Interactive proof and zero knowledge protocols

- Zero-knowledge: definition
- Probabilistic complexity classes and Interactive proofs
 - Graph isomorphism and PCP
- Some zero knowledge protocols:
 - Feige-Fiat-Shamir authentication protocol
 - Extension to signature
 - Guillou-Quisquater authentication and signature
- Computational Complexity: A Modern Approach. Sanjeev Arora and Boaz Barak http://www.cs.princeton.edu/theory/complexity/
- Handbook of Applied Cryptography [Menzenes, van Oorschot, Vanstone]
- Applied Cryptography [Schneier]
- · Contemporary cryptography [Opplinger]

Example [wikipedia]

- Ali Baba (Peggy) knows the secret
 - "iftaH ya simsim" («Open Sesame»)
 - "Close, Simsim" («Close Sesame»).
- Bob (Victor) and Ali Baba design a protocol to prove that Ali Baba has the secret without revealing it
 - Ali Baba is the prover
 - Bob is the verifier
 - Ali Baba leaks no information

Proof and Interactive proof

- Importance of « proof » in crypto: eg. identity proof=authentication
- Two parts in a proof:
 - Prover: knows the proof (-> the secret) [or is intended to know]
 - Verifier: verifies the proof is correct (-> authentication)
- Correctness of a proof system/verifier:
 - Soundness: every invalid proof is rejected by the verifier
 - Completeness: every valid proof is accepted by the verifier
- Interactive proof system
 - Protocol (questions/answers) between the verifier and the prover
 - Verifier: probabilistic algorithm, polynomially bounded
 - Soundness: every invalid proof is rejected with probability (> 1/2)
 - Competeness: every valid proof is accepted with probability (>1/2)

Interactive protocol: Example

- Example: interactive authentication based on quadratic residue
- See exercise (question 3.b)
 - Completeness : Alice, who gets the secret (square root) is accepted
 - But not Soundness : Eve, who doesn't know the secret may cheat
- Fiat-Shamir's protocol (question 3.c)
 - Soundness: Eve, who doesn't know the secret, is rejected.(if we assume n factorization unknown)

Does x belongs to L?

- Verifier
 - An element x
 - Ask questions to prover
 - Gets anwer:
 - Completeness: Is convinced that x in L, if so
 - Soundess: reject « x in L » if not so
- · Zero-knowledge:
 - Intuitively: at the end, verifier is convinced that x in
 L (if so), but *learns nothing else*.

Example of interactive computation

- · Graph isomorphism:
 - Input: G=(V,E) and G'=(V',E')
 - Output: YES iff G == G' (i.e. a permutation of V ->V' makes E=E')
- NP-complete, not known to be in co-NP
- Assume an NP Oracle for Graph isomorphism => then a probabilistic verifier can compute Graph isomorphism in polynomial time.
 - Protocol and error probability analysis.
- Theorem [Goldreich&al]:
 - NP included in IP.
 - any language in NP possesses a zero-knowledge protocol.

Interactive Algorithm Graph Isomorhism

```
AlgoGraphIso(G_1=(V_1,E_1), G_2=(V_2,E_2)) {
      If (\#V_1 != \#V_2) or (\#E_1 != \#E_2)
             return "NO: G1 not isomorphic to G2";
      n := \#V_1;
                                                                          OracleWhichIsIso(G<sub>1</sub>, G<sub>2</sub>, G') {
      For (i=1 .. k) {
                                                                                // precondition: G' is isomorphic to
          P := randompermutation([1, ..., n]);
                                                                                                 G_1 or G_2 or both.
          b := random({1,2});
                                                                                // Output: i into {1,2} and a permutation
          G' := P(G_b);
                                                                                           P_i such that G_i = P(G')
          (i, P_i) := Call OracleWhichIsIso(G_1, G_2, G');
          If (G_i \neq P_i(G')) FAILURE("Oracle is not reliable");
          If (b \neq i) return "YES: G_1 is isomorphic to G_2";
                                                                                Return (i, P<sub>i</sub>);
      return "NO: G1 not isomorphic to G2";
}
```

Theorem: Assuming OracleWhichIsIso of polynomial time,

AlgoGraphIso(G_1 , G_2) proves in polynomial time k.n^{O(1)} that :

- either G₁ is isomorphic to G₂ (no error)
- or G_1 is not isomorphic with error probability $\leq 2^{-k}$.

