
Outsourcing computations
and security

1. Computation with encrypted data : FHE
2. Interactive verification of results
3. Zero-knowledge proofs

– Interactive zero-knowledge protocols
– exercise

4. Secure multiparty Computations

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Distributed, heterogeneous
(hybrid)

Various computing abilities and levels of trust

Outsourcing protocols and security

Machine
A

(Algortihm A)

Machine B

(Algortihm B)

Question

Answer
Question

Answer
…

Trust in the result ?
=> protocols for trustfully delegation of computations

Program f with input x

Result y

Positioning in current trends & market

Outsourcing computations
and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

Grenoble INP -Ensimag, Univ. Grenoble Alpes

1. Computation with encrypted data : FHE
2. Interactive verification of results
3. Zero-knowledge proofs

– Interactive zero-knowledge protocols
– exercise

4. Secure multiparty computations

Computations with encrypted data

• Outsourcing computation with secret input
– Computation is performed on encrypted data

– Based on asymnetric encryption (eg thanks to fully
homomorphic encryption) [Gentry 2009]

Homomorphic encryption: El Gamal e-vote
• Remind El Gamal (in cyclic group G with g a generator):

– Bob has private key b and public key B=gb

– Alice: c=E(m) = (c1=gr , c2=m. Br) Bob= D(c)=c1
-b . c2 = m

• El Gamal enables homomorphic addition (note Alice encrypts gM instead of M)
– C=E(gM) = (gr , gM . Br) (encode gM instead of M)
– C’=E(gM’)= (gr’ , gM’ . Br’)
– Multiplication of ciphertxt in G matches addition of plaintext (e.g.integers plaintext)

C.C’ = (gr. gr’, gM. Br. gM’. Br’) = (gr+r’, gM+M’. Br+r’)
= E(gM +M’)

– Enables anyone to compute as many additions of ciphertexts as desired
– Question 1: if M+M’ small, how to decrypt M+M’ from gM +M’ without discrete log ?

• Application: electronic vote by homomorhic addition
– Each voter (Alice) sends her encrypted vote v (0 or 1) to the voting machine (Bob) :

• C(0)=(gr , Br) C(1)=(gr’ , g.Br’) : each voter checks her encrypted vote is correctly stored
– Each one can compute the encrypted score of the vote : PC voter(C) = (gSr , gSv.BSr)
– The voting machine knows secret b : it computes gSv and publishes score Sv and Sr

• Question 2: How the voting machine computes Svotersv from PC voter(C) = (gSr , gSv.BSr) ?
• Question 3 : How each voter verifies the result Svotersv ?

Fully Homomorphic Encryption (FHE)
• Does there exist homomorphic boolean encryption ? => YES [Craig 2010]

• Somewhat Fully Homomorphic Encryption [Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan]

– Secret p : a large odd integer (eg thousands of digits)
– For x in {0,1} : E(x) = pq +2.r + x

With random q ~ million of digits and r ~ twenty digits (the noise)
– Knowing p: (E (x) mod p) mod 2 = (2.r+x) mod 2 = x
– Without knowing p: E(x) seems to give no information

• Fully homomorphic with x and y booleans:
– E(x)+E(x’)=p.(q+q’) + 2(r+r ’)+ x+x’ => mod p mod 2 = x XOR x’
– E(x).E(x’)=p (pqq’+q(2r’+x’)+q’(2r+x)) + 2(2rr’+rx’+r’x) + x.x’

=> mod p mod 2 = x AND x’
– Beware : AND and XOR operations increase the noise

• If noise r larger than p, decryption is impossible (eg if 2r = p.u+v then (E(x) mod p) mod 2 = (v+x) mod 2)
• chooice of p and the q’s large enough!

• Anyway with operations, the noise increases and may become larger than p
Key Gentry’s idea: remote bootstrapping

– Refresh the noise by outsourcing « mod p » on the cipher domain
homomorphic computation with AND and XOR (so without revealing p, only its ciphering !)

• Many applications of FHE :
– example: outsourcing AES enc/decryption !

Outsourcing and privacy
• Homomorphic scheme enables to outsource

encryption with secret key (or signature)

• Homomorphic encryption enables publicly
Verifiable computation [Fiore, Gennaro 2012, …]

– Server computes on private data and produces a
verifiable digest of the computation

– Enables some verification of the computation
• Different from a direct result certification

Outsourcing computations
and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

Grenoble INP -Ensimag, Univ. Grenoble Alpes

1. Computation with encrypted data : FHE
2. Interactive verification of results
3. Zero-knowledge proofs

– Interactive zero-knowledge protocols
– exercise

4. Multiparty computations

Delegating computation

Trusted
client Untrusted

server

Please, compute f

Here is result

• Contexts
– Co-processor (overclocked…)
– Supercomputer (soft errors)
– Cloud computing
– Volunteer computing

Integrity of the result?

