Outsourcing computations and security

Jean-Louis Roch Grenoble INP-Ensimag, Grenoble-Alpes University, France

- 1. Computation with encrypted data : FHE
- 2. Interactive verification of results
- 3. Zero-knowledge proofs
 - Interactive zero-knowledge protocols
 - exercise
- 4. Secure multiparty Computations

Grenoble INP - Ensimag, Univ. Grenoble Alpes

Distributed, heterogeneous

Various computing abilities and levels of trust

Trust in the result ? => protocols for trustfully delegation of computations

Positioning in current trends & market

Outsourcing computations and security

Jean-Louis Roch Grenoble INP-Ensimag, Grenoble-Alpes University, France

- 1. Computation with encrypted data : FHE
- 2. Interactive verification of results
- 3. Zero-knowledge proofs
 - Interactive zero-knowledge protocols
 - exercise
- 4. Secure multiparty computations

Grenoble INP -Ensimag, Univ. Grenoble Alpes

Computations with encrypted data

- Outsourcing computation with secret input
 Computation is performed on encrypted data
 - Based on asymnetric encryption (eg thanks to fully homomorphic encryption) [Gentry 2009]

$$c_{1} = \operatorname{Enc}_{pk}(m_{1})$$

$$c_{2} = \operatorname{Enc}_{pk}(m_{2})$$

$$ek$$

$$\operatorname{Dec}_{sk}\left(\operatorname{Eval}_{f}(ek, c_{1}, c_{2})\right) = f(m_{1}, m_{2})$$

Homomorphic encryption: El Gamal e-vote

- **Remind El Gamal** (in cyclic group G with g a generator):
 - Bob has private key b and public key B=g^b
 - Alice: $c=E(m) = (c_1=g^r, c_2=m, B^r)$ Bob= D(c)= $c_1^{-b}, c_2 = m$
- El Gamal enables homomorphic addition (note Alice encrypts g^M instead of M)
 - C=E(g^M) = (g^r, g^M . B^r) (encode g^M instead of M)
 - $C' = E(g^{M'}) = (g^{r'}, g^{M'}, B^{r'})$
 - Multiplication of ciphertxt in G matches addition of plaintext (e.g.integers plaintext)
 C.C' = (g^r. g^{r'}, g^M. B^r. g^{M'}. B^{r'}) = (g^{r+r'}, g^{M+M'}. B^{r+r'})
 = E(a^{M +M'})
 - Enables anyone to compute as many additions of ciphertexts as desired
 - Question 1: if M+M' small, how to decrypt M+M' from $g^{M+M'}$ without discrete log ?
- Application: electronic vote by homomorhic addition
 - Each voter (Alice) sends her encrypted vote v (0 or 1) to the voting machine (Bob) :
 - $C(0)=(g^r, B^r)$ $C(1)=(g^{r'}, g.B^{r'})$: each voter checks her encrypted vote is correctly stored
 - Each one can compute the encrypted score of the vote : $\Pi_{C \text{ voter}}(C) = (g^{\Sigma r}, g^{\Sigma v}.B^{\Sigma r})$
 - The voting machine knows secret b : it computes $g^{\Sigma v}$ and publishes score Σv and Σr
 - Question 2: How the voting machine computes $\Sigma_{voters} v$ from $\Pi_{C voter}(C) = (g^{\Sigma r}, g^{\Sigma v}.B^{\Sigma r})$?
 - **Question 3** : How each voter verifies the result $\Sigma_{voters} v$?

Fully Homomorphic Encryption (FHE)

- Does there exist homomorphic boolean encryption ? => YES [Craig 2010]
- Somewhat Fully Homomorphic Encryption [Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan]
 - Secret p : a large odd integer (eg thousands of digits)
 - For x in {0,1}: E(x) = pq +2.r + x
 With random q ~ million of digits and r ~ twenty digits (the *noise*)
 - Knowing p: $(E(x) \mod p) \mod 2 = (2.r+x) \mod 2 = x$
 - Without knowing p: E(x) seems to give no information

• Fully homomorphic with x and y booleans:

- E(x)+E(x')=p.(q+q') + 2(r+r')+x+x' => mod p mod 2 = x XOR x'
- E(x).E(x')=p(pqq'+q(2r'+x')+q'(2r+x)) + 2(2rr'+rx'+r'x) + x.x'

mod p mod 2 = x AND x'

- Beware : AND and XOR operations increase the noise
 - If noise r larger than p, decryption is impossible (eg if 2r = p.u+v then (E(x) mod p) mod 2 = (v+x) mod 2)
 - chooice of p and the q's large enough!
- Anyway with operations, the noise increases and may become larger than p Key Gentry's idea: remote bootstrapping
 - Refresh the noise by outsourcing « mod p » on the cipher domain homomorphic computation with AND and XOR (so without revealing p, only its ciphering !)
- Many applications of FHE :
 - example: outsourcing AES enc/decryption !

