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Abstract

In this paper,we propose a notion of fairness for
transition systems and a logic for proving proper-
ties under the fairness assumption corresponding to
this notion. We consider that the concept of fair-
ness which is useful is "fair reachability" of a
given set of states P in a system, i.e. reachabili-
ty of states of P when considering only the compu-
tations such that if, during their execution, rea-
ching states of P is possible infinitely often,
then states of P are visited infinitely often. This
definition of fairness suggests the introduction of
a branching time logic FCL, the temporal operators
of which express, for a given set of states P, the
modalities "it is possible that P" and "it is ine-
vitable that P" by considering fair reachability of
P. The main result is that, given a transition sys-
tem S and a formula f of FCL expressing some proper-
ty of S under the assumption of fairness, there
exists a formula f' belonging to a branching time
logic CL such that : f is valid for S in FCL iff f'
is valid for S in CL. This result shows that pro-
ving a property under the assumption of fairness is
equivalent to proving some other property without
this assumption and that the study of FCL can be
made via the "unfair" logic CL, easier to study and
for which several results already exist.

I. Introduction

Fairness is a property whose study becomes important
when non-deterministic models are used to represent
systems, i.e. models such that from a state it is
possible to execute different transitions (actions)
and this choice is not specified. In such models
there may exist infinite computation sequences such
that during their execution some event becomes pos-
siple infinitely often but it has not an infinite
number of occurrences. The preceding statement is
an informal characterization of the unfair sequences
of a system. In fact, the existence of such sequen-
ces may lead to unfair situations where, although
an event is realizable infinitely often, it never
accurs because conflicts are resolved in a non equi-
table manner.

The given informal definition is sufficient to ap-
prehend intuitively the concept of fairness. Howe-
ver, many difficulties arise when a formal defini-
tion is to be given. In this case, the expression
"some event becomes possible infinitely often” must
be assigned a precise meaning : the class of the
events which are of interest has to be characteri-
zed ; also, "becomes possible” and "infinitely
often" must be defined in a given model.
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In this paper, we define the notion of unfair compu- .

tation sequence with respect to some given set of

states. Roughly speaking, an infinite computation

sequence isunfair with respect to a given set of

states P, if the sequence s of the states visited

during its execution is such that s contains,

- an infinite number of occurrence of states from
which it is possible to reach states of P, _

- only a finite number of occurrences of states of

Fairness relative to a set of states is, we believe,
the notion which is important in practice since most
of the "interesting" system properties express rea-
chability relations of some set of states 16,17,
This notion is sufficiently general for covering

he majqrity of the definitions proposed until now
g’g’@’{8’15 as it is shown in 4

The problem of fairness becomes crucial when a pro-
perty is to be proved in formal systems based on
non-deterministic models. In the descriptions with
such models, are introduced computation sequences
which are not feasible under the assumption of any
"reasonable" scheduling policy. These sequences are
difficult to distinguish from the feasible ones be-
cause, for infinite sequences, fairness cannot be
decided by examining any prefix of them. As a result,
proving properties valid under the assumption of
fairness seems to be a non-trivial problem.

Two different approaches are possible to the problem
of proving a property PR for some system S when
considering only fair computation sequences.

1) Either transform S into S' such that S' is a
system whose computation sequences are all the fair
computation sequences of S, and prove the validity
of PR for S'. S' can be obtainsdlfrom S by adjoi~
ning to it a "fair scheduler" “'°".

2) Or, give a method for associating to PR some
other property PR' such thar : PR' is valid for S
iff PR is valid for S under the assumption of
fairness.

We consider the latter approach by defining a con-
ditional branching time logic for fairness, FCL. In
this Togic temporal operators express, for a given
set of states P, the modalities "1t is possible
that P" and "it is inevitable that P" by considering
only the computation sequences which are fair with
respect to P.

The introduction of FCL sets the problem of its
fogpﬁrgs?g with the existing branching time logics
Por Rt We have shown that given a formula f of
FCL it is possible to find a formula f' of a condi-
tional time Togic CL such that for any model S :



"f is valid for S in FCL" is equivalent to "f' is
valid for S in CL".

This result is interesting from several points of
view. In particular, it shows that the study of FCL
can be made via "unfair"” logics, easier to study in
our opinion, and for which many results already
exist (decision procedure, giéeg3§oint characteriza-
tion of temporal operators =7’ .

i

I1. Fairness with respect to a set of states

Transition systems is the model used throughout this
article.

