Outsourcing computations
and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data : FHE
2. Interactive verification of results

3. Zero-knowledge proofs

— Interactive zero-knowledge protocols
— exercise

4. Secure multiparty Computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Distributed, heterogeneous

Why Google Products - Solutions Launcher Pricing

& Compute Engine

o
L e
b= ". l‘j-.:“ ;?{#:F

Various computing abilities and levels of trust

Outsourcing protocols and security

Program f with input x

>
Machine Question
dCnl / .
) Answer Machine B
Question (.‘
Answer 1

<€

- (Algortihnm B)
Resulty

<~

Trust in the result ?
=> protocols for trustfully delegation of computations

__(Algortihm A) -

Positioning in current trends & market

2

Audit /
Optimisation
Sécurisé

Cloud
Computing
Sécurisé

Preuves
d’éxécution

Exécution de
programmes
chiffrés

Délégation
sécurisee

Software Trusted
Computing

Détection privee
de fraude

BuyerSeller Authentification
Protocol privee

Datamining

r 4 1 - i ”» . ”
Watermarking Biometrie Sécurisé

Traitement du Machine
Signal Learning

Evaluation sécurisée
de circuits

Outsourcing computations
and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data : FHE
2. Interactive verification of results

3. Zero-knowledge proofs
— Interactive zero-knowledge protocols
— exercise

4. Secure multiparty computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Computations with encrypted data

* Qutsourcing computation with secret input
— Computation is performed on encrypted data

— Based on asymnetric encryption (eg thanks to fully
homomorphic encryption) [Gentry 2009]

¢; = Encyr(m,)

::[Eval, }—3>

¢z = Encyi(my)
ekT

DeCSk (Evalf (ekl C1, CZ)) = f(mlrmZ)

Homomorphic encryption: El Gamal e-vote

 Remind El Gamal (in cyclic group G with g a generator):
— Bob has private key b and public key B=gP
— Alice: c=E(m) = (c4=g", c,=m. B") Bob= D(c)=c{®.c,=m

 El Gamal enables homomorphic addition (note Alice encrypts g™ instead of M)
— C=E(@M)=(g", gM.B") (encode gMinstead of M)
- C=E(@")=(9", g" .B")
— Multiplication of ciphertxt in G matches addition of plaintext (e.g.integers plaintext)
C.C = (gr gr’, gM_ Br. gM’_ Br) = (gr+r” gM+M’_ Br+r’)
=E(gM™)
— Enables anyone to compute as many additions of ciphertexts as desired
— Question 1: if M+M’ small, how to decrypt M+M’ from gM *M" without discrete log ?

« Application: electronic vote by homomorhic addition
— Each voter (Alice) sends her encrypted vote v (0 or 1) to the voting machine (Bob) :
« C(0)=(g, B) C(1)=(g", g.B"): each voter checks her encrypted vote is correctly stored
— Each one can compute the encrypted score of the vote : Il voter(C) = (@*", g=.B*")

— The voting machine knows secret b : it computes gV and publishes score Xv and Xr
* Question 2: How the voting machine computes sV from I yoier(C) = (g%, g=v.B%") ?
* Question 3 : How each voter verifies the result X, sV ?

Fully Homomorphic Encryption (FHE)

Does there exist homomorphic boolean encryption ? => YES [Craig 2010]

Somewhat Fully Homomorphic Encryption [Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan]
— Secret p : a large odd integer (eg thousands of digits)
— Forxin{0,1}: E(x)=pqg+2.r+x
With random g ~ million of digits and r ~ twenty digits (the noise)
— Knowing p: (E (x) mod p) mod 2 = (2.r+x) mod 2 = x
— Without knowing p: E(x) seems to give no information

Fully homomorphic with x and y booleans:

— EX)+E(X)=p.(q+q’) + 2(r+r ')+ x+x’ => mod p mod 2 = x XOR X’
— E(X).E(X)=p (pqq’+q(2r+x’)+q’(2r+x)) + 2(2rr'+rx’+r'x) + x.x’
=> mod p mod 2 = x AND x’

— Beware : AND and XOR operations increase the noise
« If noise r larger than p, decryption is impossible (eg if 2r = p.u+v then (E(x) mod p) mod 2 = (v+x) mod 2)
« chooice of p and the g’s large enough!

Anyway with operations, the noise increases and may become larger than p
Key Gentry’s idea: remote bootstrapping

— Refresh the noise by outsourcing « mod p » on the cipher domain
homomorphic computation with AND and XOR (so without revealing p, only its ciphering !)

Many applications of FHE :

— example: outsourcing AES enc/decryption !