Outsourcing and privacy

- Homomorphic scheme enables to outsource encryption with secret key (or signature)
- Homomorphic encryption enables publicly Verifiable computation [Fiore, Gennaro 2012, ...]
 - Server computes on private data and produces a verifiable digest of the computation
 - Enables some verification of the computation
 - Different from a direct result certification

Outsourcing computations and security

Jean-Louis Roch Grenoble INP-Ensimag, Grenoble-Alpes University, France

1. Computation with encrypted data : FHE

2. Interactive verification of results

- 3. Zero-knowledge proofs
 - Interactive zero-knowledge protocols
 - exercise
- 4. Multiparty computations

Grenoble INP - Ensimag, Univ. Grenoble Alpes

Delegating computation

- Contexts
 - Co-processor (overclocked...)
 - Supercomputer (soft errors)
 - Cloud computing
 - Volunteer computing

Attack models

- No attack [current HPC and grid computing platform]
 - Failure (MTBF)

- Attack on few isolated resources
 - Soft errors corruption of part of the computation

Attack models

- No attack [current HPC and grid computing platform]
 - Failure (MTBF)

- Attack on few isolated resources
 - Soft errors corruption of part of the computation
- Massive attacks

Countermeasures against such attacks (detect/correct)

Verifiable [outsourced] computation

• **Trusted but slow Client** (Verifier, *Victor*) sends a function F with input x to the server

 Fast but untrusted Server (Prover, Peggy) returns y = F(x) and a proof Π that y is correct.

Computing *I* **should take almost same time than F.** Verifying *I* should take less time than computing *F*.

Motivating example

- Peggy has developed a nice application that efficiently solves Traveling Salesman Problem
- Victor sends Peggy the location (map) of his clients and pays her for the shortest Hamiltonian circuit
- Can Victor check he really gets the shortest?

Example [wikipedia]

- A tunnel, closed by a trapdoor rock.
- Ali Baba knows the secret
 - « Iftah Ya Simsim » («Open Sesame»)
 - "Close, Simsim" («Close Sesame»).
- Victor design a protocol that « proves » Ali Baba gets the secret without revealing it
 - Ali Baba (indeed Peggy) is the Prover
 - Victor is the Verifier
 - Peggy leaks no information (0-knowledge)

Proof and Interactive proof

- Importance of « proof » in crypto: eg. identity proof=authentication
- Two parts in a proof:
 - Prover: knows the proof (-> the secret) [or is intended to know]
 - Verifier: verifies the proof is correct (-> authentication)
- Correctness of a proof system/verifier:
 - Completeness: every valid proof is accepted by the verifier
 - Soundness: every invalid proof is rejected by the verifier
- Interactive proof system
 - Protocol (questions/answers) between the verifier and the prover
 - Verifier: **probabilistic** algorithm, **polynomially bounded**
 - Soundness: every invalid proof is rejected with goog probability (> 1/2)
 - Competeness: every valid proof is accepted with good probability (>1/2)

Decision problem Does x belongs to L ?

- Verifier
 - An element x
 - Ask questions to prover to determine : « $x \in ?L$ »
 - Gets anwer:
 - Completeness: Is convinced that x in L, if so
 - Soundess: reject « x in L » if not so

Fundamental theorem [Goldreich&al]

- Def: *IP* = set of decision problem that admits a randomized polynomial time verification algorithm
 i.e. both size of transcripts and nuber of operations performed by verifier are polynomial
- IP = PSPACE
 - NP included in IP.
- Any (PSPACE) computation admits a randomized determinstic polynomial verification algorithm.

Interactive protocol :Example

- Example: interactive authentication based on quadratic residue
- See exercise (question 3.b)
 - Completeness : Alice, who gets the secret (square root) is accepted
 - But not Soundness : Eve, who doesn't know the secret may cheat
- Fiat-Shamir's protocol (question 3.c)
 - Soundness : Eve, who doesn't know the secret, is rejected.(if we assume n factorization unknown)

The power of interaction

https://en.wikipedia.org/wiki/Graph_isomorphism

On 2010/10/24, 8 am

- $\in NP$, but not known to be in NP or in NP-complete or in NP-intermediate
- Does it belongs to co-NP or not ? (Open question)
- but Subgraph isomorphism problem is NP-complete

Example of interactive computation

- Graph isomorphism:
 - Input: G=(V,E) and G'=(V',E')
 - Output: YES iff G == G' (i.e. a permutation of V ->V' makes E=E')
- In NP but not known today to be NP-complete or in P
 - In 2015, Babai proposes a quasi-polynomial algorithm [2^O(log^k n)] (a bug was claimed on 2017/1/1 and fix on 2017/1/7)
- Not known to be in co-NP
- Assume an NP Oracle for Graph isomorphism => then a probabilistic verifier can verifies that two graphs are not isomorphic in polynomial time.
 - Protocol and error probability analysis.

