
Interactive proof and  
zero knowledge protocols  

•  Zero-knowledge: definition 
•  Probabilistic complexity classes and Interactive proofs 

–  Graph isomorphism and PCP 
•  Some zero knowledge protocols: 

–  Feige-Fiat-Shamir authentication protocol 
–  Extension to signature 
–  Guillou-Quisquater authentication and signature 

•  Computational Complexity: A Modern Approach. Sanjeev Arora and Boaz Barak 
                                                                          http://www.cs.princeton.edu/theory/complexity/ 

•  Handbook of Applied Cryptography [Menzenes, van Oorschot, Vanstone] 
•  Applied Cryptography [Schneier] 
•  Contemporary cryptography [Opplinger] 

Example [wikipedia]               

•  Ali Baba (Peggy) knows the secret 
–  "iftaH ya simsim" («Open Sesame») 
–  "Close, Simsim" («Close Sesame»). 

•  Bob (Victor) and Ali Baba design a 
protocol to prove that Ali Baba 
has the secret without revealing it 
– Ali Baba is the prover 
– Bob is the verifier 
– Ali Baba leaks no information 



Proof and Interactive proof 
•  Importance of « proof » in crypto: eg. identity proof=authentication 
•  Two parts in a proof: 

–  Prover: knows the proof (-> the secret)  [or is intended to know] 
–  Verifier: verifies the proof is correct (-> authentication) 

•  Correctness of a proof system/verifier: 
–  Soundness:  every invalid proof  is rejected by the verifier 
–  Completeness: every valid proof is accepted by the verifier  

 
•  Interactive proof system 

–  Protocol (questions/answers) between the verifier and the prover  
–  Verifier: probabilistic algorithm, polynomially bounded 
–  Soundness: every invalid proof is rejected with probability (> 1/2) 
–  Competeness: every valid proof is accepted with probability (>1/2) 

Interactive protocol :Example 
•  Example: interactive authentication based on 

quadratic residue  

•  See exercise (question 3.b) 
–  Completeness : Alice, who gets the secret 

(square root) is accepted 
–  But not Soundness : Eve, who doesn’t know the 

secret may cheat 
•  Fiat-Shamir’s protocol (question 3.c) 

–  Soundness : Eve, who doesn’t know the secret, is 
rejected.(if we assume n factorization unknown) 



Does x belongs to L ? 

•  Zero-knowledge:  
–  Intuitively: at the end, verifier is convinced that x in 

L (if so), but learns nothing else.  

•  Verifier 
–  An element x 
–  Ask questions to prover 
–  Gets anwer: 
–  Completeness: Is convinced that x in L, if so 
–  Soundess: reject « x in L » if not so 

 

Example of interactive computation 
•  Graph isomorphism: 

–  Input: G=(V,E) and G’=(V’,E’) 
–  Output: YES iff G == G’ (i.e. a permutation of V ->V’ makes E=E’) 

 

•  NP-complete, not known to be in co-NP 
 

•  Assume an NP Oracle for Graph isomorphism =>  
then a probabilistic verifier can compute Graph isomorphism in 
polynomial time. 
–  Protocol and error probability analysis.  

•  Theorem [Goldreich&al] :  
–  NP included in IP. 
–  any language in NP possesses a zero-knowledge protocol.  



Interactive Algorithm Graph Isomorhism 
AlgoGraphIso(G1=(V1,E1), G2=(V2,E2) ) { 

If (#V1 != #V2) or (#E1 != #E2)  
  return “NO : G1 not isomorphic to G2”; 

n := #V1 ; 
For (i=1 .. k) { 

 P := randompermutation([1, …, n]) ; 
 b := random({1,2}) ; 

 G’ := P(Gb) ;  
 ( i, Pi) := Call OracleWhichIsIso(G1, G2, G’) ; 
 If (Gi ≠ Pi (G’) ) FAILURE(“Oracle is not reliable”) ; 
 If ( b ≠ i) return “YES : G1 is isomorphic to G2” ; 

