Outsourcing computations and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data : FHE
2. Interactive verification of results
3. Zero-knowledge proofs

- Interactive zero-knowledge protocols
- exercise

4. Secure multiparty Computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Distributed, heterogeneous

Various computing abilities and levels of trust

Outsourcing protocols and security Program f with input x

Machine

Question

Machine B

(Algortihm B)

Trust in the result?
=> protocols for trustfully delegation of computations

Positioning in current trends \& market

Outsourcing computations and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data : FHE
2. Interactive verification of results
3. Zero-knowledge proofs

- Interactive zero-knowledge protocols
- exercise

4. Secure multiparty computations

Computations with encrypted data

- Outsourcing computation with secret input
- Computation is performed on encrypted data
- Based on asymnetric encryption (eg thanks to fully homomorphic encryption) [Gentry 2009]

$$
\operatorname{Dec}_{s k}\left(\operatorname{Eval}_{f}\left(e k, c_{1}, c_{2}\right)\right)=f\left(m_{1}, m_{2}\right)
$$

Homomorphic encryption: El Gamal e-vote

- Remind El Gamal (in cyclic group G with g a generator):
- Bob has private key b and public key $B=g^{b}$
- Alice: $c=E(m)=\left(c_{1}=g^{r}, c_{2}=m . B^{r}\right) \quad B o b=D(c)=c_{1}{ }^{-b} \cdot c_{2}=m$
- El Gamal enables homomorphic addition (note Alice encrypts g^{M} instead of M)
- $C=E\left(g^{M}\right)=\left(g^{r}, g^{M} . B^{r}\right) \quad$ (encode g^{M} instead of M)
- $C^{\prime}=E\left(g^{M^{\prime}}\right)=\left(g^{r}, g^{M^{\prime}} \cdot B^{r^{\prime}}\right)$
- Multiplication of ciphertxt in G matches addition of plaintext (e.g.integers plaintext)
C. $C^{\prime}=\left(g^{r} \cdot g^{r^{\prime}}, g^{M} \cdot B^{r} \cdot g^{M^{\prime}} . B^{r}\right)=\left(g^{r+r^{\prime}}, g^{M^{++M^{\prime}}} . B^{r+r^{\prime}}\right)$

$$
=E\left(g^{M+M^{\prime}}\right)
$$

- Enables anyone to compute as many additions of ciphertexts as desired
- Question 1: if $M^{+}+M^{\prime}$ small, how to decrypt $M+M^{\prime}$ from $g^{M+M^{\prime}}$ without discrete log ?
- Application: electronic vote by homomorhic addition
- Each voter (Alice) sends her encrypted vote v (0 or 1) to the voting machine (Bob) :
- $C(0)=\left(g^{r}, B^{r}\right) \quad C(1)=\left(g^{r}, g . B^{r}\right)$: each voter checks her encrypted vote is correctly stored
- Each one can compute the encrypted score of the vote: $\Pi_{C \text { voter }}(C)=\left(g^{\Sigma r}, g^{\Sigma v} . \mathrm{B}^{\Sigma r}\right)$
- The voting machine knows secret b:it computes $g^{\Sigma v}$ and publishes score Σv and Σr
- Question 2: How the voting machine computes $\Sigma_{\text {voters }} v$ from $\Pi_{C \text { voter }}(C)=\left(g^{\Sigma r}, g^{\Sigma v} . B^{\Sigma r}\right)$?
- Question 3 : How each voter verifies the result $\Sigma_{\text {voters }}$ v ?

Fully Homomorphic Encryption (FHE)

- Does there exist homomorphic boolean encryption ? => YES [Craig 2010]
- Somewhat Fully Homomorphic Encryption [Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan]
- Secret p : a large odd integer (eg thousands of digits)
- For x in $\{0,1\}: \quad E(x)=p q+2 . r+x$

With random $q \sim$ million of digits and $r \sim$ twenty digits (the noise)
$-K n o w i n g ~ p: ~(E(x) \bmod p) \bmod 2=(2 . r+x) \bmod 2=x$

- Without knowing $p: E(x)$ seems to give no information
- Fully homomorphic with \mathbf{x} and \mathbf{y} booleans:
- $E(x)+E\left(x^{\prime}\right)=p .\left(q+q^{\prime}\right)+2\left(r+r^{\prime}\right)+x+x^{\prime} \quad \quad \quad \quad \quad \bmod p \bmod 2=x$ XOR x^{\prime}
$-E(x) \cdot E\left(x^{\prime}\right)=p\left(p q q^{\prime}+q\left(2 r^{\prime}+x^{\prime}\right)+q^{\prime}(2 r+x)\right)+2\left(2 r r^{\prime}+r x^{\prime}+r^{\prime} x\right)+\underset{=>}{x . x^{\prime}}$

$$
\bmod p \bmod 2=x \text { AND } x^{\prime}
$$

- Beware : AND and XOR operations increase the noise
- If noise r larger than p, decryption is impossible (eg if $2 r=p . u+v$ then $(E(x) \bmod p) \bmod 2=(v+x) \bmod 2)$
- chooice of p and the q 's large enough!
- Anyway with operations, the noise increases and may become larger than p Key Gentry's idea: remote bootstrapping
- Refresh the noise by outsourcing « mod p » on the cipher domain
homomorphic computation with AND and XOR (so without revealing p, only its ciphering !)
- Many applications of FHE :
- example: outsourcing AES enc/decryption!

Outsourcing and privacy

- Homomorphic scheme enables to outsource encryption with secret key (or signature)
- Homomorphic encryption enables publicly Verifiable computation [Fiore, Gennaro 2012, ...]
- Server computes on private data and produces a verifiable digest of the computation
- Enables some verification of the computation
- Different from a direct result certification

Outsourcing computations and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data: FHE
2. Interactive verification of results
3. Zero-knowledge proofs

- Interactive zero-knowledge protocols
- exercise

4. Multiparty computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Delegating computation

Please, compute f

Trusted client

Here is result

Untrusted server

Integrity of the result?