Interactive graph [non]-isomorphism

- Victor
 - Toss b := rand{1,2}

– Asks Peggy: to which H is isomorphic to : E_1 or E_2 ?

Peggy returns y and Π

- Victor checks \varPi and if OK
 - If $y \neq b$: Victor has a proof that E_1 isomorphic to E_2
 - Else y = b : Victor stated that E_1 is not isomorphic to E_2 with error probability $\frac{1}{2}$

Interactive Algorithm Graph Isomorhism

Theorem: Assuming OracleWhichIsIso of polynomial time,

AlgoGraphIso(G_1 , G_2) proves in polynomial time k.n^{O(1)} that :

- either G_1 is isomorphic to G_2 (no error)
- or G_1 is not isomorphic with error probability $\leq 2^{-k}$.

Thus, it is a MonteCarlo (randomized) algorithm for proving GRAPH ISOMORPHISM

Analysis of error probability

Prob(Output ofTruth:AlgoGraphIso(G_1, G_2) $G_1 = G_2$??	"YES : G ₁ is isomorphic to G ₂ "	"NO: G ₁ not isomorphic to G ₂ "
Case $G_1 = G_2$ (completeness)	Prob = 1 - 2 ^{-k}	Prob = 2 ^{-k}
No: Case $G_1 \neq G_2$ (soundness)	Impossible (Prob = 0)	Always (Prob = 1)

-When the algorithm output YES : G_1 is isomorphic to G_2 then $G_1 = G_2$ => no error on this output.

-When the algorithm output "NO: G_1 not isomorphic to G_2 " then we may have an error (iff $G_1 = G_2$), but with a probability $\leq 2^{-k}$

One-sided error => Monte Carlo algorithm for Graph-Isomorphism

Efficient verifiable computing by spot checking

- Check polynomial equality by random evaluation [Schwartz-Zippel]
 - Choose r_1, \ldots, r_n at random in a subset S of a field
 - If $Q(r_1, ..., r_n)=0$ then Q == 0 with error probability $\leq \deg(Q) / \#S$

- Example: Verifying matrix multiplication (Friedval's algorithm)
 - To check C = A.B, choose a random vector r and verify C . r = A . (B . r)

Cost : linear in size(A) + size(B) + size(C)

Interactive linear algebra

- Most dense linear algebra reduces to Matrix multiplication
 - Locally compute the (recursive) scheme in O(n²) while outsourcing all Matrix Multiplications
 - [Algorithm-Based Secure and Fault Tolerant Outsourcing of Matrix Computations, A Kumar, JL Roch, HAL 2013]

- Alternatively provide efficient certificates for sparse linear algebra
 - [Interactive certificates for linear algebra, JD Dumas, E Kaltofen, ISSAC 2014]

Verifying general circuits

- Inputs : $b_1 \dots b_n$ Outputs : $y_1 \dots y_m$
- How to verify $y_1 \dots y_m = f(b_1 \dots b_n)$

The power of interaction

- Theorem : IP = PSPACE
- Any problem in PSPACE has a polynomial verifier
 TQBF (quantified Boolean formula problem)
- A polynomial interactive scheme for #SAT

$P, NP, \dots IP = PSACE$

Complexity classes

Decision problems (1 output bit: YES/ NO)

Deterministic polynomial time:

- P: both Yes/No sides
- NP : certification for the Yes side
- co-NP: certification for the No side

Randomized polynomial time:

- BPP: Atlantic City: prob(error) < 1/2
- RPP: Monte Carlo: prob(error YES side)=0 ; prob(error NO side)< 1/2
- ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

IP Interactive proof

- Verifier: randomized polynomial time
- Prover: interactive (dynamic), unbound power
 - F(x) = YES => it exists a correct prover Π such that Prob[Verifier (Π , x) accepts] = 1;
 - $F(x) = NO \Rightarrow$ for all prover Π : Prob[Verifier (Π , x) accepts] < 1/2.
- Theorem: IP = PSPACE (interaction with randomized algorithms helps!)

