif b; = (ai, gi, di, fi) then b's = (ai, ¢';, d'i, fi) with ¢'; = giAA, < 0, 7O<kI;
and dli = dz A gli.

Notice that if a; <y a; then in) b';.s; “a; has higher priority than a; in the
interval [0, k]” that is, a; is disabled if a; will be enabled within & time units.

1N N <o
S BN
g1 I N : e a1 <1 ag
, : Lo f .
g1 : — : — a1 <o 2

01 2 3 456 7 8 9

g1 u
g . |

Fig. 2. Different priorities for as over a;

Consider the guards g;, g2 of the actions a1, a2. Figure 2 gives the guards
g', obtained when ¢; is restricted by considering the priority orders a; <o a2,
a1 <1 az, a1 <so A2.

Proposition 6. The priority choice operators defined above satisfy the following
properties.

1. <>gl = <>(ng \ Va,—<<aj g])
2. <>Vie[gi = <o Vie[g’i

The first property means that if action a; can occur in the non-prioritized

choice then either a; can occur in the prioritized choice or some action of higher
priority.
The second property is a consequence of the first and simply says that > _
preserves (local) deadlock-freedom : if some action can be executed in the non-
prioritized choice then some action can be executed in the prioritized choice and
vice versa.

3 Parallel composition

In this section we define parallel composition operators by following the same
approach as in the previous section. First, we show how parallel composition on
hybrid systems can be defined as an extension of parallel composition on untimed
systems. We thus obtain general composition rules for which some practically
interesting cases are discussed later.

3.1 Extending parallel composition from untimed
to hybrid systems

Untimed systems We consider a general framework for the composition of
untimed terms. For this, we suppose that the vocabulary of actions A contains
a distinguished element | and consider the set Al of the words generated from
A with a commutative operator | such that for all a, a/L = L. The operator |
is usually called communication function [BK85]. The words are used to repre-
sent synchronization actions that is, actions that result from the synchronous
occurrence of atomic actions. ajlas = L means impossibility of synchronization.

In the sequel, we suppose that there are no other simplification rules for |
but the rule for 1L and that a word a;la; is given in reduced form.

Consider the language of terms S, defined by the grammar

su=s€Sa]|s]s
The semantics of the parallel composition operator is defined by the rules

la
513 sy . 5182 "5 51! || so
{ 13 1,}, ailas # L implies 4l 2a2|a1 'll's2
52 52 82||81 — 82I||81I

a I . 81“82%81’“82
s1 = 51/ implies
{ S2 “81 S S2 ||81’

|| is a commutative operator that can be expressed in terms of non-deterministic
choice. It is well-known that for ¢; =), a;.5; and g2 = Z]. a;.sj,

alle =) ailsille) +Y aj(silla) +Y aiaj.(sills))
J

i (2]

The first two summands start with interleaving actions while the last one starts
with synchronization transitions (only terms such that a;la; # L appear).

Hybrid extension of S 4, For given (V;, h;) hybrid extensions of ¢; for i = 1,2,
a hybrid extension (V) h) for ¢ || g» is defined by :

- V= V1 X ‘/2
—If; =s; ¥ s is a transition of ¢; then ¢ |l g2 has transitions of the form

T =351 s A s | s2" where A = a; or A = ajlas. We take h(7) = (s1 ||

S2,Dg; X Dgy) ") (s1']]s2',psyr X bsyr) where

o h(A) = hi(a;) if A =a; and h(\) = hy(a1)ha(az) if X = aylas (we extend
the communication function in an appropriate manner to hybrid actions,
see below).

o >y, XDy, : (VI x Vo) xRy — Vi x Vs is such that (vy,v2)(bs, X Dg,)t =
('U1 >sy t,’UQ D>so t)

This definition leads, by taking b; = hi(a;) and b; = hs(a;), to a scheme of
expansion theorem for parallel composition where @ and € are arbitrary choice
operators (as defined in the previous section and in [BS97al) :

Marlla2) = ha(qr) 1 ha(a2) = 32; bi-ha(si) || 22; bjho(s;)
=@, bi-(h(si)[1X2; bj-ha(s;) ®D; bj.(ha(s;)II22; bi-ha(si))
S, ; (bitj).(hi(si) [ha(s;))