Attack models
• No attack [current HPC and grid computing platform]

– Failure (MTBF)

• Attack on few isolated resources
– Soft errors - corruption of part of the computation

Attack models
• No attack [current HPC and grid computing platform]

– Failure (MTBF)

• Attack on few isolated resources
– Soft errors - corruption of part of the computation

• Massive attacks
Countermeasures against such attacks (detect/correct)

Verifiable [outsourced] computation

• Trusted but slow Client (Verifier, Victor)
sends a function F with input x to the server

• Fast but untrusted Server (Prover, Peggy)
returns y = F(x) and a proof P that y is correct.

Computing P should take almost same time than F.
Verifying P should take less time than computing F.

Motivating example

• Peggy has developed a nice application that
efficiently solves Traveling Salesman Problem

• Victor sends Peggy the location (map) of his
clients and pays her for the shortest
Hamiltonian circuit

• Can Victor check he really gets the shortest?

Example [wikipedia]
• A tunnel, closed by a trapdoor rock.
• Ali Baba knows the secret

– « Iftah Ya Simsim » («Open Sesame»)
– "Close, Simsim" («Close Sesame»).

• Victor design a protocol that « proves »
Ali Baba gets the secret without
revealing it
– Ali Baba (indeed Peggy) is the Prover
– Victor is the Verifier
– Peggy leaks no information (0-knowledge)

Proof and Interactive proof
• Importance of « proof » in crypto: eg. identity proof=authentication
• Two parts in a proof:

– Prover: knows the proof (-> the secret) [or is intended to know]
– Verifier: verifies the proof is correct (-> authentication)

• Correctness of a proof system/verifier:
– Completeness: every valid proof is accepted by the verifier
– Soundness: every invalid proof is rejected by the verifier

• Interactive proof system
– Protocol (questions/answers) between the verifier and the prover
– Verifier: probabilistic algorithm, polynomially bounded
– Soundness: every invalid proof is rejected with goog probability (> 1/2)
– Competeness: every valid proof is accepted with good probability (>1/2)

Decision problem
Does x belongs to L ?

• Verifier
– An element x
– Ask questions to prover to determine : « x ∈? L »
– Gets anwer:

– Completeness: Is convinced that x in L, if so
– Soundess: reject « x in L » if not so

Fundamental theorem
[Goldreich&al]

• Def: IP = set of decision problem that admits a
randomized polynomial time verification algorithm

i.e. both size of transcripts and nuber of operations performed by verifier are polynomial

• IP = PSPACE
– NP included in IP.

• Any (PSPACE) computation admits a randomized
determinstic polynomial verification algorithm.

Interactive protocol :Example
• Example: interactive authentication based on

quadratic residue

• See exercise (question 3.b)
– Completeness : Alice, who gets the secret

(square root) is accepted
– But not Soundness : Eve, who doesn’t know the

secret may cheat
• Fiat-Shamir’s protocol (question 3.c)

– Soundness : Eve, who doesn’t know the secret, is
rejected.(if we assume n factorization unknown)

The power of interaction

Prover
(Peggy)

Verifier
(Victor)

On 2010/10/24, 8 am
- ∈ NP, but not known to be in NP or in NP-complete or in NP-intermediate
- Does it belongs to co-NP or not ? (Open question)
- but Subgraph isomorphism problem is NP-complete

https://en.wikipedia.org/wiki/Graph_isomorphism

https://en.wikipedia.org/wiki/Graph_isomorphism

Example of interactive computation
• Graph isomorphism:

– Input: G=(V,E) and G’=(V’,E’)
– Output: YES iff G == G’ (i.e. a permutation of V ->V’ makes E=E’)

• In NP but not known today to be NP-complete or in P
– In 2015, Babai proposes a quasi-polynomial algorithm [2^O(log^k n)]

(a bug was claimed on 2017/1/1 and fix on 2017/1/7)

• Not known to be in co-NP

• Assume an NP Oracle for Graph isomorphism =>
then a probabilistic verifier can verifies that two graphs are not
isomorphic in polynomial time.
– Protocol and error probability analysis.

Interactive graph [non]-isomorphism
• Victor

– Toss b := rand{1,2}
– H := random_pemutation (Eb)
– Asks Peggy: to which H is isomorphic to : E1 or E2 ?