PCP: Probabilistiic Checkable Proofs (static proof)

- PCP(r, q): the verifier uses random bits and reads q bits of the proof only.
- Theorem: NP=PCP(log n, O(1))

#3-SAT in IP

- Arithmetization in F₂: each clause c has a poly. Q(c)
 - Q(not(x)) = 1-x Q(x and y) = x.y
 - Q(x or not(y) or z)=Q(not(not(x) and y and not(z))= 1-((1-x).y.(1-z))
- Let $F = c_1$ and ... and c_m a 3-SAT CNF formula, and $g(X_1, ..., X_n) = Q(c_1).Q(C_2)....Q(c_m) : deg(g) \le 3m$ Then $\#F = \sum_{b_1=0,1} \sum_{b_n=0,1} g(b_1, ..., b_n)$
- Since $\#F \le 2^n$, for $p > 2^n$, (#F = K) is equivalent to ($\#F = K \mod p$)
 - To limit to a polynomial number of operations, computation is performed mod a prime p in 2ⁿ... 2ⁿ⁺¹ (provided by prover and checked by verifier)
- Let $h_n(X_n) = \sum_{b_1=0,1} \dots \sum_{b_{n-1}=0,1} g(b_1, b_2, \dots, b_{n-1}, X_n)$: h_n is an univariate polynomial (in X_n) of degree $\leq m$

#3-SAT: interactive polynomial proof

Theorem: This is a sound and complete, polynomial time randomized interactive proof of #3-SAT. Moreover, prob(V rejects | $K \neq #F$) $\geq (1-m/p)^n$, also prob(error) $\leq 1-(1-m/p)^n \leq mn2^{-n}$.

[Lund, Fortnow, Karloff, Nisan 1992] A key tool: the sum-check protocol

• Input : a (boolean) circuit C_n of depth δ that implements a function f with n bits in input :

- **Output** : $S_n = \Sigma_{b_1=0,1} \dots \Sigma_{b_n=0,1} f(b_1, \dots, b_n)$
- Let d=2^δ : #usefull gates ≤ d. Theorem: The verifier *interactively* computes S_n in polynomial time (n+d)^{O(1)}. (if δ=O(log n), polynomial in n)
- Application: number of elements that verify a predicate (#SAT)

Key 1: Arithmetization

- Transform the boolean circuit C_n in an arithmetic circuit C_{n²} in any field K (eg mod p) :
 - x and y = x $_{K}$ y not(x) = 1 x
 - x or y = not (not(x) and not(y)) = $1 -_{\kappa} (1 -_{\kappa} x) \cdot_{\kappa} (1 -_{\kappa} y)$
- Transform the circuit C_n² in a circuit C_n^K with input in a (large) field K.
 - Gates are + and x in K
 - When inputs are 0 or 1, the output is the same than C_n
- Now, the circuit can be seen as a polynomial in n variables (the input) with degree d
 - For m=log #K, the circuit can be evaluated in time (nm)^{O(1)}, polynomial for any [random] input in Kⁿ.
- Key 2: induction on the number of sum
 - Each sub-sum is verified with Schwartz-Zippel

Interactive verification of #3-SAT

- Let: Φ = (c_1 and ... and c_m) be a 3-SAT CNF formula
- Arithmetization of Φ gives $g(X_1, ..., X_n) = Q(c_1).Q(c_2)....Q(c_m)$
- Deg(g) ≤ 3m (small)
 Polynomial-size circuit to evaluate g at any (b₁, ..., b_n)
- To prove #SAT(Φ)=K reduces to a sequence of sum-check $\Sigma_{b_1=0,1}...\Sigma_{b_n=0,1} g(b_1, ..., b_n)$

– computation in F_p with p prime > 2^n

Verifying general circuits

- Inputs : $b_1 \dots b_n$ Outputs : $y_1 \dots y_m$
- How to verify $y_1 ... y_m = f(b_1 ... b_n)$

[Goldwasser, Kalai, Rothblum 2008][Thaler Crypto 2015]

Outsourcing general circuits

- Circuits C with n inputs and outputs,
 - Work W, depth D
 - Each level is of degree 1 (multilinear extension)
- Computation is valid iff all levels are corrects

- Verified by a sum-check at each level

- Cost = $(N + D) \log^{O(1)} (N + W)$
- Optimization when the computation resumes to a reduction of independent parallel computations

Illustration on Matrix Multiplication

- Let A and B matrices (n,n) in K with $m = \log_2 n$
- A is a (boolean) function $\{0,1\}^m x \{0,1\}^m x \rightarrow K$: A(i₁,... i_m, j₁, ..., j_m) = A(i,j)
- Let g_A be the polynomial multilinear extension of A
- The g_C verifies $g_C(i_1, \dots, i_m, j_1, \dots, j_m) = \sum_{k=0..n} g_A(i_1, \dots, i_m, k_1, \dots, k_m) \cdot g_B(k_1, \dots, k_m, j_1, \dots, j_m)$
- With the sum-check protocol, this sum of n elements is verified in O(log n)
- Generalizes to parallel computions with logarithmic depth (NC1)

Practical efficiency ?