Thus, it is a MonteCarlo (randomized) algorithm for GRAPH ISOMORPHISM

Analysis of error probability

Prob(Output of AlgoGraphIso(G_1 , G_2) $G_1 = G_2$??	"YES: G_1 is isomorphic to G_2 "	"NO: G_1 not isomorphic to G_2 "
Case $G_1 = G_2$ (completeness)	Prob = 1 - 2 ^{-k}	Prob = 2 ^{-k}
No: Case $G_1 \neq G_2$ (soundness)	Impossible (Prob = 0)	Always (Prob = 1)

- -When the algorithm output YES : G_1 is isomorphic to G_2 then $G_1 = G_2$ => no error on this output.
- -When the algorithm output "NO: G_1 not isomorphic to G_2 " then we may have an error (iff $G_1 = G_2$), but with a probability $\leq 2^{-k}$

One-sided error => Monte Carlo algorithm for Graph-Isomorphism

Complexity classes

Decision problems (1 output bit: YES/NO)

Deterministic polynomial time:

- P: both Yes/No sides
- NP: certification for the Yes side
- co-NP: certification for the No side

Randomized polynomial time:

- BPP: Atlantic City: prob(error) < 1/2
- RPP: Monte Carlo: prob(error YES side)=0; prob(error NO side)< 1/2
- ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

IP Interactive proof

- Verifier: randomized polynomial time
- Prover: interactive (dynamic), unbound power
 - $F(x) = YES => it exists a correct prover <math>\Pi$ such that $Prob[Verifier (\Pi, x) accepts] = 1;$
 - F(x) = NO => for all prover Π : Prob[Verifier (Π, x) accepts] < 1/2.
- Theorem: IP = PSPACE

PCP: Probabilistiic Checkable Proofs (static proof)

- PCP(r, q): the verifier uses random bits and reads q bits of the proof only.
- Theorem: NP=PCP(log n, O(1))

Summary

- Interactive proof: generalization of a mathematical proof in which prover and polynomial-time probabilistic verifier interact:
 - Completeness and soundness
- Input: x, proof of property L(x)
 Correct proof: x is accepted iff L(x) is true.
 - Completeness: any x: L(x)=true is accepted (with prob≥2/3).
 - Soundess: any y: L(y)=false is rejected (with prob≥2/3).
- Power of interactive proof w.r.t. « static » proof
 - IP = PSACE

Zero knowledge

- How to prove zero knowledge: by proving the verifier could have produced the transcript of the protocol in (expected) polynomial time with no help of the prover.
- Def: a sound and correct interactive protocol is zero-knowledge
 if there exists a non-interactive randomized polynomial time
 algorithm (named « simulator ») which, for any input x
 accepted by the verifier (using interaction with the prover) can
 produce transcripts indistinguishable from those resulting from
 interaction with the real prover.
- Consequence: releases no information to an observer.

Graph [non]-isomorphism and zero knowledge

- In a zero-knowledge protocol, the verifier learns that G₁ is isomorphic to G₂ but nothing else.
- Previous protocol (slide 7) not known to be zeroknowledge:
 - Prover sends the permutation P_i such that $G_1 = P_i(G_2)$: so the verifier learns not only G_1 isomorphic to G_2 but P_i too.
 - We do not know, given two isomorphic graph, wether there exists a (randomized) polynomial time algorithm that returns a permutation that proves isomorphism.

A zero-knowledge interactive proof for Graph Isomorhism

Verifier

input: $(G_1=(V_1,E_1), G_2=(V_2,E_2))$ Accepts prover if convinced that G1 is isomorphic to G2

 Receives H;
 Chooses b=random(1,2) and sends b to the prover

4. receives P" and checks $H = P"(G_b)$

Proover

gets G_1 , G_2 private secret perm. P_s : G_2 = $P_s(G_1)$;

1. Chooses a random perm. P' and sends to verifier H=P'(G₂)

Theorem: This is a zero-knowledge, sound and complete, polynomial time interactive proof that the two graphs G_1 and G_2 are isomorph.