} 
return “NO : G1 not isomorphic to G2”; 

} 

OracleWhichIsIso(G1, G2, G’) { 
// precondition: G’ is isomorphic to 
//                      G1 or G2 or both. 
// Output: i into {1,2} and a permutation 
//              Pi such that Gi = P( G’ ) 
… ; 
Return ( i, Pi ) ; 

}   

Theorem: Assuming OracleWhichIsIso of polynomial time, 
AlgoGraphIso(G1, G2 ) proves in polynomial time k.nO(1) that : 

-  either G1 is isomorphic to G2  (no error)      
-  or G1 is not isomorphic with error probability ≤ 2-k. 

Thus, it is a MonteCarlo (randomized) algorithm for GRAPH ISOMORPHISM 

Analysis of error probability 
               
 Truth: 
 G1 = G2 ?? 

“YES : G1 is 
isomorphic to G2”  

“NO: G1 not 
isomorphic to G2”  

 
Case G1 = G2       
(completeness) 

 
Prob = 1 - 2-k 

 
Prob = 2-k 

 
No:  Case G1 ≠ G2 
(soundness) 

 
Impossible  
(Prob = 0) 

 
Always  

(Prob = 1) 

- When the algorithm output YES : G1 is isomorphic to G2 then  G1 = G2 
    =>  no error on this output. 
 
- When the algorithm output “NO: G1 not isomorphic to G2” then we may  
   have an error (iff G1 = G2), but with a probability ≤  2-k 

 
One-sided error => Monte Carlo algorithm for Graph-Isomorphism 
 

Prob( Output of  
AlgoGraphIso(G1, G2)) 



Complexity classes 
•  Decision problems (1 output bit: YES/ NO) 
•  Deterministic polynomial time: 

–  P : both Yes/No sides  
–  NP : certification for the Yes side 
–  co-NP: certification for the No side 

•  Randomized polynomial time: 
–  BPP: Atlantic City: prob(error) < 1/2 
–  RPP: Monte Carlo: prob(error YES side)=0 ; prob(error NO side)< 1/2 
–  ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0  

 
•  IP  Interactive proof 

–  Verifier: randomized polynomial time 
–  Prover: interactive (dynamic), unbound power 

•  F(x) = YES => it exists a correct prover Π such that   Prob[ Verifier (Π, x) accepts ] = 1; 
•  F(x) = NO => for all prover Π:            Prob[ Verifier (Π, x) accepts ] < 1/2. 

–  Theorem: IP = PSPACE 
 

•  PCP: Probabilistiic Checkable Proofs (static proof) 
–  PCP( r, q ) :  the verifier uses random bits and reads q bits of the proof only. 
–  Theorem: NP=PCP( log n, O(1) )    

Summary 

•  Interactive proof : generalization of a mathematical 
proof in which prover and polynomial-time 
probabilistic verifier interact: 
–  Completeness and soundness 

•  Input: x,   proof of property L(x) 
Correct proof: x is accepted iff L(x) is true. 
–  Completeness : any x: L(x)=true is accepted (with prob≥2/3).   
–  Soundess : any y: L(y)=false is rejected (with prob≥2/3). 

•  Power of interactive proof w.r.t. « static » proof  
–   IP = PSACE 



Zero knowledge 
•  How to prove zero knowledge:  by proving the verifier could 

have produced the transcript of the protocol in (expected) 
polynomial time with no help of the prover.  

•  Def: a sound and correct interactive protocol is zero-knowledge 
if there exists a non-interactive randomized polynomial time 
algorithm (named « simulator ») which, for any input x 
accepted by the verifier (using interaction with the prover) can 
produce  transcripts indistinguishable from those resulting from 
interaction with the real prover. 
 

•  Consequence: releases no information to an observer. 
 