Outsourcing and privacy

 Homomorphic scheme enables to outsource
encryption with secret key (or signature)

 Homomorphic encryption enables publicly
Verifiable Computation [Fiore, Gennaro 2012, ...]

— Server computes on private data and produces a
verifiable digest of the computation

— Enables some verification of the computation
« Different from a direct result certification

Outsourcing computations
and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data : FHE
2. Interactive verification of results

3. Zero-knowledge proofs

— Interactive zero-knowledge protocols
— exercise

4. Multiparty computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Delegating computation

Please, compute f

Trusted
client

Untrusted

server

. Here is result

Integrity of the result?

« Contexts
— Co-processor (overclocked...)
— Supercomputer (soft errors)
— Cloud computing
— Volunteer computing

Attack models

 No attack [current HPC and grid computing platform]
— Failure (MTBF)

« Attack on few isolated resources
— Soft errors - corruption of part of the computation

Attack models

* No attack [current HPC and grid computing platform]
— Failure (MTBF)

ZEL PP
<D é‘%!ht

b e S G R Wy -
 Attack on few isolated resources

— Soft errors - corruption of part of the computation

« Massive attacks

Countermeasures against such attacks (detect/correct)

Verifiable [outsourced] computation

* Trusted but slow Client (Verifier, Victor)
sends a function F with input x to the server

/ :“. | E k

* Fast but untrusted Server (Prover, Peggy)
returns y = F(x) and a proof IT that y is correct.

Computing /1 should take almost same time than F.
Verifying /1 should take less time than computing F.

Motivating example

* Peggy has developed a nice application that
efficiently solves Traveling Salesman Problem

* Victor sends Peggy the location (map) of his
clients and pays her for the shortest
Hamiltonian circuit

» Can Victor check he really gets the shortest?

Example [wikipedia]

* A tunnel, closed by a trapdoor rock.
] Peggy rendomiy takes ather
 Ali Baba knows the secret psth Aor B, while Victor

waits outside

— « Iftah Ya Simsim » («Open Sesamey)
— "Close, Simsim" («Close Sesamey).

 Victor design a protocol that « proves »
Ali Baba gets the secret without
revealing it
— Ali Baba (indeed Peggy) is the Prover
— Victor is the Verifier
— Peggy leaks no information (0-knowledge)

Peagy relizbly appears at
the exit Victor names

Proof and Interactive proof

Importance of « proof » in crypto: eg. identity proof=authentication

Two parts in a proof:
— Prover: knows the proof (-> the secret) [or is intended to know]
— Verifier: verifies the proof is correct (-> authentication)

Correctness of a proof system/verifier:
— Completeness: every valid proofis accepted by the verifier
— Soundness: every invalid proof is rejected by the verifier

Interactive proof system

— Protocol (questions/answers) between the verifier and the prover

— Verifier: probabilistic algorithm, polynomially bounded

— Soundness: every invalid proof is rejected with goog probability (> 1/2)
— Competeness: every valid proof is accepted with good probability (>1/2)

Decision problem
Does x belongs to L 7

* Verifier
— An element x
— Ask questions to prover to determine : « X €? L »
— Gets anwer:
— Completeness: Is convinced that x in L, if so
— Soundess: reject « x in L » if not so

Fundamental theorem
[Goldreich&al]

* Def: IP = set of decision problem that admits a
randomized polynomial time verification algorithm

i.e. both size of transcripts and nuber of operations performed by verifier are polynomial

+ IP = PSPACE
— NP included in IP.

* Any (PSPACE) computation admits a randomized
determinstic polynomial verification algorithm.

Interactive protocol :Example

 Example: interactive authentication based on
quadratic residue

* See exercise (question 3.b)

— Completeness : Alice, who gets the secret
(square root) is accepted

— But not Soundness : Eve, who doesn’t know the
secret may cheat

* Fiat-Shamir’s protocol (question 3.c)

— Soundness : Eve, who doesn’t know the secret, is
rejected.(if we assume n factorization unknown)

The power of interaction

W | <€

Verifier Prover
(Victor) (Peggy)

L

https://en.wikipedia.org/wiki/Graph isomorphism

An isomorphism
between G and H

fla)=1
f(b) = 6
flc)=8
fid) =3
f(g) =5
f(h) =2
fi) = 4
fj) =7

Graph G Graph H

On 2010/10/24, 8 am
- € NP, but not known to be in NP or in NP-complete or in NP-intermediate

- Does it belongs to co-NP or not ? (Open question)
- but Subgraph isomorphism problem is NP-complete

https://en.wikipedia.org/wiki/Graph_isomorphism

Example of interactive computation

« Graph isomorphism:
— Input: G=(V,E) and G'=(V',E’)
— QOutput: YES iff G == G’ (i.e. a permutation of V ->V’ makes E=F’)

* |In NP but not known today to be NP-complete orin P

— In 2015, Babai proposes a quasi-polynomial algorithm [2*O(log*k n)]
(a bug was claimed on 2017/1/1 and fix on 2017/1/7)

« Not known to be in co-NP

« Assume an NP Oracle for Graph isomorphism =>
then a probabilistic verifier can verifies that two graphs are not

Isomorphic in polynomial time.
— Protocol and error probability analysis.

