
Interactive proof and
zero knowledge protocols

•  Zero-knowledge: definition
•  Probabilistic complexity classes and Interactive proofs

–  Graph isomorphism and PCP
•  Some zero knowledge protocols:

–  Feige-Fiat-Shamir authentication protocol
–  Extension to signature
–  Guillou-Quisquater authentication and signature

•  Computational Complexity: A Modern Approach. Sanjeev Arora and Boaz Barak
 http://www.cs.princeton.edu/theory/complexity/

•  Handbook of Applied Cryptography [Menzenes, van Oorschot, Vanstone]
•  Applied Cryptography [Schneier]
•  Contemporary cryptography [Opplinger]

Example [wikipedia]

•  Ali Baba (Peggy) knows the secret
–  "iftaH ya simsim" («Open Sesame»)
–  "Close, Simsim" («Close Sesame»).

•  Bob (Victor) and Ali Baba design a
protocol to prove that Ali Baba
has the secret without revealing it
– Ali Baba is the prover
– Bob is the verifier
– Ali Baba leaks no information

Proof and Interactive proof
•  Importance of « proof » in crypto: eg. identity proof=authentication
•  Two parts in a proof:

–  Prover: knows the proof (-> the secret) [or is intended to know]
–  Verifier: verifies the proof is correct (-> authentication)

•  Correctness of a proof system/verifier:
–  Soundness: every invalid proof is rejected by the verifier
–  Completeness: every valid proof is accepted by the verifier

•  Interactive proof system

–  Protocol (questions/answers) between the verifier and the prover
–  Verifier: probabilistic algorithm, polynomially bounded
–  Soundness: every invalid proof is rejected with probability (> 1/2)
–  Competeness: every valid proof is accepted with probability (>1/2)

Interactive protocol :Example
•  Example: interactive authentication based on

quadratic residue

•  See exercise (question 3.b)
–  Completeness : Alice, who gets the secret

(square root) is accepted
–  But not Soundness : Eve, who doesn’t know the

secret may cheat
•  Fiat-Shamir’s protocol (question 3.c)

–  Soundness : Eve, who doesn’t know the secret, is
rejected.(if we assume n factorization unknown)

Does x belongs to L ?

•  Zero-knowledge:
–  Intuitively: at the end, verifier is convinced that x in

L (if so), but learns nothing else.

•  Verifier
–  An element x
–  Ask questions to prover
–  Gets anwer:
–  Completeness: Is convinced that x in L, if so
–  Soundess: reject « x in L » if not so

Example of interactive computation
•  Graph isomorphism:

–  Input: G=(V,E) and G’=(V’,E’)
–  Output: YES iff G == G’ (i.e. a permutation of V ->V’ makes E=E’)

•  NP-complete, not known to be in co-NP

•  Assume an NP Oracle for Graph isomorphism =>
then a probabilistic verifier can compute Graph isomorphism in
polynomial time.
–  Protocol and error probability analysis.

•  Theorem [Goldreich&al] :
–  NP included in IP.
–  any language in NP possesses a zero-knowledge protocol.

Interactive Algorithm Graph Isomorhism
AlgoGraphIso(G1=(V1,E1), G2=(V2,E2)) {

If (#V1 != #V2) or (#E1 != #E2)
 return “NO : G1 not isomorphic to G2”;

n := #V1 ;
For (i=1 .. k) {

 P := randompermutation([1, …, n]) ;
 b := random({1,2}) ;

 G’ := P(Gb) ;
 (i, Pi) := Call OracleWhichIsIso(G1, G2, G’) ;
 If (Gi ≠ Pi (G’)) FAILURE(“Oracle is not reliable”) ;
 If (b ≠ i) return “YES : G1 is isomorphic to G2” ;

}
return “NO : G1 not isomorphic to G2”;

}

OracleWhichIsIso(G1, G2, G’) {
// precondition: G’ is isomorphic to
// G1 or G2 or both.
// Output: i into {1,2} and a permutation
// Pi such that Gi = P(G’)
… ;
Return (i, Pi) ;

}

Theorem: Assuming OracleWhichIsIso of polynomial time,
AlgoGraphIso(G1, G2) proves in polynomial time k.nO(1) that :

-  either G1 is isomorphic to G2 (no error)
-  or G1 is not isomorphic with error probability ≤ 2-k.