- Further improvements [Thaler]
 - Sum of products only
 - Same circuit for any coefficient

Problem Size	Naïve MatMult Time	Additional P time	V Time	Rounds	Protocol Comm
1024 x 1024	2.17 s	0.03 s	0.67 s	11	264 bytes
2048 x 2048	18.23 s	0.13 s	2.89 s	12	288 bytes

– Yet far from Fiedvald's verification

What have we learned ?

- Interactive proof : generalization of a mathematical proof in which a prover interacts with a polynomial-time probabilistic verifier:
 - Completeness and soundness
- Input: x, proof of property L(x)
 Correct proof: x is accepted iff L(x) is true.
 - Completeness : any x: L(x)=true is accepted (with prob≥2/3).
 - Soundess : any y: L(y)=false is rejected (with prob≥2/3).
- Powerful interactive proof w.r.t. « static » proof
 IP = PSACE

Conclusion on outsourcing

- Verifying delegated computation
 - Interaction between models provides power
 - Enables the provable use of untrusted platforms
 - Overclocked processors, algorithms with faults, quantum computing, ...
 - Fully Homomorphic Encryption (powerful but yet expensive)
 - Current research to improve FHE efficiency
- On going research Applications
 - Cloud computing. (web services)
 - Outsourced fault-tolerant computation
 - Secure remote storage (privacy)
 - Secure control-command for critical infratscture (SCADA)
 - A promising market (eg digital doctor)

https://www.youtube.com/watch?v=1MCa4d00OLQ

Outsourcing computations and security

Jean-Louis Roch Grenoble INP-Ensimag, Grenoble-Alpes University, France

- 1. Computation with encrypted data : FHE
- 2. Interactive verification of results
- 3. Zero-knowledge proofs
 - Interactive zero-knowledge protocols
 - exercise
- 4. Secure multiparty computations

Grenoble INP - Ensimag, Univ. Grenoble Alpes

Grenoble University – M2 Cybersecurity – Cryptographic engineering - JL Roch

Interactive proof and zero knowledge protocols

- Zero-knowledge: definition
- Probabilistic complexity classes and Interactive proofs
 - Graph isomorphism and PCP
- Some zero knowledge protocols:
 - Feige-Fiat-Shamir authentication protocol
 - Extension to signature
 - Guillou-Quisquater authentication and signature
- Computational Complexity: A Modern Approach. Sanjeev Arora and Boaz Barak
 http://www.cs.princeton.edu/theory/complexity/
- Handbook of Applied Cryptography [Menzenes, van Oorschot, Vanstone]
- Applied Cryptography [Schneier]
- Contemporary cryptography [Opplinger]

The power of interaction

Zero knowledge

• How to state that the prover leaks no information ?

all interactive informations provided by the prover (ie the trasncripts) could have been produced offline by the verifier himself alone!

=> by stating the verifier can produce the transcript of the protocol in (expected) polynomial time alone, with no help of the prover !

- **Def:** a sound and correct interactive protocol is **zero-knowledge** if there exists a *non-interactive randomized polynomial time* algorithm (named « **simulator** ») which, for any input x accepted by the verifier (using interaction with the prover) can produce transcripts indistinguishable from those resulting from interaction with the real prover.
- **Consequence:** releases no information to an observer.

Graph [non]-isomorphism and zero knowledge

In a zero-knowledge protocol, the verifier learns that
 G₁ is isomorphic to G₂ but nothing else.

Previous protocol (slide 24 or next) **not known to be zero-knowledge:** correct transcript X=(G', i, P') with $G'=P_{rand}(G_{rand})$ and $G_i=P'(G')$

- If G₁ ≠ G₂: (we have b=i) => Entropy(transcript X) = 1 + log n! Simulation: (P'-1(G_i), i=rand(1,2),P'=RandPerm) ==_{distribution} X
 No infomration revealed !
- If G_1 is isomorphic to G_2 : Prover sends the permutation P_i such that $G_1 = P_i(G_2)$: then i is independent form G' Entropy(transcript X) = 2 + log n! so the verifier learns 1 additional bit to only a random bit and a random permutation

Non-known zero knowledge Interactive Algorithm Graph Isomorhism

Verifier

```
AlgoGraphIso(G_1 = (V_1, E_1), G_2 = (V_2, E_2)) {
       If (\#V_1 != \#V_2) or (\#E_1 != \#E_2)
               return "NO : G<sub>1</sub> not isomorphic to G2";
       n := #V₁ :
       For (i=1 .. k) {
            P := random permutation([1, ..., n]);
            b := random(\{1,2\});
            G' := P(G_{h});
            (i, P_i) := Call OracleWhichIsIso(G_1, G_2, G');
            If (G_i \neq P_i(G')) FAILURE("Oracle is not reliable");
            If ( b \neq i) return "YES : G<sub>1</sub> is isomorphic to G<sub>2</sub>";
       return "NO : G<sub>1</sub> not isomorphic to G<sub>2</sub>";
```


Theorem: Assuming OracleWhichIsIso of polynomial time,

AlgoGraphIso(G_1 , G_2) proves in polynomial time k.n^{O(1)} that :

- either G_1 is isomorphic to G_2 (no error)
- or G_1 is not isomorphic with error probability $\leq 2^{-k}$.