Definitions 1 : ¢
A transition system is a triple S = (Q,T,{+}t€T)

where, - Q is a countable set of states
- T ={t ,..,tm} is a set of transitions
. transitions

- {E} is a set of binary relations on Q
t teT

Transition systems are used to model discrete sys-
tems. Transitions are action names, the effect of
which is described by the corresponding relations ;

qﬁq' means that it is possible to execute t from

the state q and the resulting state after its execu-
tion is q'. The state q' is said to be a direct suc-
cessor of q.

In a transition system the relation » = Y7 1 is

not necessarily total ; there may exist sink states

i.e. states q such that 79'¢Q (gq»q'). We denote by

SINK the set of the sink states.

* For a sequence OeT*, g = ti ti ...t the nota-
1 2

TS’
tion ng‘ is used to represent the fact

= - . !-ﬁ] . =
399, --95> =9, 9" = qg and q;_,>q; for j=l,.s.

« We use T to represent the set of the infinite se-
quences on T. A sequence geT*uT® is said to be
applicable from a state q (this fact is denoted

0

by qog) if there exigps a sequence of states,q Q .
"qi" such that qolqi where 9, is the prefix of
o of length 1.

is a se-

= A computation sequence from a state q
o 0
quence ¢ of T*0T" such that o is applicable from
q and if o is finite then 4q'(q 3q' and q'eSINK).
0 0 -

x An execution sequence from a state q, is a sequen-
ce of states visited when a computation sequence
is executed from q .

]

Definitions 2 : (Relative fairness 14)
An infinite computation sequence o applicable from

a state q is,
Q

2a) unfair with respect to a transition t if there
is an infinity of sequences o', prefixes of o,
such that for each o' there exists og"eT*,

! "
qO g't and t has a finite number of occurrences
0

in g.

(¥ < QxQ) in bijection with the transitions.

2b) unfair with respect to a given set of states P
if there exists an infinity of sequences o',
prefixes of O, such that for each 0' there exists

o"eT™, q0+O q, qeP, while there is only a finite
¢

number of occurrences of states of P in the exe-

cution sequence corresponding to o.

Relative fairness allows to focus on the possibility
for a particular class of events to occur. It is, we
believe, the useful concept in practice since all
the "interesting" system properties express reacha-
bility of sope set of states. In particular, fair
termination ~ can be defined in terms of fairness
with respect to HALT (HALT is the set of the termi-
nation states) i.e. a program terminates fairly if
all its infinite computation sequences are unfair
with respect to HALT. Furthermore, the property of
fairness derived from definition 2a) by considering
sequences which are fair wi§h15e§8ect to any tran-
sition, is strong fairness ~'" "' “. A1l the known
types of fairness such as the finite delay property
7 (or weak fairness 5:8:10,12 Gy justice 9) and im-
partiality 9 can be considered as particular cases
of 1t.

Notice that the same execution sequence s can cor-
respond to two different computation sequences ¢
1

and o the one being fair and the other unfair with
2

respect to a given transition. On the contrary, all
the computation sequences corresponding to the same
execution sequence s, are either fair or unfair with
respect to any given set of states. By extending
2b), we say that an execution sequence is fair with
respect to a set P iff one of the corresponding com-
putation sequences is fair with respect to P.

The result given hereafter shows that the property
of fairness with respect to a transition in a tran-
sition system S ‘can be considered as a property of
fairness with respect to a set of states in some
other transition ST'

. _ t . -
Given S = (Q,T,{+}t€T), define ST = (QXT,T,LJ}tET)
such that, (q.t) 54 (q',t') iff qbq' and t'=t".
1.e. ST is a transition system having the same com-
putation sequences as S with the difference that
the only transition leading to state (q,t) is tran-
sition t.

For a transition t, we define the set of the states,
1 It
after(t) = {{q,t) | 49" a'>q},
i.e. after(t) is the set of the states of ST rea-

ched just after (and only after) the trnasition t
is executed.

The function after has already been used to express
system properties in temporal logic 13,

Proposition 1 :

A computation sequence ¢ is unfair in S with respect
to t iff o is an unfair computation sequence in ST
with respect to after(t).