Interactive graph [non]-isomorphism

* Victor w
— Toss b :=rand{1,2}

— H := random_pemutation (E,)
— Asks Peggy: to which H is isomorphicto: E,;or E, ?

/ @ ! . Peggy returns y and I1

— Victor checks I7 and if OK
 If y #b : Victor has a proof that E, isomorphic to E,

* Else y = Db : Victor stated that E; is not isomorphic to E,
with error probability 72

Interactive Algorithm Graph Isomorhism

Verifier
AlgoGraphlso(G=(V4,E), G,=(V,,E,)) {

If (#V1 I= #V2) or (#E1 I= #Ez)
return “NO : G, not isomorphic to G2”;

n:=#V;;
For (i=1 .. k) {

P := randompermutation([1, ..., n]); <E>
b := random({1,2}) ;

G :=P(Gy);
(i, P,) := Call OracleWhichlslso(G;, G,, G’);

If (G, # P; (G’)) FAILURE(“Oracle is not reliable”) ;
If (b #i) return “YES : G, is isomorphic to G,” ;

}

return “NO : G, not isomorphic to G,”;

}

Prover

OracleWhichlslso(G;, G,, G’) {
// precondition: G’ is isomorphic to
// G, or G, or both.

// Output: i into {1,2} and a permutation
Il P;suchthat G;=P(G’)

Return (i, P;) ;

Theorem: Assuming OracleWhichlislso of polynomial time,
AlgoGraphlso(G4, G,) proves in polynomial time k.n°" that :

- either G, is isomorphic to G, (no error)

- or G, is not isomorphic with error probability < 2%,
Thus, it is a MonteCarlo (randomized) algorithm for proving GRAPH ISOMORPHISM

Analysis of error probability

Prob(Output of | «yES - G, is “NO: G, not
Truth: AlgoGraphlso(G;, Gz)) isomorphic to isomorphic to Gz”
G, =G,?? G,”
Case G, = G, Prob =1 - 2 Prob = 2
|_(completeness)
No: Case G, # G, Impossible Always
(soundness) (PrOb = 0) (PrOb = 1)

-When the algorithm output YES : G, is isomorphic to G, then G, =G,
=> no error on this output.

-When the algorithm output “NO: G4 not isomorphic to G,” then we may
have an error (iff G, = G,), but with a probability < 2%

One-sided error => Monte Carlo algorithm for Graph-lsomorphism

Efficient verifiable computing
by spot checking

« Check polynomial equality by random evaluation [Schwartz-Zippel]

— Choose rq, ..., I, at random in a subset S of a field
— If Q(ry, ..., r,)=0 then Q == 0 with error probability < deg(Q) / #S

« Example: Verifying matrix multiplication (Friedval’s algorithm)

— To check C = A.B, choose a random vector r
and verify C.r=A.(B.r)

Cost : linear in size(A) + size(B) + size(C)

Interactive linear algebra

 Most dense linear algebra reduces to Matrix multiplication

— Locally compute the (recursive) scheme in O(n?) while outsourcing all

Matrix Multiplications

— [Algorithm-Based Secure and Fault Tolerant Outsourcing of Matrix Computations,
A Kumar, JL Roch, HAL 2013]

 Alternatively provide efficient certificates for sparse linear
algebra
— [Interactive certificates for linear algebra, JD Dumas, E Kaltofen, ISSAC 2014]

Verifying general circuits

* Inputs : b, ...

* How to verify y, ...

b, Outputs:y, ...y,

—
| —

Do,

Ym =f(b1 bn)

:D_ f(b1 vbz,b3ab4)

5D

The power of interaction

* Theorem : IP = PSPACE

* Any problem in PSPACE has a polynomial verifier

— TQBF (quantified Boolean formula problem)

* A polynomial interactive scheme for #SAT

P, NP, IP = PSACE

Complexity classes

Decision problems (1 output bit: YES/ NO)

Deterministic polynomial time:
— P : both Yes/No sides
— NP : certification for the Yes side
— co-NP: certification for the No side
Randomized polynomial time:
— BPP: Atlantic City: prob(error) < 1/2
— RPP: Monte Carlo: prob(error YES side)=0 ; prob(error NO side)< 1/2
— ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

IP Interactive proof
— Verifier: randomized polynomial time

— Prover: interactive (dynamic), unbound power

« F(x) = YES => it exists a correct prover I1 such that Prob[Verifier (I1, x) accepts] = 1;

« F(x) = NO => for all prover IT: Prob[Verifier (I1, x) accepts | < 1/2.
— Theorem: IP = PSPACE (interaction with randomized algorithms helps!)