Thus, it is a MonteCarlo (randomized) algorithm for proving GRAPH ISOMORPHISM

A zero-knowledge interactive proof for Graph Isomorhism

Theorem: This is a zero-knowledge, sound and complete, polynomial time interactive proof that the two graphs G_1 and G_2 are isomorphic.

Zero-knowledge interactive proof for Graph Isomorhism

- Completeness
- Soundness
- Zero-knowledge
- Polynomial time

Zero-knowledge interactive proof for Graph Isomorhism

- Completeness
 - if $G_1 = G_2$, verifier accepts with probability 1.
- Soundness
 - − if $G_1 \neq G_2$, verifier rejects with probability ≥ $\frac{1}{2}$
- Zero-knowledge
 - Simulation algorithm:
 - 1. Choose first b=rand(1,2) and π random permutation (like P');
 - 2. Compute H = $\pi(G_b)$;
 - 3. Output transcript [H, b, π];
 - The transcript [H, b, π] is distributed uniformly, exactly as the transcript [H, b, P'] in the interactive protocol.
- Polynomial time

Another simulation algorithm (following the prover's protocol but cheating)

Simulator:

Do {

1. b' = random(1,2) and π =random(permutation)

2. Compute $H=\pi(G_{b'})$ // prover would send H to verifier

3. b = random(1,2); // prover would receive b from verifier } while ($b \neq b$ '); // cheat to find a valid transcript in polytime

Output transcript [H, b, π]

• Polynomial time:

- Expectation time = Time_{Loop_body} $\sum_{k\geq 0} 2^{-k} \leq 2$.Time_{Loop_body}

Exercise

- N is a public integer. Provide an interactive polynomial time protocol to prove a verifier that you know the factorization N=P.Q without revealing it.
 - Application:
 - a sensitive building, authorized people know 2 secret primes P and Q (and N=PQ)
 - The guard knows only N

Quadratic residue authentication: is this version **perfectly** zero-knowledge?

- A **trusted part T** provides a Blum integer n=p.q; n is public.
- Alice (Prover) builds her secret and public keys:
 - For i=1, ..., k: chooses at random s_i coprime to n
 - Compute $v_i:=(s_i^2) \mod n$. [NB v_i ranges over all square coprime to n] $v_i = quadratic residue$ that admits $s_i = modular square root$
 - Secret key: s_1 , ..., s_k

- Public key: v_1 , ..., v_k and identity photo, ... registered by T

Bob (Verifier) authenticates Alice: **Zero-knowledge protocol in 3 messages** :

- 1. Alice chooses a random r<n; she sends $y=r^2 \mod n$ to Bob.
- 2. Bob sends k random bits: b_1 , ..., b_k
- 3. Alice computes $z := rs_1^{b_1} \dots s_k^{b_k} \mod n$ and sends z to Bob. Bob authenticates iff $z^2 = y \cdot v_1^{b_1} \dots v_k^{b_k} \mod n$.
- Simulation algorithm : is the protocol perfectly zeo-knowledge?
 - 1. Choose k random bits b_1 , ..., b_k and a random z < n; compute w= $v_1^{b_1}$ $v_k^{b_k}$ mod n and $y=z^2$.w⁻¹ mod n ;
 - 2. Transcript is [y ; b_1 , ..., b_k ; z]

Feige-Fiat-Shamir

zero-knowledge authentication protocol

A **trusted part T** computes a Blum integer n=p.q; n is public.