ITI. A tempora1'1ogic to deal with fairness

In this section a logic for dealing with the pro-
perties of the fair functioning of transition sys-



T —

tems i given. The expresgibi]ity of this logic is
compared with the express?bil1ty of existing bran-
ching time logics. The main result is that there
exists a conditional branching time logic CL 1.4

- such that for a given transition system (model) S

and for each formula f' of the introduced logic,
there exists a formula f of CL for which : f' is va-
1id for § iff f is valid for S in CL ; i.e. f' under

 the assumption of fairness is equivalent to f. This

result allows the application to the introduced lo-
gic of well-known results for CL (decision procedure,
fixed point characterization of the temporal opera-
tors). ’

I11.1 The conditional branching time logic CL

We introduce a conditional branching time logic CL
obtained by augmenting the propositional calculus in
the following manner.
The formulas of CL are built from a set of proposi-
tional variables V and the constants true and false
by using the iogical connectives v, A, , => and
two binary temporal operators POT and INEV.
Each one of the arguments of the temporal operators
play very different roles ; in order to better dis-
tinguist them, we prefer writing POT[fl](f ) and

2

INEV[flj(fz) instead of POT(fX,fz) and INEV(f},fZ).
Also, the abbreviations ALL[fl](fz) and SOME[fl](fz)
are used for respectively “POT[fl](“fz) and
“INEV[f}](“fz).

The class of the models for CL is defined in terms
of transition systems as follows =

* Given a transition syétem S = (Q,T,{i}teT), repre-

sent by EX(q) the set of all the execution sequen-
ces starting from state q. In order to simplify

the notations, for a sequence s of EX(q) we repre-
sent by s(k) the k-th element of it, if it is de-
fined ; if not, we take s(k) = w where w represents
some fictitious non accessible state adjoined to

Q. Thus, the relation s(0) & s(k) is satisfied iff
s{k) # w.

* Given CL and a transition system S = (Q,T,{E}t€T),
an interpretation of CL is a function || associa-
ting to each formula of CL a subset of Q such
that :

- Vf€v’ Ifl < Qa
- Jtrue| = Q,
- ¥feCL, |°f] = Q - |f}],
~¥f , f eCL, [fAf | = |f | a|f ],
1 2 1 2 1 2
- Vfl, f «CL,
2
qe;POT[fl](fz)lsaseEx(q) JkeN
k- k-1
[avs(k) and ¥y s(i)elf | and s(k)e|f [1,
~ Vf1’ fzeCL,
qexlNEV[fl](fz)z ¥seEX(q) JkeN

fo8s (k) and §¥5 s(i)elf | and s(k)elf [,
Obviously, |P0T[f1](f2)| represents the set of the
states q of S such that there exists an execution
sequence from q containing some state q' which be-

219

Tongs to [le, and all the states between q and q'
fexcluding q') belong to lfll. We say that
[POT[fl](fz)[ is the set of the states from which
(some state of) ]le is potentially reachable under

the condition Ifll. In the same way, )INEV[f}](f )
2

is the set of the states from which Ile.is inevi-

tably reachable under the condition |f‘] in the sen

se that every execution sequence, starting from a
state q of this set, contains some state q' of |f |
2

and all the states between q and q' (excliuding q')
belong to |f}|.

The interpretation of the dual operators ALL and
SOME s, ¥f ,f «CL,

~ Ge]ALLIF J(f )| = V¥seEX(q) ¥keN
Ve Ty
[o¥s (k) and [¥gs(i)elf | implies s(k)elf |1,

- qe|SOMELf J(f )| = 4s€EX(q) VkeN
V2 ke

[q¥s(k) and (os(i)elf | implies s(k)elf |1.
[ALL[fI](fz)lrepresents a set of states such that
if q belongs to Ifll then every possible successor
of g belongs U>|fzj as long as f, remains true. In
an analoguous manner, jSOME[f}](fZ){ represents a
set of states such that if q belongs to |f1| then

there exists an execution sequence applicable from
q whose states belong to |f | as fong as f remains
2 1

true. The formulas "fl v ALL{f 1(f ) and
. 1 2
f v SOME[fl](f ) express for branching time logic
1 2
a similar notion as the until operator for linear

time logic 8,15 ; both of them express the fact
that "f remains true until f becomes false".
2 1

The logic CL constitutes a natura) generalization

of the branching time logic L 13 obtained by ad-
Jjoining to the propositional calculus the unary

temporal operators POT and INEV such that

POT = Af.POT{truel(f), INEV = Af.INEV[truel(f).

The logic CL has been introduced in 1 and studied
in % where a decision procedure is given. Moreover,

a logic simiTar to L has been studied in 3.

I11.2 Interpretation of the temporal operators as
invariants and trajectories

The following results constitute a generalization

of well-known results for L 13:17 and show that
the interpretation of the temporal operators of CL
can be expressed as least or greatest fixed points
of predicate transformers and correspond to the
well-known notions of invariant and trajectory.
Reasoning in terms of these notions makes easier
the understanding of the properties of CL. A simi-
lar fixed point characterization of the operators

of CL is given in 2



Let S = (Q,T,{E}tET) be a transition system. Repre-

sent by (2%,u,n, ) the lattice of the subsets of Q

and [ZQ+ZQ] the set of the internal mappings of ZQ.