PCP: Probabilistiic Checkable Proofs (static proof)

— PCP(r, q): the verifier uses random bits and reads q bits of the proof only.
— Theorem: NP=PCP(log n, O(1))

#3-SAT In IP

Arithmetization in F,: each clause ¢ has a poly. Q(c)
* Q(not(x)) =1-x Q(x and y) = x.y
* Q(x or not(y) or z)=Q(not(not(x) and y and not(z))= 1—((1-x).y.(1-z))
Let F =c,and ... and ¢, a 3-SAT CNF formula, and
g(Xy, ..., X,) = Q(cq1).Q(Cy).Q(c,) : deg(g) <3m
Then #F =2%y 01... Zp 0,1 9(b1, ..., bp)

Since #F < 2", for p>2", (#F=K) is equivalent to (#F=K mod p)

— To limit to a polynomial number of operations, computation is performed
mod a prime p in 2" 21 (provided by prover and checked by verifier)

Let h(X,) = Zp =0,1--- Zb, ,=0,19(D1, b2, ..., bpg, Xp):
h, is an univariate polynomial (in X,,) of degree = m

#3-SAT: interactive polynomial proof

Verifier Prover
input: F(Xq, ..., X;)=(ciand ... and c,) Preliminar: sends p prime in {2", 22"}
K an integer; let g(x) = Ii-1, Pol(c))
Accepts iff convinced that #F = K.
Preliminar receive p, check p is prime in {2n, 22"}
Compute g(X4, ..., X,)= Ii=1 , Pol(c;) deg(g)s3m
Check K= Xyx1=0 1-.- Zxn=01 9(X4, ..., X,)) [p]:
1. If n=1, if (g(0)+g(1) = K') accept ; else reject.
If n=2, ask h,(X) to P. 2. Send s(X); [note that if P is not
< cheating, s(X) = h,(X)]

1C

3. Receive s(X) of degree <m.
Compute v=s(0)+s(1); if (v # K) reject.
Else choose r=random(0, ... p-1); let K,, = s(r)
and use the same protocol to check
Kn=Zx1=0,1-++ Zxn-1=0,1 (X1, +.., X1, 1) [P]

Theorem: This is a sound and complete, polynomial time randomized
interactive proof of #3-SAT.

Moreover, prob(V rejects | K# #F) =2 (1-m/p)*n ,
also prob(error) < 1-(1-m/p)*n < mn2™" .

[Lund, Fortnow, Karloff, Nisan 1992]

A key tool: the sum-check protocol

* Input : a (boolean) circuit C,, of depth & that x€{0,1)n
implements a function f with n bits in input :

by 14 f(x)le{0,1}

by _|
by ——1— o
by 4L %jj}j} f(by,bg,bs,bs)

° OUtPUt : Sn= Zb1=0,1... an=o,1 f(b1, e bn)

« Letd=2° :#usefull gates <d.
Theorem: The verifier interactively computes S, in polynomial
time (n+d)°). (if 5=0(log n), polynomial in n)

« Application: number of elements that verify a predicate (#SAT)

Key 1: Arithmetization

Transform the boolean circuit C,, in an arithmetic circuit
C,2in any field K (eg mod p) :

e xXandy=x.xy not(x)=1-x xeKn

« xory =not (not(x) and not(y)) = 1 — (1-kX). k(1-xYy)
Transform the circuit C,?in a circuit C K with
input in a (large) field K. Cnf
— Gates are + and x in K
— When inputs are 0 or 1, the output is the same than C, f(x)eK

Now, the circuit can be seen as a polynomial in n
variables (the input) with degree d

— For m=log #K, the circuit can be evaluated in time (nm)°(),
polynomial for any [random] input in K".

Key 2: induction on the number of sum
— Each sub-sum is verified with Schwartz-Zippel

Interactive verification of #3-SAT

Let: ®=(cyand ... and c,,) be a 3-SAT CNF formula
Arithmetization of ® gives g(Xy, ..., X,) = Q(c4).Q(c,).... Q(cy,)

Deg(g) < 3m (small)
Polynomial-size circuit to evaluate g at any (by, ..., b,)

To prove #SAT(®)=K reduces to a sequence of sum-check
Zb,=01-+ 2p =01 9(b1, ..., by)

— computation in F, with p prime > 2"

Verifying general circuits

* Inputs : b, ...