Thus, it is a MonteCarlo (randomized) algorithm for GRAPH ISOMORPHISM

Analysis of error probability

 Truth:
 G1 = G2 ??

“YES : G1 is
isomorphic to G2”

“NO: G1 not
isomorphic to G2”

Case G1 = G2
(completeness)

Prob = 1 - 2-k

Prob = 2-k

No: Case G1 ≠ G2
(soundness)

Impossible
(Prob = 0)

Always

(Prob = 1)

- When the algorithm output YES : G1 is isomorphic to G2 then G1 = G2
 => no error on this output.

- When the algorithm output “NO: G1 not isomorphic to G2” then we may
 have an error (iff G1 = G2), but with a probability ≤ 2-k

One-sided error => Monte Carlo algorithm for Graph-Isomorphism

Prob(Output of
AlgoGraphIso(G1, G2))

Complexity classes
•  Decision problems (1 output bit: YES/ NO)
•  Deterministic polynomial time:

–  P : both Yes/No sides
–  NP : certification for the Yes side
–  co-NP: certification for the No side

•  Randomized polynomial time:
–  BPP: Atlantic City: prob(error) < 1/2
–  RPP: Monte Carlo: prob(error YES side)=0 ; prob(error NO side)< 1/2
–  ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

•  IP Interactive proof

–  Verifier: randomized polynomial time
–  Prover: interactive (dynamic), unbound power

•  F(x) = YES => it exists a correct prover Π such that Prob[Verifier (Π, x) accepts] = 1;
•  F(x) = NO => for all prover Π: Prob[Verifier (Π, x) accepts] < 1/2.

–  Theorem: IP = PSPACE

•  PCP: Probabilistiic Checkable Proofs (static proof)
–  PCP(r, q) : the verifier uses random bits and reads q bits of the proof only.
–  Theorem: NP=PCP(log n, O(1))

Summary

•  Interactive proof : generalization of a mathematical
proof in which prover and polynomial-time
probabilistic verifier interact:
–  Completeness and soundness

•  Input: x, proof of property L(x)
Correct proof: x is accepted iff L(x) is true.
–  Completeness : any x: L(x)=true is accepted (with prob≥2/3).
–  Soundess : any y: L(y)=false is rejected (with prob≥2/3).

•  Power of interactive proof w.r.t. « static » proof
–  IP = PSACE

Zero knowledge
•  How to prove zero knowledge: by proving the verifier could

have produced the transcript of the protocol in (expected)
polynomial time with no help of the prover.

•  Def: a sound and correct interactive protocol is zero-knowledge
if there exists a non-interactive randomized polynomial time
algorithm (named « simulator ») which, for any input x
accepted by the verifier (using interaction with the prover) can
produce transcripts indistinguishable from those resulting from
interaction with the real prover.

•  Consequence: releases no information to an observer.

Graph [non]-isomorphism
and zero knowledge

•  In a zero-knowledge protocol, the verifier learns that
G1 is isomorphic to G2 but nothing else.

•  Previous protocol (slide 7) not known to be zero-
knowledge:
–  Prover sends the permutation Pi such that G1= Pi(G2) : so

the verifier learns not only G1 isomorphic to G2 but Pi too.
–  We do not know, given two isomorphic graph, wether there

exists a (randomized) polynomial time algorithm that returns
a permutation that proves isomorphism.