For h,g€[2Q+2Q], hug, hng, §, § and Id denote the
functions hug = Ax.h{x)ug(x) , hng = Ax.h(x)ng(x),
g = AX.g(x), g = Ax.g(X), Id = ax.x. We also intro-
duce the notations gfpx.g(x) and 1fpx.g(x} to deno-
te the greatest and the least fixed point of the
monotonic function g = Ax.g(x).

Definition :

Given S = (0,T,(%),

T), P<Q and qeQ, pre is a func-
tion of [ZQ+2Q] such that,

gepre(P) = 39" (g>q' and q'eP)
Definitions : +
Given a transition system S = (Q,T,{+}tET) and C<Q,

a) an invariant of S is a subset J of Q, such that,
¥q,q'<Q (geJ and g»q' implies q'ed).

b) a cgnditiona1 invariant of S under the condition
C js a subset J of Q such that,
¥3.9'eQ  (9ednC and gq»q' implies q'ed).

¢) a trajectory of S is a subset W of Q such that,
¥qeQ (qeW-SINK implies 49’ (q»g' and q'eW)).

d) a conditional trajectory of S under the condition
C is a subset W of Q such that,

¥qeQ (qeWnC-SINK implies 4q'(g-q’
Proposition 2 :
Given a transition system S and a subset C of Q,
a) J is an invariant iff J = dnpFe(J),
b) J is a conditional invariant under C iff

J = Ja(CupFe(J)).
Proposition 3 :
Given a transition system S and a subset C of Q,
a) W is a trajectory iff W = Wn(pre(W)upre(W)),
b) W is a conditional trajectory under C iff

W = Wn(Cupre(W)upre(W)).

Proposition 4 :

Let T, T be two formulas of CL, S a transition
1 2

and q'eW).

system and || an interpretation of CL in S.
|POT[f 1(f )| = 1fpx. Ile u lf1| n pre(x) and
dua]]y, |ALL[f 1163 2) = gfpx. |f2[ (|™f | u pre(x)),
|INEV[f1]( 2)|=1fpx.|f2|ulf1|n(pre npre( x)) and
dually,

|50ME[f1](fz) =gfpx.|f2|n “f1|upre (x)upre(x)).
According to proposition 4, [ALL[f ]
ISOME[f 1(f )| are respectively the greatest condi-
tional 1nvar1ant and trajectory under Ifll contained
in |f |. In particular, |ALL[true]
|SOMEEtrue] )| are respectively the greatest inva-
riant and tragectory contained in \fz‘

sults suggest a proof method in CL by iterative eva-
luation of the formulas, which is used in 13

)| and

)| and

These re-

IT1.3 The logic FCL
ITI.3.1.
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Given a transition system S, a state q of S, and a

0
countable set A of subsets of Q, we define FEX{(g A)
0

to be the set of the execution sequences starting
from q, and which are fair with respect to any mem-

ber a of A i.e. FEX(qO,A) = a0 FEX(qO,{a})

Proposition 5 :

For every transition system S, any state g of it,
and any countable set A of subsets of Q, the set
FEX(g ,A) is not empty.

0
Proof :
a) Suppose that A is finite, A = {a],..,as}.
computation sequence o, fair with respecﬁ to any
member of A, can be iteratively computed as follows®
q:=q ; 0:=X ; (X is the empty word of T*)

0
while true do
for j:=1 to |A| do

lj_iq and 0 such that ng and q. eaJ
then q: qJ 3 0:=00.
fi
if qeSINK then stop fi
od

od
The sequence ¢ defined in this manner is of the
form,
= - ... - o N
011012 Ol‘A‘021022 02“\‘ Ok K|A|
where Ty represents the sequence concatenated to

the variable ¢ for j=r during the w-th iteration
(we take owr:A if the condition “iqr and o such

Then, a

J

o r
v
that_q+qr

The sequence o is fair with respect to any element
of A : suppose that some a, is reachable infinitely

often during the execution of o but its states are
not infinitely often visited. Then there exists so-
me integer k such that ¥m, m2k implies Omu:A 5 fur-

thermore, the state 9u-1 reached after the applica-
tion of the sequence, o“...ol|A|...okl Tpu-1

is such that it is not possible to reach from it
any state of au. This implies that from every possi-

ble successor of Q-1 it is not possible to reach

and qrear" is not satisfied).