* How to verify y, ...

b, Outputs:y, ...y,

—
| —

Do,

Ym =f(b1 bn)

:D_ f(b1 vbz,b3ab4)

5D

[Goldwasser, Kalai, Rothblum 2008]J[Thaler Crypto 2015]

Outsourcing general circuits

Circuits C with n inputs and outputs,

— Work W, depth D
— Each level is of degree 1 (multilinear extension)

Computation is valid iff all levels are corrects
— Verified by a sum-check at each level

Cost = (N + D) log®" (N + W)

Optimization when the computation resumes to a
reduction of independent parallel computations

lllustration on Matrix Multiplication

Let A and B matrices (n,n) in K with m =log, n

A is a (boolean) function {0,1}™x{0,1}"™x -> K :
A(iqyeee by J15 ooy Jm) = A(lL))

Let ga be the polynomial multilinear extension of A
The g; verifies
(it i s -oor Jm) = D k=0..n DAli1s-e iy K1y oo ke)-GB(K1s- -« Ky 15 +2vs Jim)

With the sum-check protocol, this sum of n elements is
verified in O(log n)

Generalizes to parallel compuations with logarithmic depth
(NC1)

Practical efficiency ?

* Further improvements [Thaler]
— Sum of products only
— Same circuit for any coefficient

R A “;E N A A MEAARE A NS A AT B A T B WAL e

Problem Naive Additional V Time Rounds Protocol

Size MatMult P time Comm
Time
1024x1024 217s 0.03s 0.67 s n 264 bytes
2048 x 2048 18.23 s 0.13s 289s 12 288 bytes

— Yet far from Fiedvald’s verification

What have we learned ?

* Interactive proof : generalization of a mathematical
proof in which a prover interacts with
a polynomial-time probabilistic verifier:
— Completeness and soundness

* Input: X, proof of property L(x)
Correct proof: x is accepted iff L(x) is true.

— Completeness : any x: L(x)=true is accepted (with prob=2/3).
— Soundess : any y: L(y)=false is rejected (with prob=2/3).

* Powerful interactive proof w.r.t. « static » proof
— |IP =PSACE

Conclusion on outsourcing

* Verifying delegated computation
— Interaction between models provides power
— Enables the provable use of untrusted platforms

» Overclocked processors, algorithms with faults, quantum computing, ...

— Fully Homomorphic Encryption (powerful but yet expensive)
— Current research to improve FHE efficiency

* On going research - Applications
— Cloud computing. (web services)
— OQOutsourced fault-tolerant computation
— Secure remote storage (privacy)
— Secure control-command for critical infratscture (SCADA)
— A promising market (eg digital doctor)

e R

https://www.youtube.com/watch?v=1MCa4d000LQ

Outsourcing computations
and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data : FHE
2. Interactive verification of results

3. Zero-knowledge proofs

— Interactive zero-knowledge protocols
— exercise

4. Secure multiparty computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Grenoble University — M2 Cybersecurity — Cryptographic engineering - JL Roch

Interactive proof and
zero knowledge protocols

« Zero-knowledge: definition

* Probabilistic complexity classes and Interactive proofs
— Graph isomorphism and PCP

« Some zero knowledge protocols:
— Feige-Fiat-Shamir authentication protocol
— Extension to signature
— Guillou-Quisquater authentication and signature

Computational Complexity: A Modern Approach. Sanjeev Arora and Boaz Barak
http://www.cs.princeton.edu/theory/complexity/

Handbook of Applied Cryptography [Menzenes, van Oorschot, Vanstone]
Applied Cryptography [Schneier]
Contemporary cryptography [Opplinger]

The power of interaction

\\

Verifier
(Victor)

Prover
(Peggy)

Zero knowledge

 How to state that the prover leaks no information ?

all interactive informations provided by the prover (ie the trasncripts)
could have been produced offline by the verifier himself alone!

= => by stating the verifier can produce the transcript of the protocol in
(expected) polynomial time alone, with no help of the prover !

« Def: a sound and correct interactive protocol is zero-knowledge
if there exists a non-interactive randomized polynomial time
algorithm (named « simulator ») which, for any input x accepted
by the verifier (using interaction with the prover) can produce
transcripts indistinguishable from those resulting from interaction
with the real prover.

« Consequence: releases no information to an observer.

Graph [non]-isomorphism
and zero knowledge

 In a zero-knowledge protocol, the verifier learns that
G, is isomorphic to G, but nothing else.