- Contexts
- Co-processor (overclocked...)
- Supercomputer (soft errors)
- Cloud computing
- Volunteer computing

Attack models

- No attack [current HPC and grid computing platform]
- Failure (MTBF)

- Attack on few isolated resources
- Soft errors - corruption of part of the computation

Attack models

- No attack [current HPC and grid computing platform]
- Failure (MTBF)

- Attack on few isolated resources
- Soft errors - corruption of part of the computation
- Massive attacks

Countermeasures against such attacks (detect/correct)

Verifiable [outsourced] computation

- Trusted but slow Client (Verifier, Victor) sends a function F with input x to the server

- Fast but untrusted Server (Prover, Peggy) returns $y=F(x)$ and a proof Π that y is correct.

Computing Π should take almost same time than F. Verifying Π should take less time than computing F.

Motivating example

- Peggy has developed a nice application that efficiently solves Traveling Salesman Problem
- Victor sends Peggy the location (map) of his clients and pays her for the shortest Hamiltonian circuit
- Can Victor check he really gets the shortest?

Example [wikipedia]

- A tunnel, closed by a trapdoor rock.
- Ali Baba knows the secret
- «Iftah Ya Simsim » («Open Sesame»)
- "Close, Simsim" («Close Sesame»).
- Victor design a protocol that « proves » Ali Baba gets the secret without revealing it
- Ali Baba (indeed Peggy) is the Prover
- Victor is the Verifier
- Peggy leaks no information (0-knowledge)

Proof and Interactive proof

- Importance of « proof » in crypto: eg. identity proof=authentication
- Two parts in a proof:
- Prover: knows the proof (-> the secret) [or is intended to know]
- Verifier: verifies the proof is correct (-> authentication)
- Correctness of a proof system/verifier:
- Completeness: every valid proof is accepted by the verifier
- Soundness: every invalid proof is rejected by the verifier
- Interactive proof system
- Protocol (questions/answers) between the verifier and the prover
- Verifier: probabilistic algorithm, polynomially bounded
- Soundness: every invalid proof is rejected with goog probability (> 1/2)
- Competeness: every valid proof is accepted with good probability (>1/2)

Decision problem Does x belongs to L ?

- Verifier
- An element x
- Ask questions to prover to determine : «x \in ? L »
- Gets anwer:
- Completeness: Is convinced that x in L, if so
- Soundess: reject « x in L » if not so

Fundamental theorem [Goldreich\&al]

- Def: IP = set of decision problem that admits a randomized polynomial time verification algorithm
i.e. both size of transcripts and nuber of operations performed by verifier are polynomial
- IP = PSPACE
- NP included in IP.
- Any (PSPACE) computation admits a randomized determinstic polynomial verification algorithm.

Interactive protocol :Example

- Example: interactive authentication based on quadratic residue
- See exercise (question 3.b)
- Completeness : Alice, who gets the secret (square root) is accepted
- But not Soundness: Eve, who doesn't know the secret may cheat
- Fiat-Shamir's protocol (question 3.c)
- Soundness : Eve, who doesn't know the secret, is rejected.(if we assume n factorization unknown)

The power of interaction

https://en.wikipedia.org/wiki/Graph isomorphism

Graph G Graph H | An isomorphism |
| :--- |
| between G and H |
| $f(a)=1$ |
| $f(b)=6$ |

On 2010/10/24, 8 am

- \in NP, but not known to be in NP or in NP-complete or in NP-intermediate
- Does it belongs to co-NP or not? (Open question)
- but Subgraph isomorphism problem is NP-complete

Example of interactive computation

- Graph isomorphism:
- Input: $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$
- Output: YES iff $G==G^{\prime}$ (i.e. a permutation of $V->V^{\prime}$ makes $E=E^{\prime}$)
- In NP but not known today to be NP-complete or in P
- In 2015, Babai proposes a quasi-polynomial algorithm [$2^{\wedge} \mathrm{O}\left(\log ^{\wedge} k n\right)$] (a bug was claimed on 2017/1/1 and fix on 2017/1/7)
- Not known to be in co-NP
- Assume an NP Oracle for Graph isomorphism => then a probabilistic verifier can verifies that two graphs are not isomorphic in polynomial time.
- Protocol and error probability analysis.

Interactive graph [non]-isomorphism

- Victor
- Toss b := rand\{1,2\}
- H:= random_pemutation (E_{b})
- Asks Peggy: to which H is isomorphic to : E_{1} or E_{2} ?

Peggy returns y and Π

- Victor checks Π and if OK
- If $y \neq b$: Victor has a proof that E_{1} isomorphic to E_{2}
- Else $y=b:$ Victor stated that E_{1} is not isomorphic to E_{2} with error probability $1 / 2$

Interactive Algorithm Graph Isomorhism

```
Verifier
AlgoGraphlso(G}=(\mp@subsup{\textrm{V}}{1}{},\mp@subsup{\textrm{E}}{1}{}),\mp@subsup{\textrm{G}}{2}{}=(\mp@subsup{\textrm{V}}{2}{},\mp@subsup{\textrm{E}}{2}{}) ) 
    If (#V1 != #V \) or (#E1 != #E 2)
        return "NO : G1 not isomorphic to G2";
    n := #V \
    For (i=1 .. k) {
    P:= randompermutation([1, .., n]);
    b:= random({1,2});
    G}:=P(\mp@subsup{G}{\textrm{b}}{\prime})
```



```
    If (G: G F ( (G') ) FAILURE("Oracle is not reliable");
    If ( }\textrm{b}\not=\textrm{i})\mathrm{ ) return "YES: }\mp@subsup{\textrm{G}}{1}{}\mathrm{ is isomorphic to }\mp@subsup{\textrm{G}}{2}{\prime}\mathrm{ ";
    }
    return "NO : G1 not isomorphic to G2";
}
```

Theorem: Assuming OracleWhichIsIso of polynomial time, AlgoGraphlso $\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ proves in polynomial time k. $\mathrm{n}^{\mathrm{O}(1)}$ that :

- either G_{1} is isomorphic to G_{2} (no error)
- or G_{1} is not isomorphic with error probability $\leq 2^{-\mathrm{k}}$.