some state of a,- Thus o is fair with respect to a,
{contradiction).

b) Suppose that A has an infinity of elements. In
this case a fair computation sequence with respect
to any member of A, can be defined in the following
manner

4:=q ;3 01=A3 (

for 1 =1 to infinity do
for ji=1 to i do

1j»ﬂq and oJ such that q4q and q. eaJ
then q: qJ ; 0:=00.

i
if qeSINK then stop fi

is the empty word of T)

J




The sequence o defined in this manner is of the fomm,
G o

~ ceiOp Op .. Oy
0 0)1021022 31 32 33 kiky kk

 where Or
for i=w and j=r. For the same reasons as in the ca-

represents the sequence concatenated to ¢

se where A is a finite, o is fair with respect to
any member of A. O

Corollary

: A of subsets of Q, and an
Tiven a countable set A of subse Q2 q <Q

execution sequence s, séFEX(qQ,A), it is possible

for any integrer k to find a sequence s',
s'eFEX(qa ,A) such that the sequence s(0)...s(k) is a
prefix of s'.

Given CL and an interpretation ot it, a formula f
represents a property of both the fair and unfair
sequences of a transition system. If one is interes-
ted in the property expressed by this formula f when
restricting to fair functioning, the following ap-
proach can be adopted.

Let f be a formula of CL written in such a form that
only the temporal operators POT and INEV occur in it
and let {fl"'fs} be the set of the sub-formulas of

f which are second arguments of POT and INEV. We put
AF) = UF DT

Given that POT and INEV express reachability of

their second argument, we try to obtain a formula f',

" expressing the same property as f under the assump-

tion of fairness, by restricting to the functioning
corresponding to the set of the execution sequences
which are fair with respect to any member of A(f).

To do this, we define for any countable set A of sub-
sets of Q, and any pair of formulas f , f of CL

1 2
such that lleeA, the operators F,POT and F,INEV,
Qe [FyPOTIF I(F )| =3s<FEX(q,A) Fkel
1 2 k-1

(o5s(k) and ¥y s(i)elf | and s(k)elf (1,

qe[FAINEV[f]](f Y| =¥seFEX(q,A) JkeN
kZy-

[a¥s(k) and L¥g s(i)elf | and s(k)elf |1.
i.e. these operators'express respectively the fact
that ]le is potentially or inevitably reachable un-
der [fl[ by using only the sequences which are fair
with respect to any member of A.

Thus, the formula f' expressing the same property as
f under the assumption of fairness, s obtained by
uniform substitution of the operators POT and INEV
in f by the operators FA(f)POT and FA(f)INEV.

Proposition 6 :

For any pair of formulas fl, fz of CL and any coun-
table set A of subsets of Q such that le}eA,
f = [POTIf 3(f )].
|F,POTL \](fz)] [POTL il 2)1

Proof :
Given that FEX(q,A) ¢ EX(q), we have
FAPOT[fX}(fZ) => POT[f}](fz)

Suppose that 3qeQ qe]POT[fij(f Y] and
2
qé[FAPOT[fl](fz)]. This implies that there exists a

sequence s, SFFEX(q,A) and se<EX(q) such that,
k-1
Tkl Ta¥s(k) and ;¥o s()e|f | and s(k)elf |1

Then it is possible to find, according to the corol-

lary of proposition 5, a sequence s' = s{0)...s(k)s"
such that s' is fair with respect to each one of the
members of A. This implies qe]FAPOT[f 1 )| (con--
tradiction). O 12
Proposition 7 :

For any pair of formulas fl ,
table set A of subsets of Q such that ]leeA,
= . f
|FAINEVEE T(F )] IF{]le}INEV [f 1(f )]

and f of CL and any cown-

Proof
FEX{q,A) < FEX(q,{lle}) because lfz]€A ; consequen-

tly we have,
F{val}INEV[fl](fz) => FAINEV[f‘](fZ)-
Suppose that for some state q, qe]FAINEV[fI](fZ)!
and qélF{lle}INEV[fI](fz)[.
This implies that there exists a sequence s,
SEFEX(q,{JfZI}) such that, ¥kelN,
k-1
g¥s(k) implies (;dgs(i)el™F | or s(k)e|™f |),
and there exists a member of A—{lle} with respect

to which s is not fair. Thus s is an infinite sequen-
ce.

a) Suppose that for ¥ieN s(i)elfl]. This implies
Viel s(i)e|™f |.