A zero-knowledge interactive proof
for Graph Isomorhism

Verifier
 input: (G1=(V1,E1), G2=(V2,E2))

 Accepts prover if convinced that G1 is
isomorphic to G2

 2. Receives H;
 Chooses b=random(1,2) and sends
 b to the prover

 4. receives P’’ and checks H = P’’(Gb)

Proover
 gets G1, G2

 private secret perm. Ps: G2=Ps(G1) ;
1.  Chooses a random perm. P’ and

sends to verifier H=P’(G2)

 3. Receives b;
 if b=1 sends P’’=P’oPs to the verifier
 else b=2: sends P’’=P’ to the verifier

Theorem: This is a zero-knowledge, sound and complete, polynomial time
 interactive proof that the two graphs G1 and G2 are isomorph.

•  Completeness

•  Soundness

•  Zero-knowledge

•  Polynomial time

Zero-knowledge interactive proof
for Graph Isomorhism

•  Completeness
–  if G1=G2, verifier accepts with probability 1.

•  Soundness
–  if G1≠G2, verifier rejects with probability ≥ ½

•  Zero-knowledge
–  Simulation algorithm:

1. Choose first b=rand(1,2) and π random permutation (like P’);
2. Compute H = π(Gb) ;
3. Output transcript [H, b, π] ;

–  The transcript [H, b, π] is distributed uniformly, exactly as
the transcript [H, b, P’] in the interactive protocol.

•  Polynomial time

Zero-knowledge interactive proof
for Graph Isomorhism

Another simulation algorithm

•  Without changing the verifier, by just modifying the
prover:
Do {

 1. b’ = random(1,2) and π=random(permutation);
 Compute H=π(Gb’) and send H to verifier;
3. receive b ;

} while (b ≠ b’) ;
Output transcript [H, b, π]

•  Polynomial time:
–  Expectation time = TimeLoop_body .∑k≥0 2k ≤ 2.TimeLoop_body

Exercise

•  Provide an interactive polynomial time
protocol to prove a verifier that has an
integer N that you know the factorization
N=P.Q without revealing it.
– Application:

•  a sensitive building, authorized people know 2
secret primes P and Q (and N=PQ)

•  The guard knows only N

Quadratic residue authentication:
is this version perfectly zero-knowledge?

!  A trusted part T provides a Blum integer n=p.q; n is public.

! Alice (Prover) builds her secret and public keys:

–  For i=1, …, k: chooses at random si coprime to n
–  Compute vi:=(si

2) mod n. [NB vi ranges over all square coprime to n]
 vi = quadratic residue that admits si

 = modular square root
–  Secret key: s1 , …, sk
–  Public key: v1 , …, vk and identity photo, … registered by T

! Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :
1.  Alice chooses a random r<n; she sends y=r2 mod n to Bob.
2.  Bob sends k random bits: b1 , …, bk
3.  Alice computes z := rs1

b1. … . sk
bk imod n and sends z to Bob.

Bob authenticates iff z2 = y.v1
b1. … .vk

bk mod n.

! Simulation algorithm : is the protocol perfectly zeo-knowledge?
1.  Choose k random bits b1 , …, bk and a random z<n;

compute w= v1
b1. … .vk

bk mod n and y=z2 .w-1 mod n ;
2.  Transcript is [y ; b1 , …, bk ; z]

Feige-Fiat-Shamir
zero-knowledge authentication protocol

!  A trusted part T computes a Blum integer n=p.q; n is public.

! Alice (Prover) builds her secret and public keys:

–  For i=1, …, k: chooses at random si coprime to n
–  Compute vi:=(si

2) mod n. [NB vi ranges over all square coprime to n]
 vi = quadratic residue that admits si

 = modular square root
–  Secret key: s1 , …, sk
–  Public key: v1 , …, vk and identity photo, … registered by T

! Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :
1.  Alice chooses a random r<n and a sign u=±1; she sends y=u.r2 mod n to Bob.
2.  Bob sends k random bits: b1 , …, bk
3.  Alice computes z := r. s1

b1. … . sk
bk imod n and sends z to Bob.