Zero-knowledge interactive proof for Graph Isomorhism

- Completeness
- Soundness
- Zero-knowledge
- Polynomial time

Zero-knowledge interactive proof for Graph Isomorhism

- Completeness
 - if G₁=G₂, verifier accepts with probability 1.
- Soundness
 - if G_1 ≠ G_2 , verifier rejects with probability ≥ $\frac{1}{2}$
- Zero-knowledge
 - Simulation algorithm:
 - 1. Choose first b=rand(1,2) and π random permutation (like P');
 - 2. Compute $H = \pi(G_h)$:
 - 3. Output transcript [H, b, π];
 - The transcript [H, b, π] is distributed uniformly, exactly as the transcript [H, b, P'] in the interactive protocol.
- Polynomial time

Another simulation algorithm

 Without changing the verifier, by just modifying the prover:

```
Do { 
 1. b' = random(1,2) and \pi=random(permutation); 
 Compute H=\pi(G<sub>b'</sub>) and send H to verifier; 
 3. receive b; 
} while (b \neq b'); 
Output transcript [H, b, \pi]
```

- · Polynomial time:
 - Expectation time = Time_{Loop body} . $\sum_{k\geq 0} 2^k$ ≤ 2.Time_{Loop body}

Exercise

- Provide an interactive polynomial time protocol to prove a verifier that has an integer N that you know the factorization N=P.Q without revealing it.
 - Application:
 - a sensitive building, authorized people know 2 secret primes P and Q (and N=PQ)
 - The guard knows only N

Quadratic residue authentication: is this version **perfectly** zero-knowledge?

- A trusted part T provides a Blum integer n=p.g; n is public.
- Alice (Prover) builds her secret and public keys:
 - For i=1, ..., k: chooses at random s_i coprime to n
 - Compute v_i := $(s_i^2) \, mod \, n$. [NB v_i ranges over all square coprime to n] v_i = **quadratic residue** that admits s_i = **modular square root**
 - Secret key: s₁, ..., s_k
 - Public key: v₁, ..., v_k and identity photo, ... registered by T
- Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :
 - 1. Alice chooses a random r<n; she sends $y=r^2 \mod n$ to Bob.
 - 2. Bob sends k random bits: b₁, ..., b_k
 - 3. Alice computes $z := rs_1^{b_1} \dots s_k^{b_k} \mod n$ and sends z to Bob. Bob authenticates iff $z^2 = y.v_1^{b_1} \dots v_k^{b_k} \mod n$.
- Simulation algorithm : is the protocol perfectly zeo-knowledge?
 - 1. Choose k random bits b_1 , ..., b_k and a random z<n; compute $w = v_1^{b_1}$ $v_k^{b_k}$ mod n and $y = z^2$.w⁻¹ mod n;
 - 2. Transcript is [y ; b_1 , ..., b_k ; z]

Feige-Fiat-Shamir zero-knowledge authentication protocol

- A trusted part T computes a Blum integer n=p.q; n is public.
- Alice (Prover) builds her secret and public keys:
 - For i=1, ..., k: chooses at random s_i coprime to n
 - Compute v_i:=(s_i²) mod n. [NB v_i ranges over all square coprime to n]
 v_i = quadratic residue that admits s_i = modular square root
 - Secret key: s₁, ..., s_k
 - Public key: v₁, ..., v_k and identity photo, ... registered by T
- Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :
 - 1. Alice chooses a random r<n and a sign u=±1; she sends y=u.r² mod n to Bob.
 - 2. Bob sends k random bits: b₁, ..., b_k
 - 3. Alice computes $z := r. s_1^{b_1}.....s_k^{b_k} \mod n$ and sends z to Bob. Bob authenticates iff $z^2 = +/-y.v_1^{b_1}.....v_k^{b_k} \mod n$.
- Remark: possible variant: Alice chooses its own modulus n

Feige-Fiat-Shamir

Prob(Output of authentication) X=Alice or anyone else?	YES: "Authentication of Alice OK"	NO: "Authentication of Alice KO »
Case X = Alice	Always	Impossible
Case X ≠ Alice	Prob = 2 ^{-k}	Prob = 1 - 2 ^{-k}

■ Completeness

Alice is allways authenticated (error prob=0)

Soundness

- Probability for Eve to impersonate Alice = 2-k. If t rounds are performed: 2-kt

■ Zero-knowledge

 A simulation algorithm exists that provides a transcript which is indistinguishable with the trace of interaction with correct prover.