Thus, it is a MonteCarlo (randomized) algorithm for proving GRAPH ISOMORPHISM

Analysis of error probability

Prob(Output of Truth: AlgoGraphlso($\left.G_{1}, G_{2}\right)$ $\mathrm{G}_{1}=\mathrm{G}_{2} ? ?$	"YES : G_{1} is isomorphic to $\mathrm{G}_{2}{ }^{\prime \prime}$	"NO: G ${ }_{1}$ not isomorphic to $\mathbf{G}_{2}{ }^{\text {" }}$
$\text { Case } \mathrm{G}_{1}=\mathrm{G}_{2}$ (completeness)	Prob $=1-2^{-k}$	Prob $=2^{-k}$
No: Case $\mathrm{G}_{1} \neq \mathrm{G}_{2}$ (soundness)	Impossible (Prob = 0)	Always (Prob = 1)

-When the algorithm output YES: G_{1} is isomorphic to G_{2} then $\mathrm{G}_{1}=\mathrm{G}_{2}$ => no error on this output.
-When the algorithm output " NO : G_{1} not isomorphic to G_{2} " then we may have an error (iff $\mathrm{G}_{1}=\mathrm{G}_{2}$), but with a probability $\leq 2^{-k}$

One-sided error => Monte Carlo algorithm for Graph-Isomorphism

Efficient verifiable computing by spot checking

- Check polynomial equality by random evaluation [Schwartz-Zippel]
- Choose $r_{1}, \ldots, r_{\mathrm{n}}$ at random in a subset S of a field
- If $Q\left(r_{1}, \ldots, r_{n}\right)=0$ then $Q==0$ with error probability $\leq \operatorname{deg}(Q) / \# S$
- Example: Verifying matrix multiplication (Friedval's algorithm)
- To check $C=A . B$, choose a random vector r and verify C.r = A. (B.r)

Cost : linear in size(A) + size(B) + size(C)

Interactive linear algebra

- Most dense linear algebra reduces to Matrix multiplication
- Locally compute the (recursive) scheme in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ while outsourcing all Matrix Multiplications
- [Algorithm-Based Secure and Fault Tolerant Outsourcing of Matrix Computations, A Kumar, JL Roch, HAL 2013]
- Alternatively provide efficient certificates for sparse linear algebra
- [Interactive certificates for linear algebra, JD Dumas, E Kaltofen, ISSAC 2014]

Verifying general circuits

- Inputs : $b_{1} \ldots b_{n} \quad$ Outputs : $y_{1} \ldots y_{m}$
- How to verify $y_{1} \ldots y_{m}=f\left(b_{1} \ldots b_{n}\right)$

The power of interaction

- Theorem : IP = PSPACE
- Any problem in PSPACE has a polynomial verifier
- TQBF (quantified Boolean formula problem)
- A polynomial interactive scheme for \#SAT

P, NP, IP = PSACE

Complexity classes

Decision problems (1 output bit: YES/ NO)

Deterministic polynomial time:

- P : both Yes/No sides
- NP : certification for the Yes side
- co-NP: certification for the No side

Randomized polynomial time:

- BPP: Atlantic City: prob(error) < 1/2
- RPP: Monte Carlo: prob(error YES side) $=0$; prob(error NO side) $<1 / 2$
- ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

IP Interactive proof

- Verifier: randomized polynomial time
- Prover: interactive (dynamic), unbound power
- $F(x)=Y E S=>$ it exists a correct prover Π such that $\operatorname{Prob}[\operatorname{Verifier~}(\Pi, x)$ accepts] = 1;
- $F(x)=N O=>$ for all prover Π :

Prob[Verifier (П, x) accepts] < 1/2.

- Theorem: IP = PSPACE (interaction with randomized algorithms helps!)

PCP: Probabilistiic Checkable Proofs (static proof)

- PCP (r, q) : the verifier uses random bits and reads q bits of the proof only.
- Theorem: NP=PCP($\log \mathrm{n}, \mathrm{O}(1))$

\#3-SAT in IP

- Arithmetization in F_{2} : each clause c has a poly. $Q(c)$
- $Q(\operatorname{not}(x))=1-x$
$Q(x$ and $y)=x . y$
- $Q(x$ or $\operatorname{not}(y)$ or $z)=Q(\operatorname{not}(\operatorname{not}(x)$ and y and $\operatorname{not}(z))=1-((1-x) \cdot y \cdot(1-z))$
- Let $F=c_{1}$ and \ldots and c_{m} a 3-SAT CNF formula, and $g\left(X_{1}, \ldots, X_{n}\right)=Q\left(c_{1}\right) \cdot Q\left(C_{2}\right) . \ldots . Q\left(c_{m}\right): \operatorname{deg}(g) \leq 3 m$
Then \#F $=\Sigma_{b_{1}=0,1} \ldots \Sigma_{b_{n}=0,1} g\left(b_{1}, \ldots, b_{n}\right)$
- Since $\# F \leq 2^{n}$, for $p>2^{n}, \quad(\# F=K)$ is equivalent to (\#F=K mod p)
- To limit to a polynomial number of operations, computation is performed mod a prime p in $2^{n} . .2^{n+1}$ (provided by prover and checked by verifier)
- Let $h_{n}\left(X_{n}\right)=\Sigma_{b_{1}=0,1} \ldots \Sigma_{b_{n-1}=0,1} g\left(b_{1}, b_{2}, \ldots, b_{n-1}, X_{n}\right)$: h_{n} is an univariate polynomial (in X_{n}) of degree $\leq m$