Peggy returns y and P

– Victor checks P and if OK
• If y ≠b : Victor has a proof that E1 isomorphic to E2

• Else y = b : Victor stated that E1 is not isomorphic to E2
with error probability ½

Interactive Algorithm Graph Isomorhism
Verifier
AlgoGraphIso(G1=(V1,E1), G2=(V2,E2)) {

If (#V1 != #V2) or (#E1 != #E2)
return “NO : G1 not isomorphic to G2”;

n := #V1 ;
For (i=1 .. k) {

P := randompermutation([1, …, n]) ;
b := random({1,2}) ;
G’ := P(Gb) ;
(i, Pi) := Call OracleWhichIsIso(G1, G2, G’) ;
If (Gi ≠ Pi (G’)) FAILURE(“Oracle is not reliable”) ;
If (b ≠ i) return “YES : G1 is isomorphic to G2” ;

}
return “NO : G1 not isomorphic to G2”;

}

Prover
OracleWhichIsIso(G1, G2, G’) {

// precondition: G’ is isomorphic to
// G1 or G2 or both.
// Output: i into {1,2} and a permutation
// Pi such that Gi = P(G’)
… ;
Return (i, Pi) ;

}

Theorem: Assuming OracleWhichIsIso of polynomial time,
AlgoGraphIso(G1, G2) proves in polynomial time k.nO(1) that :

- either G1 is isomorphic to G2 (no error)
- or G1 is not isomorphic with error probability ≤ 2-k.

Thus, it is a MonteCarlo (randomized) algorithm for proving GRAPH ISOMORPHISM

Analysis of error probability
Truth:
G1 = G2 ??

“YES : G1 is
isomorphic to
G2”

“NO: G1 not
isomorphic to G2”

Case G1 = G2
(completeness)

Prob = 1 - 2-k Prob = 2-k

No: Case G1 ≠ G2

(soundness)

Impossible
(Prob = 0)

Always
(Prob = 1)

-When the algorithm output YES : G1 is isomorphic to G2 then G1 = G2
=> no error on this output.

-When the algorithm output “NO: G1 not isomorphic to G2” then we may
have an error (iff G1 = G2), but with a probability ≤ 2-k

One-sided error => Monte Carlo algorithm for Graph-Isomorphism

Prob(Output of
AlgoGraphIso(G1, G2))

Efficient verifiable computing
by spot checking

• Check polynomial equality by random evaluation [Schwartz-Zippel]

– Choose r1, …, rn at random in a subset S of a field
– If Q(r1, …, rn)=0 then Q == 0 with error probability ≤ deg(Q) / #S

• Example: Verifying matrix multiplication (Friedval’s algorithm)

– To check C = A.B, choose a random vector r
and verify C . r = A . (B . r)

Cost : linear in size(A) + size(B) + size(C)

Interactive linear algebra
• Most dense linear algebra reduces to Matrix multiplication

– Locally compute the (recursive) scheme in O(n2) while outsourcing all
Matrix Multiplications

– [Algorithm-Based Secure and Fault Tolerant Outsourcing of Matrix Computations,
A Kumar, JL Roch, HAL 2013]

• Alternatively provide efficient certificates for sparse linear
algebra
– [Interactive certificates for linear algebra, JD Dumas, E Kaltofen, ISSAC 2014]

Verifying general circuits

• Inputs : b1 … bn Outputs : y1 … ym

• How to verify y1 … ym = f(b1 … bn)

b4

f(b1,b2,b3,b4)b3

b2

b1

The power of interaction

• Theorem : IP = PSPACE

• Any problem in PSPACE has a polynomial verifier
– TQBF (quantified Boolean formula problem)

• A polynomial interactive scheme for #SAT

P, NP, …. IP = PSACE

Complexity classes
Decision problems (1 output bit: YES/ NO)
Deterministic polynomial time:

– P : both Yes/No sides
– NP : certification for the Yes side
– co-NP: certification for the No side

Randomized polynomial time:
– BPP: Atlantic City: prob(error) < 1/2
– RPP: Monte Carlo: prob(error YES side)=0 ; prob(error NO side)< 1/2
– ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

• IP Interactive proof
– Verifier: randomized polynomial time
– Prover: interactive (dynamic), unbound power

• F(x) = YES => it exists a correct prover P such that Prob[Verifier (P, x) accepts] = 1;
• F(x) = NO => for all prover P: Prob[Verifier (P, x) accepts] < 1/2.

– Theorem: IP = PSPACE (interaction with randomized algorithms helps!)