Bob authenticates iff z2 = +/- y.v1
b1. … .vk

bk mod n.

!  Remark: possible variant: Alice chooses its own modulus n

Feige-Fiat-Shamir

 Truth:
 X=Alice or anyone else?

YES:
“Authentication
of Alice OK”

NO:
“Authentication of
Alice KO »

Case X = Alice
(completeness)

Always

Impossible

Case X ≠ Alice
(soundness)

Prob = 2-k

Prob = 1 - 2-k

!  Completeness
- Alice is allways authenticated (error prob=0)

!  Soundness
-  Probability for Eve to impersonate Alice = 2-k. If t rounds are performed: 2-kt

!  Zero-knowledge
- A simulation algorithm exists that provides a transcript which is indistinguishable
 with the trace of interaction with correct prover.

Prob(Output of
authentication)

From zero-knowledge authentication
 to zero knowledge signature

 •  Only one communication: the message+signature
•  The prover uses a CSPRNG (e.g. a secure hash function) to generate

directly the random bits of the challenge
•  The bits are transmitted to the verifier, who verifies the signature.

•  Example: Fiat-Shamir signature
–  Alice builds her secret key (s1 , …, sk) and public key (v1 , …, vk) as before.
–  Let M be a message Alice wants to sign.
–  Signature by Alice

1.  For i=1, …, t: chooses randomly ri and computes wi s.t. wi:=ri
2 mod n.

2.  Computes h = H(M || w1 ||…|| wt) this gives k.t bits bik, that appear as random
(similarly to the ones generated by Bob in step 2 of Feige-Fiat-Shamir)

3.  Alice computes zi := ri. s1
bi1. … .sk

bik mod n (for i = 1 .. t) ;
 She sends the message M and its signature: σ = (z1 … zt, b11 .. btk) to Dan

–  Verification of signature σ by Dan:
1.  Dan computes yi := zi

2.(v1
bi1. … .vk

bik)-1mod n for i=1..t
A correct signature gives yi = wi

2.  Computes H(M, || y1 ||…|| yt) and
he verifies that he obtains the bits bik in Alice’s signature

Zero-knowledge vs other
asymetric protocols

•  No degradation with usage.

•  No need of encryption algorithm.

•  Efficiency: often higher communication/computation overheads
in zero-knowledge protocols than public-key protocols.

•  For both , provable security relies on conjectures
(eg: intractability of quadratic residuosity)

Exercise

•  Guillou-Quisquater zero-knowledge
authentication and signature protocol.

Feige-Fiat-Shamir
zero-knowledge authentication protocol
•  A trusted part T (or Alice) computes a Blum integer n=p.q; n is public.
•  Alice (Prover) builds her secret and public keys:

•  For i=1, …, k: chooses at random si coprime to n and n random bits di
•  Compute vi:=(si

2) mod n. [NB vi ranges over all square coprime to n]
 (-1)di vi = quadratic residue that admits si

 = modular square root
•  Secret key: s1 , …, sk . (Note that vi.si

2 =(-1)di = 1 or -1 mod n)
•  Public key: v1 , …, vk and identity photo, … registered by T

•  Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 msgs :
1.  Alice chooses a random value r < n. She sends y:=r2 mod n to Bob.
2.  Bob sends k random bits: b1 , …, bk
3.  Alice computes z := r. s1

b1. … . sk
bk imod n and sends z to Bob.

Bob computes w=z2.v1
b1. … .vk

bk and authenticates iff y=w or y=-w mod n.