\#3-SAT: interactive polynomial proof

Verifier
input: $F\left(X_{1}, \ldots, X_{n}\right)=\left(c_{1}\right.$ and \ldots and $\left.c_{m}\right)$
K an integer; let $\mathrm{g}(\mathrm{x})=\prod_{\mathrm{i}=1, \mathrm{n}} \mathrm{Pol}\left(\mathrm{c}_{\mathrm{i}}\right)$
Accepts iff convinced that \#F = K.
Preliminar receive p, check p is prime in $\left\{2^{n}, 2^{2 n}\right\}$
Compute $\mathrm{g}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\Pi_{\mathrm{i}=1, \mathrm{n}} \mathrm{Pol}\left(\mathrm{c}_{\mathrm{i}}\right) \operatorname{deg}(\mathrm{g}) \leq 3 \mathrm{~m}$ Check K= $\Sigma_{X_{1}=0,1 \ldots} \Sigma_{X_{n}=0,1} g\left(X_{1}, \ldots, X_{n}\right)[p]$:

1. If $n=1$, if $(g(0)+g(1)=K)$ accept ; else reject. If $n \geq 2$, ask $h_{n}(X)$ to P.
2. Receive $s(X)$ of degree $\leq m$.

Compute $v=s(0)+s(1)$; if $(v \neq K)$ reject.
Else choose $r=r a n d o m(0, \ldots p-1)$; let $K_{n}=s(r)$ and use the same protocol to check

$$
\mathrm{K}_{\mathrm{n}}=\Sigma_{\mathrm{x} 1=0,1 \ldots} \ldots \Sigma_{\mathrm{xn}-1=0,1} \mathrm{~g}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}, \mathrm{r}\right)[\mathrm{p}]
$$

Prover

Preliminar: sends p prime in $\left\{2^{n}, 2^{2 n}\right\}$
2. Send $s(X)$; [note that if P is not cheating, $s(X)=h_{n}(X)$]

Theorem: This is a sound and complete, polynomial time randomized interactive proof of \#3-SAT.
Moreover, prob(V rejects | $K \neq \# F) \geq(1-m / p)^{\wedge} n$, also prob(error) $\leq 1-(1-m / p)^{\wedge} n \leq m n 2^{-n}$.

A key tool: the sum-check protocol

- Input : a (boolean) circuit C_{n} of depth δ that implements a function f with n bits in input:

- Output : $\mathrm{S}_{\mathrm{n}}=\Sigma_{\mathrm{b}_{1}=0,1} \ldots \Sigma_{\mathrm{b}_{\mathrm{n}}=0,1} \mathrm{f}\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)$
- Let $\mathrm{d}=2^{\delta}$: \#usefull gates $\leq \mathrm{d}$.

Theorem: The verifier interactively computes S_{n} in polynomial time $(\mathrm{n}+\mathrm{d})^{\mathrm{O}}{ }^{(1)}$. (if $\delta=\mathrm{O}(\log \mathrm{n})$, polynomial in n$)$

- Application: number of elements that verify a predicate (\#SAT)

Key 1: Arithmetization

- Transform the boolean circuit C_{n} in an arithmetic circuit $\mathrm{C}_{\mathrm{n}}{ }^{2}$ in any field $\mathrm{K}(\operatorname{eg} \bmod p):$
- x and $\mathrm{y}=\mathrm{x} \cdot \mathrm{k} \mathrm{y} \quad \operatorname{not}(\mathrm{x})=1-\mathrm{x}$
- x or $y=\operatorname{not}(\operatorname{not}(x)$ and $\operatorname{not}(y))=1-\kappa(1-к x) \cdot \kappa(1-\kappa y)$
- Transform the circuit $\mathrm{C}_{\mathrm{n}}{ }^{2}$ in a circuit $\mathrm{C}_{\mathrm{n}}{ }^{K}$ with input in a (large) field K .
- Gates are + and x in K
- When inputs are 0 or 1 , the output is the same than $C_{n} f(x) \in K$
- Now, the circuit can be seen as a polynomial in n variables (the input) with degree d
- For $m=\log \# K$, the circuit can be evaluated in time ($n m)^{\mathrm{O}(1) \text {, }}$ polynomial for any [random] input in K^{n}.
- Key 2: induction on the number of sum
- Each sub-sum is verified with Schwartz-Zippel

Interactive verification of \#3-SAT

- Let: $\Phi=\left(\mathrm{c}_{1}\right.$ and \ldots and $\left.\mathrm{c}_{\mathrm{m}}\right)$ be a 3-SAT CNF formula
- Arithmetization of Φ gives $g\left(X_{1}, \ldots, X_{n}\right)=Q\left(c_{1}\right) \cdot Q\left(c_{2}\right) \ldots Q\left(c_{m}\right)$
- $\operatorname{Deg}(\mathrm{g}) \leq 3 \mathrm{~m}$ (small)

Polynomial-size circuit to evaluate g at any $\left(b_{1}, \ldots, b_{n}\right)$

- To prove \#SAT(Φ)=K reduces to a sequence of sum-check

$$
\Sigma_{b_{1}=0,1} \ldots \Sigma_{b_{n}=0,1} g\left(b_{1}, \ldots, b_{n}\right)
$$

- computation in F_{p} with p prime $>2^{n}$

Verifying general circuits

- Inputs : $b_{1} \ldots b_{n} \quad$ Outputs : $y_{1} \ldots y_{m}$
- How to verify $y_{1} \ldots y_{m}=f\left(b_{1} \ldots b_{n}\right)$

[Goldwasser, Kalai, Rothblum 2008][Thaler Crypto 2015]

Outsourcing general circuits

- Circuits C with n inputs and outputs,
- Work W, depth D
- Each level is of degree 1 (multilinear extension)
- Computation is valid iff all levels are corrects
- Verified by a sum-check at each level
- Cost $=(\mathrm{N}+\mathrm{D}) \log ^{\mathrm{O}(1)}(\mathrm{N}+\mathrm{W})$
- Optimization when the computation resumes to a reduction of independent parallel computations