• PCP: Probabilistiic Checkable Proofs (static proof)
– PCP(r, q) : the verifier uses random bits and reads q bits of the proof only.
– Theorem: NP=PCP(log n, O(1))

#3-SAT in IP

• Arithmetization in F2: each clause c has a poly. Q(c)

• Q(not(x)) = 1-x Q(x and y) = x.y

• Q(x or not(y) or z)=Q(not(not(x) and y and not(z))= 1–((1-x).y.(1-z))

• Let F = c1 and … and cm a 3-SAT CNF formula, and

g(X1, …, Xn) = Q(c1).Q(C2). … .Q(cm) : deg(g) ≤ 3m

Then #F = Sb1=0,1… Sbn=0,1 g(b1, …, bn)

• Since #F ≤ 2n, for p>2n, (#F=K) is equivalent to (#F=K mod p)

– To limit to a polynomial number of operations, computation is performed

mod a prime p in 2n .. 2n+1 (provided by prover and checked by verifier)

• Let hn(Xn) = Sb1=0,1… Sbn-1=0,1g(b1, b2, …, bn-1, Xn):

hn is an univariate polynomial (in Xn) of degree ≤ m

#3-SAT: interactive polynomial proof

Verifier
input: F(X1, …, Xn) = (c1 and … and cm)

K an integer; let g(x) = Pi=1,n Pol(ci)
Accepts iff convinced that #F = K.
Preliminar receive p, check p is prime in {2n, 22n}
Compute g(X1, …, Xn)= Pi=1,n Pol(ci) deg(g)≤3m
Check K= SX1=0,1… SXn=0,1 g(X1, …, Xn) [p] :
1. If n=1, if (g(0)+g(1) = K) accept ; else reject.

If n≥2, ask hn(X) to P.

3. Receive s(X) of degree ≤m.
Compute v=s(0)+s(1); if (v ≠ K) reject.
Else choose r=random(0, … p-1); let Kn = s(r)
and use the same protocol to check

Kn=SX1=0,1… SXn-1=0,1 g(X1, …, Xn-1, r) [p]

Prover
Preliminar: sends p prime in {2n, 22n}

2. Send s(X) ; [note that if P is not
cheating, s(X) = hn(X)]

Theorem: This is a sound and complete, polynomial time randomized
interactive proof of #3-SAT.

Moreover, prob(V rejects | K ≠ #F) ≥ (1-m/p)^n ,
also prob(error) ≤ 1-(1-m/p)^n ≤ mn2-n .

A key tool: the sum-check protocol
• Input : a (boolean) circuit Cn of depth d that

implements a function f with n bits in input :

• Output : Sn= Sb1=0,1… Sbn=0,1 f (b1, …, bn)

• Let d=2d : #usefull gates ≤ d.
Theorem: The verifier interactively computes Sn in polynomial
time (n+d)O(1). (if d=O(log n), polynomial in n)

• Application: number of elements that verify a predicate (#SAT)

b4

f(b1,b2,b3,b4)b3

b2

b1 Cn

x∈{0,1}n

f(x)∈{0,1}

[Lund, Fortnow, Karloff, Nisan 1992]

Key 1: Arithmetization
• Transform the boolean circuit Cn in an arithmetic circuit

Cn
2 in any field K (eg mod p) :

• x and y = x .K y not(x) = 1 – x

• x or y = not (not(x) and not(y)) = 1 –K (1-Kx). K(1-Ky)

• Transform the circuit Cn
2 in a circuit Cn

K with
input in a (large) field K.

– Gates are + and x in K

– When inputs are 0 or 1, the output is the same than Cn

• Now, the circuit can be seen as a polynomial in n
variables (the input) with degree d

– For m=log #K, the circuit can be evaluated in time (nm)O(1),
polynomial for any [random] input in Kn.

• Key 2: induction on the number of sum
– Each sub-sum is verified with Schwartz-Zippel

Cn
K

x∈Kn

f(x)∈K

Interactive verification of #3-SAT

• Let: F = (c1 and … and cm) be a 3-SAT CNF formula

• Arithmetization of F gives g(X1, …, Xn) = Q(c1).Q(c2).… Q(cm)

• Deg(g) ≤ 3m (small)

Polynomial-size circuit to evaluate g at any (b1, …, bn)

• To prove #SAT(F)=K reduces to a sequence of sum-check

Sb
1
=0,1… Sb

n
=0,1 g(b1, …, bn)

– computation in Fp with p prime > 2
n

Verifying general circuits

• Inputs : b1 … bn Outputs : y1 … ym

• How to verify y1 … ym = f(b1 … bn)

b4

f(b1,b2,b3,b4)b3

b2

b1

Outsourcing general circuits

• Circuits C with n inputs and outputs,
– Work W, depth D
– Each level is of degree 1 (multilinear extension)