Alice (Prover) builds her secret and public keys:

- For i=1, ..., k: chooses at random s_i coprime to n
- Compute $v_i:=(s_i^2) \mod n$. [NB v_i ranges over all square coprime to n] $v_i = quadratic residue$ that admits $s_i = modular square root$
- Secret key: s_1 , ..., s_k
- Public key: v_1 , ..., v_k and identity photo, ... registered by T

■ Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :

- 1. Alice chooses a random r<n and a sign $u=\pm 1$; she sends $y=u.r^2 \mod n$ to Bob.
- 2. Bob sends k random bits: b_1 , ..., b_k
- 3. Alice computes $z := r. s_1^{b_1} \dots s_k^{b_k} \mod n$ and sends z to Bob. Bob authenticates iff $z^2 = +/-y.v_1^{b_1} \dots v_k^{b_k} \mod n$.
- Remark: possible variant: Alice chooses its own modulus n

Feige-Fiat-Shamir

Prob(Output of authentication) X=Alice or anyone else?	YES: "Authentication of Alice OK"	NO: "Authentication of Alice KO »
Case X = Alice	Always	Impossible
Case X ≠ Alice (soundness)	Prob = 2 ^{-k}	Prob = 1 - 2 ^{-k}

Completeness

- Alice is allways authenticated (error prob=0)

Soundness

- Probability for Eve to impersonate Alice = 2^{-k}. If t rounds are performed: 2^{-kt}

Zero-knowledge

- A simulation algorithm exists that provides a transcript which is indistinguishable with the trace of interaction with correct prover.

From zero-knowledge authentication to zero knowledge signature

- Only one communication: the message+signature
 - The prover uses a CSPRNG (e.g. a secure hash function) to generate directly the random bits of the challenge
 - The bits are transmitted to the verifier, who verifies the signature.
- Example: Fiat-Shamir signature
 - Alice builds her secret key $(s_1, ..., s_k)$ and public key $(v_1, ..., v_k)$ as before.
 - Let M be a message Alice wants to sign.
 - Signature by Alice
 - 1. For i=1, ..., t: chooses randomly r_i and computes w_i s.t. w_i := $r_i^2 \mod n$.
 - 2. Computes $h = H(M || w_1 || ... || w_t)$ this gives k.t bits b_{ik} , that appear as random (similarly to the ones generated by Bob in step 2 of Feige-Fiat-Shamir)
 - 3. Alice computes $z_i := r_i \cdot s_1^{b_{i_1}} \cdot \dots \cdot s_k^{b_{i_k}} \mod n$ (for i = 1 ... t); She sends the message M and its signature: $\sigma = (z_1 \dots z_{t_i} \cdot b_{11 \dots} \cdot b_{tk})$ to Dan
 - Verification of signature σ by Dan:
 - 1. Dan computes $y_i := z_i^2 . (v_1^{b_{i_1}}v_k^{b_{i_k}})^{-1} mod n$ for i=1..t A correct signature gives $y_i = w_i$
 - 2. Computes H(M, || y_1 ||...|| y_t) and he verifies that he obtains the bits b_{ik} in Alice's signature

Zero-knowledge vs other asymetric protocols

- No degradation with usage.
- No need of encryption algorithm.
- Efficiency: often higher communication/computation overheads in zero-knowledge protocols than public-key protocols.
- For both , provable security relies on conjectures (eg: intractability of quadratic residuosity)

Exercise

• Guillou-Quisquater zero-knowledge authentication and signature protocol.

Feige-Fiat-Shamir

zero-knowledge authentication protocol

- A **trusted part T** (or Alice) computes a Blum integer n=p.q; n is public.
- Alice (Prover) builds her secret and public keys:
 - For i=1, ..., k: chooses at random s_i coprime to n and n random bits d_i
 - Compute v_i:=(s_i²) mod n. [NB v_i ranges over all square coprime to n] (-1)^{d_i}v_i = quadratic residue that admits s_i = modular square root
 - Secret key: s_1 , ..., s_k . (Note that $v_i \cdot s_i^2 = (-1)^{d_i} = 1$ or $-1 \mod n$)
 - Public key: v_1 , ..., v_k and identity photo, ... registered by T
- Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 msgs :
 - 1. Alice chooses a random value r < n. She sends $y:=r^2 \mod n$ to Bob.
 - 2. Bob sends k random bits: b_1 , ..., b_k
 - 3. Alice computes $z := r. s_1^{b_1} \dots s_k^{b_k} \mod n$ and sends z to Bob. Bob computes $w=z^2.v_1^{b_1}\dots v_k^{b_k}$ and authenticates iff y=w or y=-w mod n.
- Soundness and completeness, perfectly zero knowledge
 - Probability for Eve to impersonate Alice = 2^{-k}. If t rounds are performed: 2^{-kt}
 - Alice always authenticated (error prob=0)
 - Zero knowledge: transcript

Interactive zero knowledge protocol

What have we learned?