Illustration on Matrix Multiplication

- Let A and B matrices (n, n) in K with $m=\log _{2} n$
- A is a (boolean) function $\{0,1\}^{m} x\{0,1\}^{m} x->K$:

$$
A\left(i_{1}, \ldots i_{m}, j_{1}, \ldots, j_{m}\right)=A(i, j)
$$

- Let g_{A} be the polynomial multilinear extension of A
- The g_{c} verifies

$$
g_{C}\left(i_{1}, \ldots i_{m}, j_{1}, \ldots, j_{m}\right)=\sum_{k=0 . . n} g_{A}\left(i_{1}, \ldots i_{m}, k_{1}, \ldots, k_{m}\right) \cdot g_{B}\left(k_{1}, \ldots k_{m}, j_{1}, \ldots, j_{m}\right)
$$

- With the sum-check protocol, this sum of n elements is verified in $\mathrm{O}(\log n)$
- Generalizes to parallel compuations with logarithmic depth (NC1)

Practical efficiency ?

- Further improvements [Thaler]
- Sum of products only
- Same circuit for any coefficient

Problem Size	Naïve MatMult Time	Additional P time	V Time	Rounds	Protocol Comm
1024×1024	2.17 s	0.03 s	0.67 s	11	264 bytes
2048×2048	18.23 s	0.13 s	2.89 s	12	288 bytes

- Yet far from Fiedvald's verification

What have we learned?

- Interactive proof : generalization of a mathematical proof in which a prover interacts with a polynomial-time probabilistic verifier:
- Completeness and soundness
- Input: x, proof of property $L(x)$

Correct proof: x is accepted iff $L(x)$ is true.

- Completeness : any $x: L(x)=$ true is accepted (with prob $\geq 2 / 3$).
- Soundess : any y : $L(y)=$ false is rejected (with prob $\geq 2 / 3$).
- Powerful interactive proof w.r.t. « static » proof
- IP = PSACE

Conclusion on outsourcing

- Verifying delegated computation
- Interaction between models provides power
- Enables the provable use of untrusted platforms
- Overclocked processors, algorithms with faults, quantum computing, ...
- Fully Homomorphic Encryption (powerful but yet expensive)
- Current research to improve FHE efficiency
- On going research - Applications
- Cloud computing. (web services)
- Outsourced fault-tolerant computation
- Secure remote storage (privacy)
- Secure control-command for critical infratscture (SCADA)
- A promising market (eg digital doctor)

https://www.youtube.com/watch?v=1MCa4d00OLQ

Outsourcing computations and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data : FHE
2. Interactive verification of results
3. Zero-knowledge proofs

- Interactive zero-knowledge protocols
- exercise

4. Secure multiparty computations

Grenoble University - M2 Cybersecurity - Cryptographic engineering - JL Roch

Interactive proof and zero knowledge protocols

- Zero-knowledge: definition
- Probabilistic complexity classes and Interactive proofs
- Graph isomorphism and PCP
- Some zero knowledge protocols:
- Feige-Fiat-Shamir authentication protocol
- Extension to signature
- Guillou-Quisquater authentication and signature
- Computational Complexity: A Modern Approach. Sanjeev Arora and Boaz Barak http://www.cs.princeton.edu/theory/complexity/
- Handbook of Applied Cryptography [Menzenes, van Oorschot, Vanstone]
- Applied Cryptography [Schneier]
- Contemporary cryptography [Opplinger]

The power of interaction

Zero knowledge

- How to state that the prover leaks no information?
all interactive informations provided by the prover (ie the trasncripts) could have been produced offline by the verifier himself alone!
=> by stating the verifier can produce the transcript of the protocol in (expected) polynomial time alone, with no help of the prover!
- Def: a sound and correct interactive protocol is zero-knowledge if there exists a non-interactive randomized polynomial time algorithm (named « simulator ») which, for any input x accepted by the verifier (using interaction with the prover) can produce transcripts indistinguishable from those resulting from interaction with the real prover.
- Consequence: releases no information to an observer.

Graph [non]-isomorphism and zero knowledge

- In a zero-knowledge protocol, the verifier learns that G_{1} is isomorphic to G_{2} but nothing else.

Previous protocol (slide 24 or next) not known to be zero-knowledge:
correct transcript $X=\left(G^{\prime}, i, P^{\prime}\right)$ with $G^{\prime}=P_{\text {rand }}\left(G_{\text {rand }}\right)$ and $G_{i}=P^{\prime}\left(G^{\prime}\right)$

- If $\mathrm{G}_{1} \neq \mathrm{G}_{2}$: (we have $\left.\mathrm{b}=\mathrm{i}\right)=>$ Entropy $($ transcript $X)=1+\log \mathrm{n}$!

Simulation: $\left(P^{\prime-1}\left(G_{i}\right), i=r a n d(1,2), P^{\prime}=\right.$ RandPerm $)==_{\text {distribution }} X$
=> No infomration revealed!