• Computation is valid iff all levels are corrects
– Verified by a sum-check at each level

• Cost = (N + D) logO(1) (N + W)

• Optimization when the computation resumes to a
reduction of independent parallel computations

[Goldwasser, Kalai, Rothblum 2008][Thaler Crypto 2015]

Illustration on Matrix Multiplication

• Let A and B matrices (n,n) in K with m = log2 n

• A is a (boolean) function {0,1}mx{0,1}mx -> K :
A(i1,… im, j1, …, jm) = A(i,j)

• Let gA be the polynomial multilinear extension of A
• The gC verifies

gC(i1,… im, j1, …, jm) = ∑k=0..n gA(i1,… im, k1, …, km).gB(k1,… km, j1, …, jm)

• With the sum-check protocol, this sum of n elements is
verified in O(log n)

• Generalizes to parallel compuations with logarithmic depth
(NC1)

Practical efficiency ?
• Further improvements [Thaler]

– Sum of products only
– Same circuit for any coefficient

– Yet far from Fiedvald’s verification

What have we learned ?

• Interactive proof : generalization of a mathematical
proof in which a prover interacts with
a polynomial-time probabilistic verifier:
– Completeness and soundness

• Input: x, proof of property L(x)
Correct proof: x is accepted iff L(x) is true.
– Completeness : any x: L(x)=true is accepted (with prob≥2/3).
– Soundess : any y: L(y)=false is rejected (with prob≥2/3).

• Powerful interactive proof w.r.t. « static » proof
– IP = PSACE

Conclusion on outsourcing
• Verifying delegated computation

– Interaction between models provides power
– Enables the provable use of untrusted platforms

• Overclocked processors, algorithms with faults, quantum computing, …
– Fully Homomorphic Encryption (powerful but yet expensive)
– Current research to improve FHE efficiency

• On going research - Applications
– Cloud computing. (web services)
– Outsourced fault-tolerant computation
– Secure remote storage (privacy)
– Secure control-command for critical infratscture (SCADA)
– A promising market (eg digital doctor)

https://www.youtube.com/watch?v=1MCa4d00OLQ

Outsourcing computations
and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

Grenoble INP -Ensimag, Univ. Grenoble Alpes

1. Computation with encrypted data : FHE
2. Interactive verification of results
3. Zero-knowledge proofs

– Interactive zero-knowledge protocols
– exercise

4. Secure multiparty computations

Interactive proof and
zero knowledge protocols

• Zero-knowledge: definition
• Probabilistic complexity classes and Interactive proofs

– Graph isomorphism and PCP
• Some zero knowledge protocols:

– Feige-Fiat-Shamir authentication protocol
– Extension to signature
– Guillou-Quisquater authentication and signature

• Computational Complexity: A Modern Approach. Sanjeev Arora and Boaz Barak
http://www.cs.princeton.edu/theory/complexity/

• Handbook of Applied Cryptography [Menzenes, van Oorschot, Vanstone]
• Applied Cryptography [Schneier]
• Contemporary cryptography [Opplinger]

Grenoble University – M2 Cybersecurity – Cryptographic engineering - JL Roch

The power of interaction

Prover
(Peggy)

Verifier
(Victor)

Zero knowledge
• How to state that the prover leaks no information ?

– i.e. all interactive informations provided by the prover (ie the trasncripts)
could have been produced offline by the verifier himself alone!

– => by stating the verifier can produce the transcript of the protocol in
(expected) polynomial time alone, with no help of the prover !

• Def: a sound and correct interactive protocol is zero-knowledge
if there exists a non-interactive randomized polynomial time
algorithm (named « simulator ») which, for any input x accepted
by the verifier (using interaction with the prover) can produce
transcripts indistinguishable from those resulting from interaction
with the real prover.

• Consequence: releases no information to an observer.

Graph [non]-isomorphism
and zero knowledge

• In a zero-knowledge protocol, the verifier learns that
G1 is isomorphic to G2 but nothing else.

Previous protocol (slide 24 or next) not known to be zero-knowledge:
correct transcript X=(G’, i, P’) with G’=Prand(Grand) and Gi= P’(G’)

– If G1 ≠ G2 : (we have b=i) => Entropy(transcript X) = 1 + log n!
Simulation: (P’-1(Gi), i=rand(1,2),P’=RandPerm) ==distribution X
=> No infomration revealed !