But since s is fair with respect to lfz[ there exists

some j eN such that ¥j, jzjo implies s(j)e[“POT(fz)L

0
Then, according to the corollary of proposition 5,1t
is possible to find a sequence s', fair with respect
to A—{lle} starting from s(jo). The sequence
s(o)..s(jo)s' is fair with respect to any element of
A and all its elements satisfy ~f . Contradiction,

2
since we supposed that qelFAINEV[fI}(f ).
2

b) Suppose that JieN s(i)ei“fll and put
io=Min{1{s(i)e]“f1|},
Then, for O<i<i s(i)e|f | and
1
for O<isi s(i)sl"le.

Consider a sequence s{0)...s(i )s', where s' is

such that it is fair.with respect to any member of
A. The fact that this sequence belongs to FEX(q,A),
s(io)e!“f | and s(i)el’le for O<i<i  contradicts

1

qejFAINEV[fl](f2)|. a

The results of proposition 6 and 7 considerably
simplify the method for obtaining a formula f' ex-
pressing the same property as a formula f of CL un-
der the assumption of fairness (f is supposed to be
written in such a form that the operator SOME does
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not occur in it). For this, one has to substitute
every occurrence of INEV[f 1(f ) by
1 2

F{,fz|}INEV[f1](f2).

The simpler notation FINEV[f 1(f ) will be adopted

) 1 2

in the sequel for F £ INEV [f 1(f ). We call FCL
{] Zl} P

the Togic obtained by adjoining to the propositioml
calculus the binary temporal operators POT and
FINEV, their duals being respectively denoted by ALL
and FSOME. Also, we call FL the sub-Togic of FCL
constructed from the unary temporal operators
POT=Af.POT[truel (f) and FINEV=Af. FINEV[true] (f).

Remark :
Dge to the result of proposition 7 and by dualiza-
tion one obtains,
qs[FSOME[fIJ(ﬁ%)[ =3seFEX(q, {|7f |}) VkeN
-1 2

lofs(k) and 1o s(i)elf | impTies s(k)e|f ]
Notice that for the definition of the interpretation
of FSOME[fl](fZ) only the fair execution sequences
with respect to |“f2| are considered. This is not
surprising because FSOME[f ](f ) express the possi-
bility of "remaining fair]; 1n2|f [" i.e. without
using unfair sequences with respeét to |°f | in or-
der to remain in |f2|. ’

IT1.4 Comparison of the logics CL and FCL

In this section FCL and CL are compared with respect
to their capabilities to express properties of tran-
sition systems. This comparison is-made in a pro-
gressive manner by considering successively FL and
L, FL and CL, FCL and CL. To do this, we consider
the logics CL(V) and FCL(V) defined on the same set
of propositional variables V and such that the res-
trictions of their interpretation functions agree
on V.

The problem studied is the search for a meaning pre-
serving homomorphism p of FCL into CL i.e. a func-
tion u such that if u(f1)=f2 then the statements

"f s valid in FCL for S" and "f s valid in CL
1 2

for S” are equivalent (for any S). This means that
the interpretations of fI and u(f ) are the same
2
for any f of FCL (|f |=|u(f )|). Obviously, if
1 1 1
such a function u exists, then proving the validi-
ty of a formula f in FCL amounts to proving the

1
validity of u(fl) in CL.

In order to simplify the notations, we omit the
interpretation function and we use subsets of Q
instead of formulas, whenever there is no risk of
confusion. For example, we write POT[fl](fz) to

represent the set of the states |P0T[f1](f2)|.

Consider L(V) and FL(V}, the sub-Togics obtained
from CL(V) and FCL(V) by taking the conditions of
the temporal operators to be equal to true (POT,
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INEV, FINEV stand respectively for POT[true],
INEV([true], FINEV[truel).

Proposition 8 :
The operator FINEV of FL(V) cannot be expressed in
L(V).

Proof :
Consider the following transition system.

If FINEV can be expressed by means cf some formula
of L(V), then the set FINEV{4}={3,4} can be obtai-
ned from {4} by carrying out a finite number of ti-
mes the operations a, —, POT and INEV. But this is
not possible as shown hereafter.

1) From {4} by carrying out logical operations, one
obtains the sets,
@, {4}, {1,2,3}, {1,2,3,4}.

The application of POT and INEV to these sets
respe;tive]y gives,

g, {1,3,4}, {1,2,3,4}, {1,2,3,4}

g, {4y , {1,2,3,4}, {1,2,3,4}

The combination of the obtained sets via logical

operators gives,
{23, {4}, (1,3}, (2,4}, {1,2,3}, {1,3,4}, {1,2,34

No new set can be obtained by application of POT
and INEV. [

The following proposition gives upper and lower ap-
preximations of FINEV(f) by formulas of L(V).