If ® and @ are non-deterministic choice operators then maximal progress is
not guaranteed as an interleaving action may be executed when synchronization
is possible. For this reason, we define parallel composition as the priority choice
of the expanded terms with infinite priority to synchronization actions b;1b; over
the interleaving actions b; and b;. This corresponds to priority choice for the
minimal order < such that a; <« a;,; and a; < a;; for any i, j. By using the
notations

B = {bi.(h1(si)[|22; bj-ha(s;))}i U {bj-(ha(s;j) 1 32; bi-ha(si))};
U{(bib;)-(h1(si) | h2(s5)) }ig

and h1 (ql) = Ez blhl (Sz) and hg((]g) = Zj bj.hQ(Sj), we have
hi(s1)|l ha(s2) = > B which is equivalent to

> bi' (hu(si) [ha(s2))+ 325 b (ha(sy) I ha(s1))+32; ; bitbs.(ha(si) [l ha(s5))
(figure 3)
In the above term, b;', b;" are the actions obtained by restricting b; and b; due

s1 | s2

S1 S92
ay a9
al || e ——
ailag
s’ || s2 s1 || s2
! !
S1 S92
s1'[| s2'
hy ho h

b1 b1 |b2

(81, > r) (SQ’ > /)
o o (s1'[l 82", >, [[Pss7)

Fig. 3. Hybrid extension for parallel composition

to priority. We now define b;1b;.

Suppose that h(a;) = b; = (ai,9:,d;, f;) for i € I. If a;la; = L then we
take bﬂbj = 1. Otherwise, we write bi,j = bﬂbj = h(ailaj) = hl(ai)lh2(a]~) =
(ailaj, gi,j, dij, fi ¥ f;j) where
fixfj + Vi xVa = Vi x Va such that (f; x f;)(vi,v2) = (fi(v1), f;(v2)).

We propose in the next subsection a method for defining g; ; and d;,j by re-
specting the requirements g; ; = g; V g; and d; ; = d; V d; which mean that b; ;
may be caused only by b; or b;.

Proposition 7. If g; ; = g;V g;, the above definition guarantees the following
properties

1. local deadlock-freedom preservation that is,

o\VavVa)=o\Vd:iv\d;,v V g.)

iel jeJ i€l jeJ i€l,jeJg

2. maximal progress that is, interleaving actions are executed only if synchro-
nizations b; ; are disabled forever.

It is important to notice that these properties hold independently of the way
the guards and deadlines of the synchronization actions are defined.

3.2 Synchronization modes of hybrid actions

Given two hybrid actions by, by we define the guard g; > and the deadline d; »
of the hybrid action b11bs = (a1la2, g1,2,d1,2, f1,2) resulting from their apropriate
synchronization.

Composition of guards : synchronization modes As already discussed
in [SY96,BS97b], for timed and hybrid systems the guard g1 » can be in general
a modal formula in terms of the guards g; and g». We consider in particular
three important synchronization modes :

AND-synchronization requires that synchronization takes place only when
both synchronized transitions can be executed. This means gi » = g1 A g2. Con-
sider the example of two synchronizing actions with guards ¢; and g». Then, in
general interleaving actions are needed to avoid deadlock. Their guards in this
case will be g;" = g1 A O=(g1 A g2) and go' = ga A O=(g1 A ga).

MAX-synchronization requires that the first of the two synchronized ac-
tions that becomes enabled awaits for the other to become enabled. The enabling
of the latest action triggers synchronization. A consequence of this assumption
is that waiting may be unbounded. For a given execution trace, the time inter-
val in which the synchronized action is enabled has as lower bound the max-
imum of the times they become enabled and as upper bound the maximum
of the times they become disabled. The corresponding guard g » is defined by

g2

g1

Fig. 4. AND-synchronization

912 = (©91Ag2) V(g1 A©g2). For this condition to express synchronization with
waiting, it is necessary that if s; and s, are the source states of the transitions
labeled by b; and bs, these states should always be reached with values v; and v,
such that v; =5, ©g; (remember that the meaning of ¢ depends of the evolution
function >y,). In the case where there are only two synchronizing actions whose

g2

g1

Fig. 5. MAX-synchronization

guards are g; and g, the interleaving actions will have guards g;' = g1 A O=gy 2
and g2’ = g2 A O-gp 2, which can be simplified into ¢1" = g1 A OB —g2 and
92’ = g2 A OE g1 .