- If G_{1} is isomorphic to G_{2} : Prover sends the permutation P_{i} such that $G_{1}=P_{i}\left(G_{2}\right)$: then i is independent form G^{\prime} Entropy (transcript X) $=2+\log n$! so the verifier learns 1 additional bit to only a random bit and a random permutation

Non-known zero knowledge Interactive Algorithm Graph Isomorhism

```
Verifier
AlgoGraphlso \(\left(\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right), \mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)\right.\) ) \{
    If \(\left(\# \mathrm{~V}_{1}\right.\) != \(\left.\# \mathrm{~V}_{2}\right)\) or \(\left(\# \mathrm{E}_{1}\right.\) != \(\left.\# \mathrm{E}_{2}\right)\)
        return "NO : \(\mathbf{G}_{1}\) not isomorphic to G2";
    \(\mathrm{n}:=\# \mathrm{~V}_{1}\);
    For (i=1 .. k) \{
    \(\mathrm{P}:=\) randompermutation([1, ..., n]) ;
    \(\mathrm{b}:=\) random \((\{1,2\})\);
    \(\mathrm{G}^{\prime}:=\mathrm{P}\left(\mathrm{G}_{\mathrm{b}}\right)\);
    ( \(\mathrm{i}, \mathrm{P}_{\mathrm{i}}\) ) := Call OracleWhichlslso( \(\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}^{\prime}\) );
    If ( \(\mathrm{G}_{\mathrm{i}} \neq \mathrm{P}_{\mathrm{i}}\left(\mathrm{G}^{\prime}\right)\) ) FAILURE("Oracle is not reliable");
    If ( \(b \neq i\) ) return "YES : \(G_{1}\) is isomorphic to \(G_{2}\) ";
    \}
    return "NO: \(\mathrm{G}_{1}\) not isomorphic to \(\mathrm{G}_{2}\) ";
\}
```

Theorem: Assuming OracleWhichIslso of polynomial time, AlgoGraphlso $\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ proves in polynomial time k. $\mathrm{n}^{\mathrm{O}(1)}$ that :

- either G_{1} is isomorphic to G_{2} (no error)
- or G_{1} is not isomorphic with error probability $\leq 2^{-k}$.

Thus, it is a MonteCarlo (randomized) algorithm for proving GRAPH ISOMORPHISM

A zero-knowledge interactive proof for Graph Isomorhism

Verifier

input: $\left(\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right), \mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)\right)$
Accepts prover if convinced that G 1 is isomorphic to G2
2. Receives H;

Chooses $b=$ random(1,2) and sends b to the prover
4. receives $P^{\prime \prime}$ and checks $H=P^{\prime \prime}\left(G_{b}\right)$

Proover
gets G_{1}, G_{2}
private secret perm. $\mathrm{P}_{\mathrm{s}}: \mathrm{G}_{2}=\mathrm{P}_{\mathrm{s}}\left(\mathrm{G}_{1}\right)$

1. Chooses a random perm. P^{\prime} and sends to verifier $H=P^{\prime}\left(G_{2}\right)$
2. Receives b;
if $b=1$ sends $P "=P \prime o P_{s}$ to the verifier else $b=2$: sends $P "=P$ ' to the verifier

Theorem: This is a zero-knowledge, sound and complete, polynomial time interactive proof that the two graphs G_{1} and G_{2} are isomorphic.

Zero-knowledge interactive proof for Graph Isomorhism

- Completeness
- Soundness
- Zero-knowledge
- Polynomial time

Zero-knowledge interactive proof for Graph Isomorhism

- Completeness
- if $G_{1}=G_{2}$, verifier accepts with probability 1.
- Soundness
- if $G_{1} \neq G_{2}$, verifier rejects with probability $\geq 1 / 2$
- Zero-knowledge
- Simulation algorithm:

1. Choose first $b=r a n d(1,2)$ and π random permutation (like P^{\prime});
2. Compute $H=\pi\left(G_{b}\right)$;
3. Output transcript [H, b, m] ;

- The transcript $[\mathrm{H}, \mathrm{b}, \pi]$ is distributed uniformly, exactly as the transcript $\left[\mathrm{H}, \mathrm{b}, \mathrm{P}^{\prime}\right]$ in the interactive protocol.
- Polynomial time

Another simulation algorithm (following the prover's protocol but cheating)

Simulator:
Do \{

1. $b^{\prime}=$ random $(1,2)$ and $\pi=$ random(permutation)
2. Compute $\mathrm{H}=\pi\left(\mathrm{G}_{\mathrm{b}}\right)$)// prover would send H to verifier
3. $\mathrm{b}=$ random(1,2); // prover would receive b from verifier \} while ($\mathrm{b} \neq \mathrm{b}$) ; // cheat to find a valid transcript in polytime Output transcript [H, b, m]

- Polynomial time:
- Expectation time $=$ Time $_{\text {Loop_body }} \cdot \sum_{k \geq 0} 2^{-\mathrm{k}} \leq 2$. Time Loop_body

Exercise

- N is a public integer.

Provide an interactive polynomial time protocol to prove a verifier that you know the factorization $N=P$.Q without revealing it.

- Application:
- a sensitive building, authorized people know 2 secret primes P and Q (and $N=P Q$)
- The guard knows only N

Quadratic residue authentication: is this version perfectly zero-knowledge?

- A trusted part T provides a Blum integer $n=p . q ; n$ is public.

■ Alice (Prover) builds her secret and public keys:

- For $\mathrm{i}=1, \ldots, \mathrm{k}$: chooses at random s_{i} coprime to n
- Compute $\mathrm{v}_{\mathrm{i}}=\left(\mathrm{s}_{\mathrm{i}}{ }^{2}\right) \bmod \mathrm{n}$. [NB v_{i} ranges over all square coprime to n] $\mathrm{v}_{\mathrm{i}}=$ quadratic residue that admits $\mathrm{s}_{\mathrm{i}}=$ modular square root
- Secret key: $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- Public key: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ and identity photo, ... registered by T

■ Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :

1. Alice chooses a random $r<n$; she sends $y=r^{2} \bmod n$ to Bob.
2. Bob sends k random bits: b_{1}, \ldots, b_{k}
3. Alice computes $z:=r s_{1}{ }^{b_{1}} \ldots . s_{k}{ }^{b_{k}}$ imod n and sends z to Bob. Bob authenticates iff $z^{2}=y . v_{1}{ }^{b_{1}} \ldots . v_{k} b_{k} \bmod n$.

■ Simulation algorithm : is the protocol perfectly zeo-knowledge?