From zero-knowledge authentication to zero knowledge signature

- Only one communication: the message+signature
 - The prover uses a CSPRNG (e.g. a secure hash function) to generate directly the random bits of the challenge
 - The bits are transmitted to the verifier, who verifies the signature.
- Example: Fiat-Shamir signature
 - Alice builds her secret key $(s_1, ..., s_k)$ and public key $(v_1, ..., v_k)$ as before.
 - Let M be a message Alice wants to sign.
 - Signature by Alice
 - 1. For i=1, ..., t: chooses randomly r_i and computes w_i s.t. w_i := r_i^2 mod n.
 - 2. Computes $h = H(M \mid\mid w_1 \mid\mid ... \mid\mid w_t)$ this gives k.t bits b_{ik} , that appear as random (similarly to the ones generated by Bob in step 2 of Feige-Fiat-Shamir)
 - 3. Alice computes $z_i := r_i$. $s_1^{b_n}$ $s_k^{b_k}$ mod n (for i = 1 ... t); She sends the message M and its signature: $\sigma = (z_1 - z_t - b_{tk})$ to Dan
 - Verification of signature σ by Dan:
 - 1. Dan computes $y_i := z_i^2 . (v_1^{b_n}v_k^{b_k})^{-1} mod n$ for i=1..t A correct signature gives $y_i = w_i$
 - 2. Computes $H(M, ||y_1||...||y_t)$ and he verifies that he obtains the bits b_{ik} in Alice's signature

Zero-knowledge vs other asymetric protocols

- · No degradation with usage.
- · No need of encryption algorithm.
- Efficiency: often higher communication/computation overheads in zero-knowledge protocols than public-key protocols.
- For both , provable security relies on conjectures (eg: intractability of quadratic residuosity)

Exercise

 Guillou-Quisquater zero-knowledge authentication and signature protocol.

Feige-Fiat-Shamir zero-knowledge authentication protocol

- A trusted part T (or Alice) computes a Blum integer n=p.q; n is public.
- Alice (Prover) builds her secret and public keys:
 - For i=1, ..., k: chooses at random s_i coprime to n and n random bits d_i
 - Compute v_i := $(s_i^2) \, mod \, n$. [NB v_i ranges over all square coprime to n] $(-1)^d v_i = quadratic \, residue \,$ that admits $s_i = modular \, square \, root \,$
 - Secret key: s_1 , ..., s_k . (Note that $v_i ext{-} s_i^2 = (-1)^{d_i} = 1 \text{ or } -1 \text{ mod } n$)
 - Public key: v₁, ..., v_k and identity photo, ... registered by T
- Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 msgs:
 - 1. Alice chooses a random value r < n. She sends $y:=r^2 \mod n$ to Bob.
 - 2. Bob sends k random bits: b₁, ..., b_k
 - 3. Alice computes $z := r. s_1^{b_1}.....s_k^{b_k} \mod n$ and sends z to Bob. Bob computes $w=z^2.v_1^{b_1}.....v_k^{b_k}$ and authenticates iff y=w or y=-w mod n.
- Soundness and completeness, perfectly zero knowledge
 - Probability for Eve to impersonate Alice = 2-k. If t rounds are performed: 2-kt
 - Alice always authenticated (error prob=0)
 - Zero knowledge: transcript

IP and NP

Complexity classes

Decision problems (1 output bit: YES/NO)

Deterministic polynomial time:

- P: both Yes/No sides
- NP: certification for the Yes side
- co-NP: certification for the No side

Randomized polynomial time:

- BPP: Atlantic City: prob(error) < 1/2
- RPP: Monte Carlo: prob(error YES side)=0; prob(error NO side)< 1/2
- ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

IP Interactive proof

- Verifier: randomized polynomial time
- Prover: interactive (dynamic), unbound power
 - $F(x) = YES => it exists a correct prover <math>\Pi$ such that $Prob[Verifier (\Pi, x) accepts] = 1;$
 - F(x) = NO => for all prover Π : Prob[Verifier (Π, x) accepts] < 1/2.
- Theorem: IP = PSPACE (interaction with randomized algorithms helps!)

