Interference analysis algorithm in $O(n^2)$ for many-core response time computation, able to quickly schedule thousands of tasks

Scaling Up the Memory Interference Analysis for Hard Real-Time Many-Core Systems

Maximilien Dupont de Dinechin¹, Matheus Schuh², Matthieu Moy⁴, Claire Maiza²
¹ Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP
² Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG
³ Kalray S.A.

1 Interference Calculation Problem
- Task graph (DAG)
 - Obtained from Data-Flow languages
 - Dependencies, order, mapping and WCET in isolation are given

- Access to shared resources
 - Controlled by hardware arbiters
 - Huge impact on execution time

- Static Time-Triggered Schedule
 - Release dates for each task
 - WCRT of the program

2 Original Algorithm
- Global fixed-point iterations
- $O(n^4)$ complexity
- Interference and execution time are interdependent problems

3 Our Improved Algorithm
- Schedule computed incrementally
- $O(n^2)$ complexity
- Scales for thousands of tasks

Dead: n_3, n_5, n_8, n_6 \[t \geq \text{end date} \]
Alive: n_1, n_4, n_7, n_9 \[\text{rel date} \leq t < \text{end date} \]
Future: n_1, n_2, n_{10} \[t < \text{rel date} \]