Previous protocol iide 24 ornexty NOt known to be zero-knowledge:
correct transcript X=(G’, i, P’) with G'=P,,4(G,.ng) and G;= P’(G’)
— If G4 # G, : (we have b=i) => Entropy(transcript X) =1 + log n!
Simulation: (P-1(G)), i=rand(1,2),P’=RandPerm) ==gistribution X
=> No infomration revealed !

— If G4 is isomorphic to G, : Prover sends the permutation P; such
that G,= P,(G,) : then i is independent form G’ ' -
Entropy(transcript X) = 2 + log n!
so the verifier learns 1 additional bit to
only a random bit and a random permutation

Non-known zero knowledge Interactive
Algorithm Graph Isomorhism

Verifier
AlgoGraphlso(G=(V4,E), G,=(V,,E,)) {

If (#V1 I= #V2) or (#E1 I= #Ez)
return “NO : G, not isomorphic to G2”;

n:=#V;;
For (i=1 .. k) {

P := randompermutation([1, ..., n]); <E>
b := random({1,2}) ;

G :=P(Gy);
(i, P,) := Call OracleWhichlslso(G;, G,, G’);

If (G, # P; (G’)) FAILURE(“Oracle is not reliable”) ;
If (b #i) return “YES : G, is isomorphic to G,” ;

}

return “NO : G, not isomorphic to G,”;

}

Prover

OracleWhichlslso(G;, G,, G’) {
// precondition: G’ is isomorphic to
// G, or G, or both.

// Output: i into {1,2} and a permutation
Il P;suchthat G;=P(G’)

Return (i, P;) ;

Theorem: Assuming OracleWhichlislso of polynomial time,
AlgoGraphlso(G4, G,) proves in polynomial time k.n°" that :

- either G, is isomorphic to G, (no error)

- or G, is not isomorphic with error probability < 2%,
Thus, it is a MonteCarlo (randomized) algorithm for proving GRAPH ISOMORPHISM

A zero-knowledge interactive proof
for Graph Isomorhism

Verifier Proover
input: (G1=(V1,E1), G2=(V2,E2)) gets G1, Gz
Accepts prover if convinced that G1 is private secret perm. Pg: G,=P4(G1)

isomorphic to G2

1. Chooses a random perm. P’ and

2. Receives H; sends to verifier H=P’(G,)
Chooses b=random(1,2) and sends <:>
b to the prover 3. Receives b;

if b=1 sends P”’=P’0Pq to the verifier

else b=2: sends P’=P’ to the verifier
4. receives P” and checks H=P”(G,)

Theorem: This is a zero-knowledge, sound and complete, polynomial time
interactive proof that the two graphs G, and G, are isomorphic.

Zero-knowledge interactive proof
for Graph Isomorhism

Completeness
Soundness
Zero-knowledge

Polynomial time

Zero-knowledge interactive proof
for Graph Isomorhism

Completeness

— if G4=G,, verifier accepts with probability 1.
Soundness

— if G4#G,, verifier rejects with probability = 72

Zero-knowledge

— Simulation algorithm:

1. Choose first b=rand(1,2) and 1T random permutation (like P’);
2. Compute H = 11(G,) ;
3. Output transcript [H, b, 1] ;

— The transcript [H, b, 1] is distributed uniformly, exactly as
the transcript [H, b, P’] in the interactive protocol.

Polynomial time

Another simulation algorithm
(following the prover's protocol but cheating)

Simulator:
Do {
1. b’ = random(1,2) and m=random(permutation)

2. Compute H=11(G) / prover would send H to verifier
3. b=random(1,2); / proverwould receive b from verifier

} while (b # b") ; // cheat to find a valid transcript in polytime
Output transcript [H, b, 17]

* Polynomial time:
— Expectation time = Time ,op body -2 k=0 2% < 2.TiMe| 40p body

Exercise

* N is a public integer.
Provide an interactive polynomial time
protocol to prove a verifier that you
know the factorization N=P.Q without
revealing it.
— Application:

* a sensitive building, authorized people know 2
secret primes P and Q (and N=PQ)

* The guard knows only N

Quadratic residue authentication:
IS this version perfectly zero-knowledge?

| A trusted part T provides a Blum integer n=p.q; n is public.

B Alice (Prover) builds her secret and public keys:
— Fori=1, ..., ki chooses at random s; coprime to n

— Compute vi:=(s;?) mod n. [NB v, ranges over all square coprime to n]
V; = quadratic residue that admits s,= modular square root

— Secret key: sq, ..., S¢
— Public key: v,, ..., v, and identity photo, ... registered by T

B Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :
1. Alice chooses a random r<n; she sends y=r? mod n to Bob.
2. Bob sends k random bits: b, , ..., by

3. Alice computes z :=rs s,smod n and sends z to Bob.
Bob authenticates iff z2 = y.v,*.v,<mod n.

B Simulation algorithm : js the protocol perfectly zeo-knowledge?