1. Choose k random bits b_{1}, \ldots, b_{k} and a random $z<n$; compute $w=v_{1}{ }^{b_{1}} \ldots . v_{k}^{b_{k}} \bmod n$ and $y=z^{2} \cdot w^{-1} \bmod n$;
2. Transcript is $\left[y ; b_{1}, \ldots, b_{k} ; z\right]$

Feige-Fiat-Shamir zero-knowledge authentication protocol

- A trusted part T computes a Blum integer $n=p . q ; n$ is public.

■ Alice (Prover) builds her secret and public keys:

- For $\mathrm{i}=1, \ldots, \mathrm{k}$: chooses at random s_{i} coprime to n
- Compute $\mathrm{v}_{\mathrm{i}}:=\left(\mathrm{s}_{\mathrm{i}}{ }^{2}\right) \bmod \mathrm{n}$. [NB v_{i} ranges over all square coprime to n$]$ $\mathrm{v}_{\mathrm{i}}=$ quadratic residue that admits $\mathrm{s}_{\mathrm{i}}=$ modular square root
- Secret key: $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- Public key: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ and identity photo, \ldots registered by T

■ Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :

1. Alice chooses a random $r<n$ and a sign $u= \pm 1$; she sends $y=u . r^{2} \bmod n$ to Bob.
2. Bob sends k random bits: b_{1}, \ldots, b_{k}
3. Alice computes $z:=r$. $s_{1}{ }^{b_{1}} \ldots . s_{k}{ }_{k}^{b_{k}} \bmod n$ and sends z to Bob. Bob authenticates iff $z^{2}=+/-y . v_{1} b_{1} \ldots . v_{k} b_{k} \bmod n$.

■ Remark: possible variant: Alice chooses its own modulus n

Feige-Fiat-Shamir

Prob(Output of X=Alice or anyone else?	YES: "Authentication) of Alice OK"	NO: "Authentication of Alice KO "»
Case X = Alice (completeness)	Always	Impossible
Case X \neq Alice (soundness)	Prob $=2^{-k}$	Prob $=1-2^{-k}$

- Completeness
- Alice is allways authenticated (error prob=0)
- Soundness
- Probability for Eve to impersonate Alice $=2^{-\mathrm{k}}$. If t rounds are performed: $2^{-\mathrm{kt}}$
- Zero-knowledge
- A simulation algorithm exists that provides a transcript which is indistinguishable with the trace of interaction with correct prover.

From zero-knowledge authentication to zero knowledge signature

- Only one communication: the message+signature
- The prover uses a CSPRNG (e.g. a secure hash function) to generate directly the random bits of the challenge
- The bits are transmitted to the verifier, who verifies the signature.
- Example: Fiat-Shamir signature
- Alice builds her secret key ($\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}$) and public key ($\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$) as before.
- Let M be a message Alice wants to sign.
- Signature by Alice

1. For $i=1, \ldots, t$: chooses randomly r_{i} and computes w_{i} s.t. $w_{i}=r_{i}^{2} \bmod n$.
2. Computes $h=H\left(M\left\|w_{1}\right\| \ldots \| w_{t}\right)$ this gives k.t bits $b_{i k}$, that appear as random (similarly to the ones generated by Bob in step 2 of Feige-Fiat-Shamir)
3. Alice computes $z_{i}:=r_{i} \cdot s_{1}{ }^{b_{n}} . \ldots . s_{k}{ }^{b_{k}} \bmod n \quad(f o r i=1 . . t)$;

She sends the message M and its signature: $\sigma=\left(z_{1} \ldots z_{t}, b_{11} \ldots b_{\text {tk }}\right)$ to Dan

- Verification of signature σ by Dan:

1. Dan computes $y_{i}:=z_{i}^{2} .\left(v_{1} b_{n} \ldots . . v_{k}{ }^{b_{k}}\right)^{-1} \bmod n$ for $i=1 . . t$ A correct signature gives $y_{i}=w_{i}$
2. Computes $\mathrm{H}\left(\mathrm{M},\left\|\mathrm{y}_{1}\right\| \ldots \mathrm{y}_{\mathrm{t}}\right)$ and he verifies that he obtains the bits b_{ik} in Alice's signature

Zero-knowledge vs other asymetric protocols

- No degradation with usage.
- No need of encryption algorithm.
- Efficiency: often higher communication/computation overheads in zero-knowledge protocols than public-key protocols.
- For both , provable security relies on conjectures (eg: intractability of quadratic residuosity)

Exercise

- Guillou-Quisquater zero-knowledge authentication and signature protocol.

Feige-Fiat-Shamir

zero-knowledge authentication protocol

- A trusted part \mathbf{T} (or Alice) computes a Blum integer $n=p . q$; n is public.
- Alice (Prover) builds her secret and public keys:
- For $i=1, \ldots, k$: chooses at random s_{i} coprime to n and n random bits d_{i}
- Compute $v_{i}:=\left(s_{i}^{2}\right) \bmod n$. [NB v_{i} ranges over all square coprime to n]
$(-1)^{d} v_{i}=$ quadratic residue that admits $\mathrm{s}_{\mathrm{i}}=$ modular square root
- Secret key: $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}$. (Note that $\mathrm{v}_{\mathrm{i}} \cdot \mathrm{s}_{\mathrm{i}}^{2}=(-1)^{\mathrm{d}}=1$ or -1 mod n)
- Public key: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ and identity photo, ... registered by T
- Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 msgs :

1. Alice chooses a random value $r<n$. She sends $y:=r^{2} \bmod n$ to Bob.
2. Bob sends k random bits: b_{1}, \ldots, b_{k}
3. Alice computes $z:=r$. $s_{1}{ }^{b_{1}} \ldots . s_{k}{ }^{b_{k}} \bmod n$ and sends z to Bob. Bob computes $w=z^{2} \cdot v_{1}{ }^{b_{1}} \ldots . . v_{k}^{b_{k}}$ and authenticates iff $y=w$ or $y=-w \bmod n$.