MIN-synchronization is the dual of the previous synchronization mode,
and it implies that the synchronization action ajlas can occur when one of the
two synchronizing actions is enabled and the other will be eventually enabled.
That is, synchronization may occur in a time interval whose lower bound is
the minimum of the times they become enabled and the upper bound is the
minimum of the times they become disabled. The corresponding guard g » is
described by the formula g12 = (g1 A g2) V (g1 A ©g2). In the case where

gi

g2

g1

Fig. 6. MIN-synchronization

there are only two synchronizing actions with guards g; and g-, the interleaving
actions will have guards g1" = g1 AO=gy 2 = g1 A O—gy and g2’ = g2 A O=g.

Composition of deadlines : typed transitions For two given hybrid actions
by = (ai, 9i,d;i, fi), i = 1,2 the deadline d; » corresponding to by b, must satisfy
the following condition

dio=g12 N (d1Vds)

Of course, the most urgent solution is to take di 2 = g1.2 A (di V d2) but this
often leads to situations where the computed deadline d; » does not correspond
to the intuition [BS97al. For this reason but also to introduce a simple model
where deadlines are defined from guards by means of simple assumptions about
urgency of the actions, we slightly modify our model.

We suppose that the deadline d; of a hybrid action b; = (a;,gi,d;, fi) is
defined by a function d; : 2" — 2" such that §;(g;) = d;.

An example of such a function is | (falling edge). When d; = g; | we have a
delayable action according to our terminology. Another example is the identity

function 1 = A\g.g which can be used to define eager actions. Finally, a trivial
case is the function 0= A\g.false that allows to define lazy actions.

We call the function §; € { 0,], 1} types of the action. Types characterize
the urgency of an action which is minimal for 0 and maximal for 1. Clearly,
for synchronization between b; and b, it is necessary to define d; » such that

‘ 01,2(91,2) = g1.2 A (01(g1) V d2(g2)) ‘ (@)

Proposition 8. The following table gives the most urgent type 61 > satisfying
() for any mode (AND, MAX, MIN) in terms of 61, O2-

Jl

5, Oy

7
7

===
=l ol=

0
T
1

This result allows to reason only in terms of types of actions and drastically
simplifies the general framework.
To complete the results we show that the type of a transition is preserved by
priorities and thus the type of interleaving actions is the same as the type of the
corresponding synchronizing transitions.

Proposition 9. Ifd; = g; or d; = g; | and g;' = g; A O—g for some g, then
d;' =d; A gi' is such that d;' = g;' or d;' = g;' | respectively.

4 Applications

As an application of the above results, we define a parallel composition op-
erator for typed hybrid actions that is, actions b; = (a;,g;,d;, fi) such that
0; € { 0,,1 }

We suppose that for each pair of actions (aj,as) the synchronization mode is
given. The resulting interleaving and synchronization actions depend on the syn-
chronization mode. The synchronization action b 2 is by 2 = (a1'a2, g1,2, 01,2, f1,2)
where g; 5 is defined in 3.2 according to the synchronization mode and d; 2 is as
specified in the table given in 3.2. The interleaving actions b’; are of the form
b'i = (as,9'4,0's, fi) where ¢'; = g; AO=gy 2 and §'; = 0; (by proposition 9) for
i=1,2.

Some applications of this general framework can be found in [SY96] where it is
shown that for timed Petri nets the underlying synchronization mode is MAX-
synchronization. This allows to represent state machine decomposable timed
Petri nets as the MAX-parallel composition of timed automata with delayable
actions and makes possible the application of efficient timing analysis techniques
to timed Petri nets.

An application domain for our results is modeling of multimedia systems
where combinations of the different synchronization modes are necessary for a

natural description of timing constraints. Several formalisms used in this area
offer such possibilities. One of the most general seems to be the model of Time
Stream Petri Nets, by Diaz et al[SDLASS96]. These are Petri nets with interval
time constraints where nine different synchronization modes can be associated
with delayable transitions. It can be shown that the guards corresponding to
the different synchronization modes can be expressed compositionally as modal
formulas in terms of the guards of the components.

We are currently studying the application of the results to define the seman-
tics of the language used in the MADEUS tool for the specification of multimedia
documents [JLSIR97]. This language allows the description of timing constraints
by means of logical and relational operators used to express causality and syn-
chronization relations. The interesting fact is that very often a combination of
the three synchronization types is necessary to specify coordination. The results
of the study will be published in [BST97].

5 Discussion

We present a general framework for the composition of hybrid automata. We
show that from elementary hybrid actions, choice and parallel composition, com-
plex systems can be defined.