– If G1 is isomorphic to G2 : Prover sends the permutation Pi such
that G1= Pi(G2) : then i is independent form G’
Entropy(transcript X) = 2 + log n!
so the verifier learns 1 additional bit to
only a random bit and a random permutation

Non-known zero knowledge Interactive
Algorithm Graph Isomorhism

Verifier
AlgoGraphIso(G1=(V1,E1), G2=(V2,E2)) {

If (#V1 != #V2) or (#E1 != #E2)
return “NO : G1 not isomorphic to G2”;

n := #V1 ;
For (i=1 .. k) {

P := randompermutation([1, …, n]) ;
b := random({1,2}) ;
G’ := P(Gb) ;
(i, Pi) := Call OracleWhichIsIso(G1, G2, G’) ;
If (Gi ≠ Pi (G’)) FAILURE(“Oracle is not reliable”) ;
If (b ≠ i) return “YES : G1 is isomorphic to G2” ;

}
return “NO : G1 not isomorphic to G2”;

}

Prover
OracleWhichIsIso(G1, G2, G’) {

// precondition: G’ is isomorphic to
// G1 or G2 or both.
// Output: i into {1,2} and a permutation
// Pi such that Gi = P(G’)
… ;
Return (i, Pi) ;

}

Theorem: Assuming OracleWhichIsIso of polynomial time,
AlgoGraphIso(G1, G2) proves in polynomial time k.nO(1) that :

- either G1 is isomorphic to G2 (no error)
- or G1 is not isomorphic with error probability ≤ 2-k.

Thus, it is a MonteCarlo (randomized) algorithm for proving GRAPH ISOMORPHISM

A zero-knowledge interactive proof
for Graph Isomorhism

Verifier
input: (G1=(V1,E1), G2=(V2,E2))

Accepts prover if convinced that G1 is
isomorphic to G2

2. Receives H;
Chooses b=random(1,2) and sends
b to the prover

4. receives P’’ and checks H = P’’(Gb)

Proover
gets G1, G2

private secret perm. Ps: G2=Ps(G1)

1. Chooses a random perm. P’ and
sends to verifier H=P’(G2)

3. Receives b;
if b=1 sends P’’=P’oPs to the verifier
else b=2: sends P’’=P’ to the verifier

Theorem: This is a zero-knowledge, sound and complete, polynomial time
interactive proof that the two graphs G1 and G2 are isomorphic.

• Completeness

• Soundness

• Zero-knowledge

• Polynomial time

Zero-knowledge interactive proof
for Graph Isomorhism

• Completeness
– if G1=G2, verifier accepts with probability 1.

• Soundness
– if G1≠G2, verifier rejects with probability ≥ ½

• Zero-knowledge
– Simulation algorithm:

1. Choose first b=rand(1,2) and π random permutation (like P’);
2. Compute H = π(Gb) ;
3. Output transcript [H, b, π] ;

– The transcript [H, b, π] is distributed uniformly, exactly as
the transcript [H, b, P’] in the interactive protocol.

• Polynomial time

Zero-knowledge interactive proof
for Graph Isomorhism

Another simulation algorithm
(following the prover’s protocol but cheating)

Simulator:
Do {

1. b’ = random(1,2) and π=random(permutation)
2. Compute H=π(Gb’) // prover would send H to verifier
3. b = random(1,2) ; // prover would receive b from verifier

} while (b ≠ b’) ; // cheat to find a valid transcript in polytime

Output transcript [H, b, π]

• Polynomial time:
– Expectation time = TimeLoop_body .∑k≥0 2-k ≤ 2.TimeLoop_body

Exercise

• N is a public integer.
Provide an interactive polynomial time
protocol to prove a verifier that you
know the factorization N=P.Q without
revealing it.
– Application:

• a sensitive building, authorized people know 2
secret primes P and Q (and N=PQ)

• The guard knows only N

Quadratic residue authentication:
is this version perfectly zero-knowledge?

n A trusted part T provides a Blum integer n=p.q; n is public.

n Alice (Prover) builds her secret and public keys:
– For i=1, …, k: chooses at random si coprime to n
– Compute vi:=(si

2) mod n. [NB vi ranges over all square coprime to n]
vi = quadratic residue that admits si = modular square root

– Secret key: s1 , …, sk
– Public key: v1 , …, vk and identity photo, … registered by T

n Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :
1. Alice chooses a random r<n; she sends y=r2 mod n to Bob.
2. Bob sends k random bits: b1 , …, bk
3. Alice computes z := rs1

b1. … . sk
bk imod n and sends z to Bob.