PCP: Probabilistiic Checkable Proofs (static proof)

- PCP(r, q): the verifier uses random bits and reads q bits of the proof only.
- Theorem: NP=PCP(log n, O(1))

#3-SAT in IP

- Arithmetization in F₂: each clause c has a poly. Q(c)
 - Q(not(x)) = 1-x

Q(x and y) = x.y

- Q(x or not(y) or z)=Q(not(not(x) and y and not(z))= 1–((1-x).y.(1-z))
- Let $F = c_1$ and ... and c_m a 3-SAT CNF formula, and $g(X_1, ..., X_n) = Q(c_1).Q(C_2).....Q(c_m): deg(g) \le 3m$ Then $\#F = \Sigma_{b_1=0,1}...\Sigma_{b_n=0,1}g(b_1, ..., b_n)$
- Since $\#F \le 2^n$, for $p > 2^n$, (#F = K) is equivalent to $(\#F = K \mod p)$
 - To limit to a polynomial number of operations, computation is performed mod a prime p in 2ⁿ · 2ⁿ⁺¹ (provided by prover and checked by verifier)
- Let $h_n(X_n) = \sum_{b_1=0,1} \dots \sum_{b_{n-1}=0,1} g(b_1, b_2, \dots, b_{n-1}, X_n)$: h_n is an univariate polynomial (in X_n) of degree $\leq m$

#3-SAT: interactive polynomial proof

Verifier

input: $F(X_1, ..., X_n) = (c_1 \text{ and } ... \text{ and } c_m)$

K an integer; let $g(x) = \prod_{i=1,n} Pol(c_i)$

Accepts iff convinced that #F = K.

Preliminar receive p, check p is prime in $\{2^n,\,2^{2n}\}$ Compute g(X₁, ..., X_n)= $\Pi_{i=1,n}$ Pol(c_i) deg(g)≤3m Check K= $\Sigma_{X1=0,1}$... $\Sigma_{Xn=0,1}$ g(X₁, ..., X_n) [p]:

- 1. If n=1, if (g(0)+g(1) = K) accept; else reject. If n≥2, ask $h_n(X)$ to P.
- 3. Receive s(X) of degree \leq m. Compute v=s(0)+s(1); if (v \neq K) reject. Else choose r=random(0, ... p-1); let K_n = s(r) and use the same protocol to check K_n= $\Sigma_{X1=0,1}$... $\Sigma_{Xn-1=0,1}$ g(X₁, ..., X_{n-1}, r) [p]

Prover

Preliminar: sends p prime in {2ⁿ, 2²ⁿ}

2. Send s(X); [note that if P is not cheating, $s(X) = h_n(X)$]

Theorem: This is a sound and complete, polynomial time randomized interactive proof of #3-SAT.

Moreover, prob(V rejects | $K \neq \#F$) $\geq (1-m/p)^n$, also prob(error) $\leq 1-(1-m/p)^n \leq mn2^{-n}$. The End.

What have we learned?

- Perfect secrecy: the ciphertext has always the same distribution, it provides no information on the plaintext.
 - Eg: OTP
- Computational security :
 - Based on the assumption that a one-way function exists.
 - So that P ≠ NP

- One way-function and crypto hash functions
 - Compression + extension scheme (with padding)
 - Sponge construction
 - Encryption from one-way function with short keys (of length n^{-c}) to encrypt long messages (of length n)
 - One-way from block cipher
- Secure pseudo-random generator
 - Indistinguishability from true random (deskewing)
 - Left and right unpredicability
- Interactive zero knowledge protocol
 - Soundness + completness
 - Zero-knowledge: simulation that provides a transcript indistinguighable from the correct interaction!