Proposition 9 :
For any set of states f, INEV(f)VvALLPOT(f)=>FINEV(f)

and FINEV(f) => INEV(f)VSOMEPOT(f).

Proof :
a) INEV(f) v ALLPOT(f) => FINEV(f).

Obviously, INEV(f) => FINEV(f). )

Suppose that qeALLPOT(f) and q#FINEV(f).

qfFINEV(f} is equivalent to qeFSOME(Tf) which means
that there exists an execution sequence s, starting
from q, whose states belong to ~f and which is fair
with respect to f. Remark that, due to the fact
that qeALLPOT(f), s is infinite, since there is no
sink state in POT(f)Aa™f. Thus, s is not fair with
respect to f as all its states belong to POT(f)
(contradiction).

b) FINEV(f) => INEV(f) v SOMEPOT(f).

Suppose that for some state q, qeFINEV(f) and
gfINEV(f). This is equivalent to q¢FSOME(Tf) and
qeSOME(Tf). Thus, there is no fair execution se-
quence with respect to f, starting from q and con-
tained in 7f but there is an execution sequence S
starting from g and contained in ~f. Thus, s is

2)

3)




yunfair with respect to f. So it is possible to reach
- f from every state of s and consequently all its
ctates belong to POT(f). SOMEPOT(f) being the grea-
test trajectory in POT(f) all the states of s belong
to it. In particular, qeSOMEPOT(f). O

Remark : ) ) o
The implications are strict due to proposition 8 .

" For the transition system given in its proof we ha-
ve for £ = {4}

INEV(F) ={4}, ALLPOT(f)=0, FINEV{f}={3,4)},
SOMEPOT(f)={1,3}.

Corollary :
For any set of states f,

a) If SOMEPOT(f) => INEV(f) then FINEV()=ZINEV(f)
b) If FINEV(F)ZINEV(f) then ALLPOT(f) => FINEV(f).

Proposition 10 :

For every transition system S and any set of states
f of S, TSOME(TFAPOT(F)) is a valid formula iff
every sequence is fair with respect to f.

Proof :

It is sufficient to show that,
JqeSOME(TFAPOT(f)) iff there exists some sequen~
ce which is unfair with respect to f.

a) If there exists qeSOME(TfAPOT(f)) then the tra-
jectory SOME(TfAPOT(f)) is non-terminating because
there is no sink state in “faPQT(f). Thus, there
exists an infinite execution sequence whose states
do not belong to f but f is reachable from every
state of this sequence. So, it is unfair with res-
pect to f.

b) If there exists an unfair execution sequence s
with respect to f, it is possible to find some suf-
fix of it s' such that the corresponding trajectory
is in 7f. The sequence s' is also unfair with res-
pect to f and all its-states belong to POT(f). Thus,
the geatest trajectory contained in TfaPOT(f) is a
non-empty set. 0

Lemma 1 :
For any set of states f, INEV(f) => ALL[™F](POT(f)).

Proposition 11 :
For any set of states f, FINEV(f)=ALLITFI(POT(f)).

Proof :

ay ALL[TFI(POT(f)) => FINEV(F)).

Suppose that qeALL{TfIPOT(f) and qfFINEV(f).
qéFINEV(f) is equivalent to qeFSOME(Tf), which
means that there exists an execution sequence s,
fair with respect f, starting from g, the states
of which are in ~f. Remark that s is infinite be-
cause as long as f is not reached the system is at
some state of TTAPGT(f). :

For s to be fair with respect to f, there must be
a suffix s' of it, the states of which do not be-
long to POT(f). This means that there exists an
execution sequence in Tf starting from g and lea-
ding to some state of “POT(f). But this fact con-
tradicts qeALL{™fIPOT(f), equivalent to
qgPOT[TfITPOT(f), which means that "POT({f) is not
reachable from g under the condition ~f.

b) FINEV(f) => ALL[™FIPOT(f)
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Suppose that for some q, qeFINEV(f), and
qéALLITFIPOT(f). This implies q¢FSOME(™f) and
qeSOME(™f) (by lemma 1) which means that there are
only unfair sequences with respect to f, starting
from q and having all their states in ~f.