Bob authenticates iff z2 = y.v1
b1. … .vk

bk mod n.

n Simulation algorithm : is the protocol perfectly zeo-knowledge?
1. Choose k random bits b1 , …, bk and a random z<n;

compute w= v1
b1. … .vk

bk mod n and y=z2 .w-1 mod n ;
2. Transcript is [y ; b1 , …, bk ; z]

Feige-Fiat-Shamir
zero-knowledge authentication protocol

n A trusted part T computes a Blum integer n=p.q; n is public.

n Alice (Prover) builds her secret and public keys:
– For i=1, …, k: chooses at random si coprime to n
– Compute vi:=(si

2)mod n. [NB vi ranges over all square coprime to n]
vi = quadratic residue that admits si = modular square root

– Secret key: s1 , …, sk
– Public key: v1 , …, vk and identity photo, … registered by T

n Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :
1. Alice chooses a random r<n and a sign u=±1; she sends y=u.r2 mod n to Bob.
2. Bob sends k random bits: b1 , …, bk
3. Alice computes z := r. s1

b1. … . sk
bk imod n and sends z to Bob.

Bob authenticates iff z2 = +/- y.v1
b1. … .vk

bk mod n.

n Remark: possible variant: Alice chooses its own modulus n

Feige-Fiat-Shamir

Truth:
X=Alice or anyone else?

YES:
“Authentication
of Alice OK”

NO:
“Authentication of
Alice KO »

Case X = Alice

(completeness)

Always Impossible

Case X ≠ Alice

(soundness)

Prob = 2-k Prob = 1 - 2-k

n Completeness
- Alice is allways authenticated (error prob=0)

n Soundness
- Probability for Eve to impersonate Alice = 2-k. If t rounds are performed: 2-kt

n Zero-knowledge
- A simulation algorithm exists that provides a transcript which is indistinguishable

with the trace of interaction with correct prover.

Prob(Output of
authentication)

From zero-knowledge authentication

to zero knowledge signature
• Only one communication: the message+signature

• The prover uses a CSPRNG (e.g. a secure hash function) to generate

directly the random bits of the challenge

• The bits are transmitted to the verifier, who verifies the signature.

• Example: Fiat-Shamir signature
– Alice builds her secret key (s1 , …, sk) and public key (v1 , …, vk) as before.

– Let M be a message Alice wants to sign.

– Signature by Alice

1. For i=1, …, t: chooses randomly ri and computes wi s.t. wi:=ri
2 mod n.

2. Computes h = H(M || w1 ||…|| wt) this gives k.t bits bik, that appear as random

(similarly to the ones generated by Bob in step 2 of Feige-Fiat-Shamir)

3. Alice computes zi := ri. s1
bi1. … .sk

bik mod n (for i = 1 .. t) ;

She sends the message M and its signature: s = (z1 … zt, b11 .. btk) to Dan

– Verification of signature s by Dan:

1. Dan computes yi := zi
2.(v1

bi1. … .vk
bik)-1mod n for i=1..t

A correct signature gives yi = wi

2. Computes H(M, || y1 ||…|| yt) and

he verifies that he obtains the bits bik in Alice’s signature

Zero-knowledge vs other
asymetric protocols

• No degradation with usage.

• No need of encryption algorithm.

• Efficiency: often higher communication/computation overheads
in zero-knowledge protocols than public-key protocols.

• For both , provable security relies on conjectures
(eg: intractability of quadratic residuosity)

Exercise

• Guillou-Quisquater zero-knowledge
authentication and signature protocol.

Feige-Fiat-Shamir
zero-knowledge authentication protocol
• A trusted part T (or Alice) computes a Blum integer n=p.q; n is public.
• Alice (Prover) builds her secret and public keys:

• For i=1, …, k: chooses at random si coprime to n and n random bits di
• Compute vi:=(si

2)mod n. [NB vi ranges over all square coprime to n]
(-1)di vi = quadratic residue that admits si = modular square root

• Secret key: s1 , …, sk . (Note that vi.si
2 =(-1)di = 1 or -1 mod n)

• Public key: v1 , …, vk and identity photo, … registered by T

• Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 msgs :
1. Alice chooses a random value r < n. She sends y:=r2 mod n to Bob.
2. Bob sends k random bits: b1 , …, bk
3. Alice computes z := r. s1

b1. … . sk
bk imod n and sends z to Bob.

Bob computes w=z2.v1
b1. … .vk

bk and authenticates iff y=w or y=-w mod n.

• Soundness and completeness, perfectly zero knowledge
• Probability for Eve to impersonate Alice = 2-k. If t rounds are performed: 2-kt

• Alice always authenticated (error prob=0)
• Zero knowledge: transcript

Interactive zero knowledge protocol

What have we learned?
• Soundness + completeness
• Interactive proof (computers, profs) >> static proof (books)

• Zero-knowledge: simulation that provides a
transcript indistinguishable from the correct
interaction!