•  Soundness and completeness, perfectly zero knowledge
•  Probability for Eve to impersonate Alice = 2-k. If t rounds are performed: 2-kt
•  Alice always authenticated (error prob=0)
•  Zero knowledge: transcript

IP and NP

Complexity classes
•  Decision problems (1 output bit: YES/ NO)
•  Deterministic polynomial time:

–  P : both Yes/No sides
–  NP : certification for the Yes side
–  co-NP: certification for the No side

•  Randomized polynomial time:
–  BPP: Atlantic City: prob(error) < 1/2
–  RPP: Monte Carlo: prob(error YES side)=0 ; prob(error NO side)< 1/2
–  ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

•  IP Interactive proof

–  Verifier: randomized polynomial time
–  Prover: interactive (dynamic), unbound power

•  F(x) = YES => it exists a correct prover Π such that Prob[Verifier (Π, x) accepts] = 1;
•  F(x) = NO => for all prover Π: Prob[Verifier (Π, x) accepts] < 1/2.

–  Theorem: IP = PSPACE (interaction with randomized algorithms helps!)

•  PCP: Probabilistiic Checkable Proofs (static proof)
–  PCP(r, q) : the verifier uses random bits and reads q bits of the proof only.
–  Theorem: NP=PCP(log n, O(1))

#3-SAT in IP
•  Arithmetization in F2: each clause c has a poly. Q(c)

•  Q(not(x)) = 1-x Q(x and y) = x.y
•  Q(x or not(y) or z)=Q(not(not(x) and y and not(z))= 1–((1-x).y.(1-z))

•  Let F = c1 and … and cm a 3-SAT CNF formula, and
g(X1, …, Xn) = Q(c1).Q(C2). … .Q(cm) : deg(g) ≤ 3m
 Then #F = Σb1=0,1… Σbn=0,1 g(b1, …, bn)

•  Since #F ≤ 2n, for p>2n, (#F=K) is equivalent to (#F=K mod p)
–  To limit to a polynomial number of operations, computation is performed

mod a prime p in 2n .. 2n+1 (provided by prover and checked by verifier)

•  Let hn(Xn) = Σb1=0,1… Σbn-1=0,1g(b1, b2, …, bn-1, Xn):

 hn is an univariate polynomial (in Xn) of degree ≤ m

#3-SAT: interactive polynomial proof

Verifier
 input: F(X1, …, Xn) = (c1 and … and cm)
 K an integer; let g(x) = Πi=1,n Pol(ci)
Accepts iff convinced that #F = K.
Preliminar receive p, check p is prime in {2n, 22n}
 Compute g(X1, …, Xn)= Πi=1,n Pol(ci) deg(g)≤3m
Check K= ΣX1=0,1… ΣXn=0,1 g(X1, …, Xn) [p] :
 1. If n=1, if (g(0)+g(1) = K) accept ; else reject.
 If n≥2, ask hn(X) to P.

 3. Receive s(X) of degree ≤m.
 Compute v=s(0)+s(1); if (v ≠ K) reject.
 Else choose r=random(0, … p-1); let Kn = s(r)
 and use the same protocol to check
 Kn=ΣX1=0,1… ΣXn-1=0,1 g(X1, …, Xn-1, r) [p]

Prover
 Preliminar: sends p prime in {2n, 22n}

2.  Send s(X) ; [note that if P is not
cheating, s(X) = hn(X)]

Theorem: This is a sound and complete, polynomial time randomized
 interactive proof of #3-SAT.
Moreover, prob(V rejects | K ≠ #F) ≥ (1-m/p)^n ,
 also prob(error) ≤ 1-(1-m/p)^n ≤ mn2-n .

The End.

What have we learned?

•  Perfect secrecy: the ciphertext has
always the same distribution, it provides
no information on the plaintext.
– Eg: OTP

•  Computational security :
– Based on the assumption that a one-way

function exists.
•  So that P ≠ NP

•  One way-function and crypto hash functions
–  Compression + extension scheme (with padding)
–  Sponge construction
–  Encryption from one-way function with short keys (of

length n-c) to encrypt long messages (of length n)
–  One-way from block cipher

•  Secure pseudo-random generator
–  Indistinguishability from true random (deskewing)
–  Left and right unpredicability

•  Interactive zero knowledge protocol
–  Soundness + completness
–  Zero-knowledge: simulation that provides a transcript

indistinguighable from the correct interaction!