This contradicts gfALLITfIPOT(f) which is equivalent
to qePOTITFIALL(Tf) i.e. there exists a finite se-
quence s, starting from g, leading to some state of
ALL[Tf] and whose all states are in ~f. Every se-
quence having s as prefix is fair with respect to

£ 520

This result shows that uniform substitution of
FINEV(f) and FSOME(f) in a formula of FL(V) by res-
pectively ALL[TFIPOT(f) and POT{f1ALL(f) gives an
equivalent formula of CL(V). As a consequence we
have that FL(V) is equivalent to the sub-Togic of
CL{V) generated by adjoining to the propositional
calculus on V the operators Af.PIT(f) and
AFLALLITEIPOT(f).

Lemma 2 :
For any pair of sets of states f and f ,
1 2

INEV{F 1(f ) => ALLL™F JPOTLF 1(f ).
1 2 2 1 2
Proposition 12 :
For any pair of sets of states f
1
FINEVL 3(f )=ALL[™f JPOTLf J(f ).
1 2 2 1 2

and f
2

Proof :

ET~FEL[“f2]POT[f1](fZ) => FINEV[fl](fZ).

Suppose that for some state q, qeALL{™f 1POT({f }(f)
and qéFINEV[fl](fz). qéFINEV[fl](fz) iszequivaieni
to qEFSOME[fl](“fZ) which means that there exists
an execution sequence s fair with respect to f ,
starting from g, the states of which are in “fz.
Remark that s is infinite because “fZAPOT[f]](fZ)

does not contain sink states. fFor s to be fair with
respect to f,, it must have a suffix whose all the
states belong to “POT(f ). Thus,

2

qePOTL™ ] "POT(f ) which implies,
qePOTL™F ] “POT[f11<f2)
and this contradicts quLL[*fZJPOT[fIJ(fZ).
b) FINEVIF J(f ) => ALL[“fz]POT[f‘](fz)-

Suppose that, quINEV[f}](fZ) and
qéALL["fz]POT[fl](f } for some state q. This
2

implies,
qQéFSOMELT 1(™f ) and quOME[fl](“fZ) {(by lemma 2)
1 2

which means that all the conditional trajectories
under f which are contained in ™f and start from
1 2
q, are unfair with respect to fz. These trajecto-
ries being unfair with respect to f (when only
2

execution paths in f, are considered) all their



states belong to POT[f}](fz).
But this contradicts qfALL[™f ]POT[fl](fz) which
2

means that there exists a possible successor q' of
q such that q'¢”POT[f 1(f ). O
1 2

This result shows that FCL is the conditional time
logic obtained by adjoining to the propositional
calculus the operator POT. This logic is less ex-
pressive than CL as it is shown by the following
counter example :

Consider the transition system,

If INEV(f) is expressible by a formula of FCL(V),
then it is possible to compute INEV{2} = {2,3} by
applying to {2} logical and/or temporal operators
of FCL.

It is easy to verify that this is not possible :

1) From 2 by application of logical operators we
obtain,

o , {2y , {1,3} , {1,2,3}

2) Application of the conditional temporal operator
POT gives (x successively takes the values, 0,
{2}, {1,3}), {1,2,3}).

POTI{1,2,3}1(x) : @, (1,2,3}, {1,2,3}, {1,2,3)
POTI{2}1(x) : B, {2}, {1,2,3}, (1,2,3}
POT{1,3)1(x) : @, {1,2,3}, {1,3}, {1,2,3}

Since there is no new set generated we conclude
that for this transition system it is not possible
to express INEV{2} in FCL.

IV. Conclusion

Ng have proposed a notion of fairness for transi-
tion systems -and a logic for proving properties un-
dgr the fairness assumption induced from this no-
tion.

In part Il we have proposed a definition of fair-
ness which is sufficiently general for coverigg the
majority of the definitions given until now 1% Ho
wever, a precise comparison is not always possible
either because fajrness is sometimes introduced by
informal discussion or because it is defined on mo-
dels of higher level than transition systems (for
example, models where the notions of process and
parallel composition are primitive 12).

The approach proposed for proving a property under
our fairness assumption has the advantage of avoi-
ding the complexification of the system under stu-
dy by adjoining a fair scheduler to it. In fact, a
fairness assumption characterizes the set of all
the possible (fair) scheduling policies. In our
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approach this assumption is incorporated with the
formula to prove, without modifying the model. This
result is especially interesting as the logic is re-
latively simple and sufficiently well-studied.

The reader may be astonished that it is possible to
prove a property under our assumption of fairness
by proving another property without this assumption,
i.e. that proving under the fairness assumption is
not more difficult than proving without it. In fact,
this is not surprising since for the temporal logics
considered, the interpretations of the operators
are sets of states which can be computed without
computing the set of the execution sequences in
which these states are involved.
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