- Soundness + completeness
- Interactive proof (computers, profs) >> static proof (books)
- Zero-knowledge: simulation that provides a transcript indistinguishable from the correct interaction!
- Everywhere in crypto:
 - Authentication, signature, security proofs (IND-CCX)
- Perspective: outsourcing with verifiable trust

Outsourcing computations and security

Jean-Louis Roch Grenoble INP-Ensimag, Grenoble-Alpes University, France

- 1. Computation with encrypted data : FHE
- 2. Interactive verification of results
- 3. Zero-knowledge proofs
 - Interactive zero-knowledge protocols
 - exercise

4. Secure multiparty computations

Grenoble INP - Ensimag, Univ. Grenoble Alpes

Secure multiparty computation

- Examples [Ran Cohen lecture : https://www.cs.tau.ac.il/~iftachh/Courses/Seminars/MPC/Intro.pdf]
- n parties P_i. Each party P_i has a secret x_i
- All parties jointly compute y=f(x₁, ..., x_n)
 - without revealing information on any secret x_i (except y)
- The computation must preserve certain security properties
 - Even if some parties collude and attack the protocol
- Basic solutions : rely on TTP
 - Each party sends her secret x_i to TTP;
 - TTP computes $y=f(x_1, ..., x_n)$ and sends it to a verifier
 - Verifier sends y to the parties (that may verify it too)
 - Eg the voting protocol with FHE (see section 1)
- Can we do as well without any TTP?

Multi-party Computation without TTP

• Eg: compute Σx_i

Note this scheme is not resistant facing corruption(s)

Oblivious transfer 1 among 2

- Alice has 2 plaintexts M0 and M1
- Bob asks Alice to send him M_s without revealing to Alice he wants M_0 or M_1 .

Oblivious transfer 1 among 2

- Alice has 2 plaintexts M0 and M1
- Bob asks Alice to send him M_s without revealing to Alice he wants M_0 or M_1 .
- One solution: (with multiplicative RSA)
 - Alice has RSA public (n,e) and secret d
 - Alice chooses random r_0 and r_1 and she sends $x_0=r_0^e$ mod n and $x_1=r_1^e$ mod n to Bob
 - Bob chooses random k and sends $v=(x_s + k^e) \mod n$ to Alice
 - Alice compute $C_0 = M_0 + (v-x_0)^d \mod n$ and $C_1 = M_1 + (v-x_1)^d \mod n$ She sends C_0 and C_1 to Bob
 - Bon computes $C_s k$ and obtains his desired M_s .
- Note : a solution with FHE sends only one message C (but Alice computes all C_i with Bob public key)

Secret sharing problem « k among n »:

- S is a shared secret among n entities :
 - S is known by a TTP
 - S is represented by D_1, \ldots, D_n with D_i secret of i
 - Knowledge of at least k values enables to compute S
 - Knowledge of less of k-1 D_i provides no information on S

Shamir protocol for secret sharing

- Use error correcting codes...
- Let F a (large) finite fiels such that S is uniquely and secretly represented in F
 - Prob(S=x) = 1/card(F)
- Shamir's Proocol
 - Let $f(X) = S + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_{k-1} X^{k-1}$ with a_1, \dots, a_k randomly chosen in F (let $a_0 = S$)
 - Let n distinct elements wi ≠0 in F
 (for instance w_i = i if characteristic(F) > n, or w_i = gⁱ etc)
 - Each party i owns (wi, $f(w_i)$)
- Multiparty computation of the secret by k parties :
 - by interpolation of f (dsgree k-1) from k values f(w_i) : CRT
 - If less than k-1 values: then all valures for S have same probability
- Moreover: resist to errors
 - possibility of correcting r errors (or attacks)
 - with k+r values si $r \ge 2.\#$ errors

Shamir's protocol properties

- **Perfect secrecy** (indistingability, like OTP)
- Minimal: la taille de chaque Di n'est pas plus grande que la taille de S
- **Dynamic** possible to change the ploynomial from time to time
- Extendable : adding paties is possible
- Flexible: party with high priority owns several values
- But requires confidence in the TTP that distributes the value

Conclusion Outsourcing computations and security

- 1. Computation with encrypted data : FHE
- 2. Interactive verification of results
- 3. Zero-knowledge proofs
 - Interactive zero-knowledge protocols
 - exercise
- 4. Secure multiparty Computations

Grenoble INP - Ensimag, Univ. Grenoble Alpes

Shamir protocol for multiparty computation

- Example to compute (F)
- Shamir's Proocol
 - Let $f(X) = S + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_{k-1} \cdot X^{k-1}$ with a_1, \dots, a_k randomly chosen in F (let $a_0 = S$)
 - Let n distinct elements wi ≠0 in F (for instance w_i = i if characteristic(F) > n, or w_i = gⁱ etc)
 - Each party i owns (wi, f(w_i))

Multiparty computation of the secret by k parties :

- by interpolation of f (dsgree k-1) from k values f(w_i) : CRT
- If less than k-1 values: then all valures for S have same probability
- Moreover: resist to errors
 - possibility of correcting r errors (or attacks)
 - with k+r values si $r \ge 2.\#$ errors