- Soundness and completeness, perfectly zero knowledge
- Probability for Eve to impersonate Alice $=2^{-k}$. If t rounds are performed: $2^{-k t}$
- Alice always authenticated (error prob=0)
- Zero knowledge: transcript

Interactive zero knowledge protocol

What have we learned?

- Soundness + completeness
- Interactive proof (computers, profs) >> static proof (books)
- Zero-knowledge: simulation that provides a transcript indistinguishable from the correct interaction!
- Everywhere in crypto:
- Authentication, signature, security proofs (IND-CCX)
- Perspective: outsourcing with verifiable trust

Outsourcing computations and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data : FHE
2. Interactive verification of results
3. Zero-knowledge proofs

- Interactive zero-knowledge protocols
- exercise

4. Secure multiparty computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Secure multiparty computation

- n parties P_{i}. Each party P_{i} has a secret x_{i}
- All parties jointly compute $y=f\left(x_{1}, \ldots, x_{n}\right)$
- without revealing information on any secret x_{i} (except y)
- The computation must preserve certain security properties
- Even if some parties collude and attack the protocol
- Basic solutions : rely on TTP
- Each party sends her secret x_{i} to TTP;
- TTP computes $y=f\left(x_{1}, \ldots, x_{n}\right)$ and sends it to a verifier
- Verifier sends y to the parties (that may verify it too)
- Eg the voting protocol with FHE (see section 1)
- Can we do as well without any TTP ?

Multi-party Computation without TTP

- Eg: compute $\Sigma \mathrm{x}_{\mathrm{i}}$

- Note this scheme is not resistant facing corruption(s)

Oblivious transfer 1 among 2

- Alice has 2 plaintexts M0 and M1
- Bob asks Alice to send him M_{s} without revealing to Alice he wants M_{0} or M_{1}.

Oblivious transfer 1 among 2

- Alice has 2 plaintexts M0 and M1
- Bob asks Alice to send him M_{s} without revealing to Alice he wants M_{0} or M_{1}.
- One solution: (with multiplicative RSA)
- Alice has RSA public (n, e) and secret d
- Alice chooses random r_{0} and r_{1} and she sends $x_{0}=r_{0}{ }^{e} \bmod n$ and $x_{1}=r_{1}{ }^{e} \bmod n$ to Bob
- Bob chooses random k and sends $v=\left(x_{s}+k^{e}\right)$ mod n to Alice
- Alice compute $C_{0}=M_{0}+\left(v-x_{0}\right)^{d} \bmod n$ and $C_{1}=M_{1}+\left(v-x_{1}\right)^{d} \bmod n$ She sends C_{0} and C_{1} to Bob
- Bon computes $C_{s}-k$ and obtains his desired M_{s}.
- Note : a solution with FHE sends only one message C (but Alice computes all C_{i} with Bob public key)

Secret sharing problem «k among n »:

- S is a shared secret among n entities:
- S is known by a TTP
$-S$ is represented by D_{1}, \ldots, D_{n} with D_{i} secret of i
- Knowledge of at least k values enables to compute S
- Knowledge of less of k-1 D_{i} provides no information on S

Shamir protocol for secret sharing

- Use error correcting codes...
- Let F a (large) finite fiels such that S is uniquely and secretly represented in F
- $\operatorname{Prob}(S=x)=1 / \operatorname{card}(F)$
- Shamir's Proocol
- Let $f(X)=S+a_{1} \cdot X+a_{2} \cdot X^{2}+\ldots+a_{k-1} X^{k-1}$ with a_{1}, \ldots, a_{k} randomly chosen in F (let $a_{0}=S$)
- Let n distinct elements wi $\neq 0$ in F (for instance $\mathrm{w}_{\mathrm{i}}=\mathrm{i}$ if characteristic $(\mathrm{F})>\mathrm{n}$, or $\mathrm{w}_{\mathrm{i}}=\mathrm{g}^{\mathrm{i}}$ etc)
- Each party i owns (wi, f(w_{i}))
- Multiparty computation of the secret by k parties :
- by interpolation of f (dsgree $k-1$) from k values $f\left(w _i\right)$: CRT
- If less than $k-1$ values: then all valures for S have same probability
- Moreover: resist to errors
- possibility of correcting rerrors (or attacks)
- with $k+r$ values si $r \geq 2$.\#errors

Shamir's protocol properties

- Perfect secrecy (indistingability, like OTP)
- Minimal: la taille de chaque Di n'est pas plus grande que la taille de S
- Dynamic possible to change the ploynomial from time to time
- Extendable : adding paties is possible
- Flexible: party with high priority owns several values
- But requires confidence in the TTP that distributes the value

Conclusion Outsourcing computations and security

1. Computation with encrypted data : FHE
2. Interactive verification of results
3. Zero-knowledge proofs

- Interactive zero-knowledge protocols
- exercise

4. Secure multiparty Computations

Shamir protocol for multiparty computation

- Example to compute (F)
- Shamir's Proocol
- Let $f(X)=S+a_{1} \cdot X+a_{2} \cdot X^{2}+\ldots+a_{k-1} X^{k-1}$ with a_{1}, \ldots, a_{k} randomly chosen in F (let $\mathrm{a}_{0}=\mathrm{S}$)
- Let n distinct elements wi $\neq 0$ in F (for instance $\mathrm{w}_{\mathrm{i}}=\mathrm{i}$ if characteristic(F$)>\mathrm{n}$, or $\mathrm{w}_{\mathrm{i}}=\mathrm{g}^{\mathrm{i}} \mathrm{etc}$)
- Each party i owns (wi, f(wi))
- Multiparty computation of the secret by \mathbf{k} parties :
- by interpolation of $f(d s g r e e ~ k-1)$ from k values $f\left(w _i\right)$: CRT
- If less than $k-1$ values: then all valures for S have same probability
- Moreover: resist to errors
- possibility of correcting rerrors (or attacks)
- with $k+r$ values si $r \geq 2$.\#errors