The main difference with other approaches is that we associate with actions
time progress conditions which specify for how long an enabled action may wait.
Time progress conditions at a given state depend on the urgency of the enabled
actions.

The big variety of choice and parallel composition operators results from
the different ways enabledness and urgency of components can be combined.
Contrary to untimed systems, it is necessary to use modalities to express different
kinds of composition that are of practical interest. However, for many tractable
subclasses of hybrid automata modal operators can be eliminated, e.g. for linear
hybrid automata ([ACH'95]). In that case, modalities are used just for notation
convenience and do not modify the basic model.

Different choice operators can be expressed in terms of a basic non-deterministic
choice operator which combines the behaviors of the contributing actions so as
to obtain maximum urgency. Restricting guards to respect priorities leads to the
definition of less prompt choice operators. Other kinds of restrictions remain to
be investigated.

Priority choice plays an important role for the definition of a parallel com-
position operator that respects maximal progress and avoids deadlock by means
of appropriate interleaving actions.

The proposed framework is very general. Validation by practice is necessary.
It is important to notice that so far AND-synchronization has been used for timed
process algebras and the different timed extensions of the language Lotos [LL95]
as well as for timed and hybrid automata. MAX-synchronization is implicitly
used in the different extensions of timed Petri nets.

We believe that AND-synchronization is more appropriate for responsive
synchronization, where process coordination is supposed to be strong enough to
impose that all the timing constraints of the contributing actions are respected.
This is often the case for input/output, sender/receiver synchronization where
one of the actions is not submitted to deadline constraints. For example, in
the train-gate example often mentioned in the literature [ACH'95] communica-
tion between the two processes (train and gate) is responsive as the gate reacts
to input signals sent by the train. Applying AND-synchronization to obtain
the product automaton means that the deadlines and upper bounds of each
process must be respected. On the contrary, synchronization between the gate
process and a car stopped before the gate should allow for waiting and MAX-
synchronization seems more appropriate in this case. We believe that MAX-
synchronization should be used to extend parallel composition of asynchronous
processes a la CSP. When a hybrid system is obtained as the hybrid extension
of an untimed system of communicating automata, it is seems natural to use
MAX-synchronization for actions that can wait indefinitely before synchroniz-
ing.

Finally, MIN-synchronization corresponds to a kind of (symmetric) interrupt
and one can hardly imagine examples where the use of this synchronization mode
alone suffices.

Acknowledgement : We thank S. Graf, S. Tripakis, E. Olive as well as
M. Jourdan of the Opera project of INRIA for fruitful discussions about possible
applications.

References

[ACH"95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138:3-34, 1995.

[BK85] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37(1):77-121, May 1985. Fun-
damental studies.

[BS97a] S. Bornot and J. Sifakis. On the composition of hybrid systems (complete
version). 1997.

[BS97b] S. Bornot and J. Sifakis. Relating time progress and deadlines in hybrid
systems. In International Workshop, HART 97, pages 286—300, Grenoble,
France, March 1997. Lecture Notes in Computer Science 1201, Spinger-
Verlag.

[BSTI7] S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems.
To appear in COMPOS’97, LNCS, September 1997.

[JLSIR97] M. Jourdan, N. Layaida, L. Sabry-Ismail, and C. Roisin. An integrated
authoring and presentation environment for interactive multimedia docu-
ments. In 4th Conference on Multimedia Modeling, Singapore, November
1997. World Scientific Publishing.

[TM94] M. Jourdan and F. Maraninchi. Studying synchronous communication
mechanism by abstractions. In IFIP Working Conference on Programming

[KMP96]

[LL95]

Concepts, Methods and Calculi, San Miniato, Italy, June 1994. Elsevier
Science Publishers.

Y. Kesten, Z. Manna, and A. Pnueli. Verifying clocked transition systems.
In School on Embedded Systems, Veldhoven, The Nederlands, November
1996.

G. Leduc L. Léonard. An extended lotos for the design of real-time sys-
tems. In workshop DARTS’95, Bruxelles, Belgium, November 1995.

[SDLASS96] P. Sénac, M. Diaz, A. Léger, and P. de Saqui-Sannes. Modeling logical and

[SY96]

temporal synchronization in hypermedia systems. In Journal on Selected
Areas in Communications, volume 14. IEEE, jan. 1996.

J. Sifakis and S. Yovine. Compositional specification of timed systems.
In 18th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 96, pages 347-359, Grenoble, France, February 1996. Lecture
Notes in Computer Science 1046, Spinger-Verlag.