1. Choose k random bits b, ..., b, and a random z<n;
compute w=v,%.v,\’mod n and y=z2 .w' mod n ;

2. Transcriptis[y;bq,....,b ;2]

Feige-Fiat-Shamir
zero-knowledge authentication protocol

| A trusted part T computes a Blum integer n=p.q; n is public.

B Alice (Prover) builds her secret and public keys:
— Fori=1, ..., ki chooses at random s; coprime to n

— Compute vi:=(s?) mod n. [NB v, ranges over all square coprime to n]
V; = quadratic residue that admits s,= modular square root

— Secret key: sq, ..., S¢
— Public key: v,, ..., v, and identity photo, ... registered by T

B Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :
1. Alice chooses a random r<n and a sign u==%1; she sends y=u.r’ mod n to Bob.
2. Bob sends k random bits: b, , ..., by

3. Alice computes z :=r. s s,«mod n and sends z to Bob.
Bob authenticates iff z2 = +/- y.v®.v,>cmod n.

| Remark: possible variant: Alice chooses its own modulus n

Feige-Fiat-Shamir

Prob(Output of | YES: NO:
authentication) | «pythentication | “Authentication of
X=Alice or anyone els&* of Alice OK” Alice KO »
Case X = Alice Always Impossible
(completeness)
Case X # Alice Prob = 2k Prob =1 - 2%
(soundness)

Completeness
- Alice is allways authenticated (error prob=0)

Soundness
- Probability for Eve to impersonate Alice = 2. If t rounds are performed: 2

Zero-knowledge
- A simulation algorithm exists that provides a transcript which is indistinguishable
with the trace of interaction with correct prover.

From zero-knowledge authentication
to zero knowledge signature

Only one communication: the message+signature

« The prover uses a CSPRNG (e.g. a secure hash function) to generate
directly the random bits of the challenge

« The bits are transmitted to the verifier, who verifies the signature.

Example: Fiat-Shamir signature
— Alice builds her secret key (s, ..., S¢) and public key (v4, ..., vi) as before.
— Let M be a message Alice wants to sign.
— Signature by Alice

1. Fori=1, ..., t: chooses randomly r, and computes w; s.t. wi:=r? mod n.

2. Computes h=H(M || wq ||...]| w;) this gives k.t bits by, that appear as random
(similarly to the ones generated by Bob in step 2 of Feige-Fiat-Shamir)

3. Alice computes z; :=r;.. s/*..sb»modn (fori=1.1);

She sends the message M and its signature: ¢ = (z4 .z byy by) to Dan
— Verification of signature ¢ by Dan:

1. Dan computes y; := z2.(v4®. ... v Y'mod n fori=1..t
A correct signature gives y; = w;
2. Computes H(M, || y4 ||..-]| yi) and

he verifies that he obtains the bits b, in Alice’s signature

Zero-knowledge vs other
asymetric protocols

No degradation with usage.

No need of encryption algorithm.

Efficiency: often higher communication/computation overheads
In zero-knowledge protocols than public-key protocols.

For both , provable security relies on conjectures
(eg: intractability of quadratic residuosity)

Exercise

 Guillou-Quisquater zero-knowledge
authentication and signature protocol.

Feige-Fiat-Shamir

zero-knowledge authentication protocol

A trusted part T (or Alice) computes a Blum integer n=p.q; n is public.

Alice (Prover) builds her secret and public keys:
« Fori=1, ..., ki chooses at random s; coprime to n and n random bits d;

« Compute v;:=(s;?) mod n. [NB v, ranges over all square coprime to n]
(-1)dv; = quadratic residue that admits s,= modular square root

« Secret key: s, ..., s¢. (Note that v;.s2=(-1)4 =1 or -1 mod n)
 Public key: vq, ..., v, and identity photo, ... registered by T

Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 msgs :
1. Alice chooses a random value r < n. She sends y:=r> mod n to Bob.
2. Bob sends k random bits: by, ..., by

3. Alice computes z :=r. s, s,>mod n and sends z to Bob.
Bob computes w=z2.v,*.v,® and authenticates iff y=w or y=-w mod n.

Soundness and completeness, perfectly zero knowledge
« Probability for Eve to impersonate Alice = 2°. If t rounds are performed: 2
« Alice always authenticated (error prob=0)
« Zero knowledge: transcript

Interactive zero knowledge protocol

What have we learned?