• Everywhere in crypto:
– Authentication, signature, security proofs (IND-CCX)

• Perspective: outsourcing with verifiable trust

Outsourcing computations
and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

Grenoble INP -Ensimag, Univ. Grenoble Alpes

1. Computation with encrypted data : FHE
2. Interactive verification of results

3. Zero-knowledge proofs
– Interactive zero-knowledge protocols
– exercise

4. Secure multiparty computations

Secure multiparty computation
• Examples [Ran Cohen lecture : https://www.cs.tau.ac.il/~iftachh/Courses/Seminars/MPC/Intro.pdf]

• n parties Pi. Each party Pi has a secret xi

• All parties jointly compute y=f(x1, …, xn)

– without revealing information on any secret xi (except y)

• The computation must preserve certain security properties

– Even if some parties collude and attack the protocol

• Basic solutions : rely on TTP

– Each party sends her secret xi to TTP;

– TTP computes y=f(x1, …, xn) and sends it to a verifier

– Verifier sends y to the parties (that may verify it too)

– Eg the voting protocol with FHE (see section 1)

• Can we do as well without any TTP ?

https://www.cs.tau.ac.il/~iftachh/Courses/Seminars/MPC/Intro.pdf

Multi-party Computation without TTP
• Eg: compute S xi

• Note this scheme is not resistant facing corruption(s)

Oblivious transfer 1 among 2
• Alice has 2 plaintexts M0 and M1
• Bob asks Alice to send him Ms without revealing to Alice

he wants M0 or M1.

Oblivious transfer 1 among 2
• Alice has 2 plaintexts M0 and M1

• Bob asks Alice to send him Ms without revealing to Alice
he wants M0 or M1.

• One solution: (with multiplicative RSA)
– Alice has RSA public (n,e) and secret d

– Alice chooses random r0 and r1

and she sends x0=r0
e mod n and x1=r1

e mod n to Bob

– Bob chooses random k and sends v=(xs + ke) mod n to Alice

– Alice compute C0 = M0+(v-x0)d mod n and C1 = M1+(v-x1)d mod n
She sends C0 and C1 to Bob

– Bon computes Cs – k and obtains his desired Ms.

• Note : a solution with FHE sends only one message C
(but Alice computes all Ci with Bob public key)

Secret sharing problem
« k among n »:

• S is a shared secret among n entities :
– S is known by a TTP
– S is represented by D1, … , Dn with Di secret of i

– Knowledge of at least k values enables to compute S

– Knowledge of less of k-1 Di provides no information on S

Shamir protocol for secret sharing
• Use error correcting codes…
• Let F a (large) finite fiels such that S is uniquely and secretly

represented in F
– Prob(S=x) = 1/card(F)

• Shamir’s Proocol
– Let f(X) =S + a1.X + a2.X2 + … + ak-1Xk-1 with a1, … , ak randomly

chosen in F (let a0=S)
– Let n distinct elements wi ≠0 in F

(for instance wi = i if characteristic(F) > n, or wi = gi etc)
– Each party i owns (wi , f(wi))

• Multiparty computation of the secret by k parties :
– by interpolation of f (dsgree k-1) from k values f(w_i) : CRT
– If less than k-1 values: then all valures for S have same probability

• Moreover: resist to errors
– possibility of correcting r errors (or attacks)

• with k+r values si r ≥ 2.#errors

Shamir’s protocol properties
• Perfect secrecy (indistingability, like OTP)
• Minimal: la taille de chaque Di n’est pas plus

grande que la taille de S
• Dynamic possible to change the ploynomial from

time to time
• Extendable : adding paties is possible
• Flexible: party with high priority owns several

values
• But requires confidence in the TTP that

distributes the value

Conclusion
Outsourcing computations

and security
1. Computation with encrypted data : FHE
2. Interactive verification of results
3. Zero-knowledge proofs

– Interactive zero-knowledge protocols
– exercise

4. Secure multiparty Computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Shamir protocol for multiparty
computation

• Example to compute (F)
• Shamir’s Proocol

– Let f(X) =S + a1.X + a2.X2 + … + ak-1Xk-1 with a1, … , ak
randomly chosen in F (let a0=S)

– Let n distinct elements wi ≠0 in F
(for instance wi = i if characteristic(F) > n, or wi = gi etc)

– Each party i owns (wi , f(wi))
• Multiparty computation of the secret by k parties :

– by interpolation of f (dsgree k-1) from k values f(w_i) : CRT
– If less than k-1 values: then all valures for S have same

probability
• Moreover: resist to errors

– possibility of correcting r errors (or attacks)
• with k+r values si r ≥ 2.#errors