Soundness + completeness
Interactive proof (computers, profs) >> static proof (books)

Zero-knowledge: simulation that provides a
transcript indistinguishable from the correct
interaction!

Everywhere in crypto:
— Authentication, signature, security proofs (IND-CCX)

Perspective: outsourcing with verifiable trust

Outsourcing computations
and security

Jean-Louis Roch
Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data : FHE
2. Interactive verification of results

3. Zero-knowledge proofs

— Interactive zero-knowledge protocols
— exercise

4. Secure multiparty computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Secure multiparty computation

Examples [Ran Cohen lecture : iueimmmcs muacisinscncorsessemnarspcino oo |
n parties P,. Each party P, has a secret x;

All parties jointly compute y=f(xy, ..., X,)

— without revealing information on any secret x; (except y)

The computation must preserve certain security properties
— Even if some parties collude and attack the protocol

Basic solutions : relyon TTP

— Each party sends her secret x;to TTP;

— TTP computes y=f(xy, ..., X,) and sends it to a verifier
— Verifier sends y to the parties (that may verify it too)
— Eg the voting protocol with FHE (see section 1)

Can we do as well without any TTP ?

https://www.cs.tau.ac.il/~iftachh/Courses/Seminars/MPC/Intro.pdf

Multi-party Computation without TTP

* Eg: compute X x;

* Note this scheme is not resistant facing corruption(s)

Oblivious transfer 1 among 2

« Alice has 2 plaintexts MO and M1

« Bob asks Alice to send him M, without revealing to Alice
he wants M, or M.

Oblivious transfer 1 among 2

« Alice has 2 plaintexts MO and M1

 Bob asks Alice to send him M, without revealing to Alice
he wants M, or M.

* One solution: (with multiplicative RSA)

— Alice has RSA public (n,e) and secret d

— Alice chooses random ry and r4
and she sends xy=r,® mod n and x4=r;¢ mod n to Bob

— Bob chooses random k and sends v=(x¢ + k®) mod n to Alice

— Alice compute C, = My+(v-Xg)? mod n and C; = M4+(v-x4)¢ mod n
She sends Cy and C, to Bob

— Bon computes C, — k and obtains his desired M..

« Note : a solution with FHE sends only one message C
(but Alice computes all C; with Bob public key)

Secret sharing problem
« K among n »:

 Sis a shared secret among n entities :
— Sisknownbya TTP
— S isrepresented by D4, ..., D, with D, secret of i

— Knowledge of at least k values enables to compute S

— Knowledge of less of k-1 D; provides no information on S

Shamir protocol for secret sharing

Use error correcting codes...

Let F a (large) finite fiels such that S is uniquely and secretly
represented in F

— Prob(S=x) = 1/card(F)
Shamir’s Proocol

— Let f(X) =S + a;. X+ a,. X2+ ... +a_X1"with a4, ..., a, randomly
chosen in F (let a,=S)

— Let n distinct elements wi #0 in F |
(for instance w; = i if characteristic(F) > n, or w; = g' etc)

— Each party i owns (wi, f(w;))

Multiparty computation of the secret by k parties :

— by interpolation of f (dsgree k-1) from k values f(w_i): CRT

— If less than k-1 values: then all valures for S have same probability
Moreover: resist to errors

— possibility of correcting r errors (or attacks)
« with k+r values si r = 2.#errors

Shamir’s protocol properties

Perfect secrecy (indistingability, like OTP)

Minimal: la taille de chaque Di n'est pas plus
grande que la taille de S

Dynamic possible to change the ploynomial from
time to time

Extendable : adding paties is possible

Flexible: party with high priority owns several
values

But requires confidence in the TTP that
distributes the value

Conclusion
Outsourcing computations
and security

1. Computation with encrypted data : FHE
2. Interactive verification of results

3. Zero-knowledge proofs

— Interactive zero-knowledge protocols
— exercise

4. Secure multiparty Computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Shamir protocol for multiparty

computation

Example to compute (F)

Shamir’s Proocol

— Let f(X) =S + a1.X + a2.X2 + ...+ ak_1Xk_1 with d4, ... , dg
randomly chosen in F (let ag=S)

— Let n distinct elements wi #0 in F |
(for instance w; = i if characteristic(F) > n, or w; = g' etc)

— Each party i owns (wi, f(w;))
Multiparty computation of the secret by k parties :
— by interpolation of f (dsgree k-1) from k values f(w i) : CRT

— If less than k-1 values: then all valures for S have same
probability

Moreover: resist to errors

— possibility of correcting r errors (or attacks)
« with k+r values si r 2 2.#errors