Graph [non]-isomorphism  
and zero knowledge 

•  In a zero-knowledge protocol, the verifier learns that 
G1 is isomorphic to G2 but nothing else.  

•  Previous protocol (slide 7) not known to be zero-
knowledge: 
–  Prover sends the permutation Pi such that G1= Pi(G2) : so 

the verifier learns not only G1 isomorphic to G2 but Pi too. 
–  We do not know, given two isomorphic graph, wether there 

exists a (randomized) polynomial time algorithm that returns 
a permutation that proves isomorphism.  



A zero-knowledge interactive proof  
for Graph Isomorhism 

Verifier 
 input: (G1=(V1,E1), G2=(V2,E2) )  

     Accepts prover if convinced that G1 is 
isomorphic to G2 

 
 2. Receives H; 
     Chooses b=random(1,2) and sends 
    b to the prover 

 
 

 4. receives P’’ and checks H = P’’( Gb ) 
  

Proover 
 gets G1, G2 

      private secret perm. Ps: G2=Ps(G1) ; 
1.  Chooses a random perm. P’ and 

sends to verifier H=P’(G2)  
 
 3. Receives b; 
     if b=1 sends P’’=P’oPs to the verifier  
     else b=2: sends P’’=P’ to the verifier 
   

Theorem: This is a zero-knowledge, sound and complete, polynomial time 
                  interactive proof  that the two graphs G1 and G2 are isomorph.   
 

•  Completeness 
 

•  Soundness 
 

•  Zero-knowledge 
 

•  Polynomial time 

Zero-knowledge interactive proof  
for Graph Isomorhism 



•  Completeness 
–  if G1=G2, verifier accepts with probability 1.  

•  Soundness 
–  if G1≠G2, verifier rejects with probability ≥ ½   

•  Zero-knowledge 
–  Simulation algorithm:  

1. Choose first  b=rand(1,2) and π random permutation (like P’); 
2. Compute H = π(Gb) ; 
3. Output transcript  [H, b, π ] ;  

–  The transcript  [H, b, π] is distributed uniformly, exactly as 
the transcript [H, b, P’] in the interactive protocol. 

•  Polynomial time 

Zero-knowledge interactive proof  
for Graph Isomorhism 

Another simulation algorithm 

•  Without changing the verifier, by just modifying the 
prover: 
Do { 

 1. b’ = random(1,2) and π=random(permutation); 
    Compute H=π(Gb’) and send H to verifier; 
3. receive b ; 

} while (b ≠ b’) ; 
Output transcript [H, b, π] 
 

•  Polynomial time: 
–  Expectation time = TimeLoop_body .∑k≥0 2k  ≤  2.TimeLoop_body  
 
 
 



Exercise 

•  Provide an interactive polynomial time 
protocol to prove a verifier that has an 
integer N that you know the factorization 
N=P.Q without revealing it. 
– Application:  

•  a sensitive building, authorized people know 2 
secret primes P and Q  (and N=PQ) 

•  The guard knows only N   

Quadratic residue authentication: 
is this version perfectly zero-knowledge? 

!  A trusted part T provides a Blum integer n=p.q; n is public. 
 
! Alice (Prover)  builds her secret and public keys: 

–  For i=1, …, k: chooses at random si coprime to n 
–  Compute vi:=(si

2) mod n.  [NB vi ranges over all square coprime to n] 
  vi = quadratic residue  that admits si

 = modular square root 
–  Secret key: s1 , …, sk 
–  Public key:  v1 , …, vk and identity photo, … registered by T 

! Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages : 
1.  Alice chooses a random r<n; she sends y=r2 mod n to Bob. 
2.  Bob sends k random bits: b1 , …, bk  
3.  Alice computes z := rs1

b1. … . sk
bk imod n and sends z to Bob. 

Bob authenticates iff z2  =  y.v1
b1. … .vk

bk mod n. 

!  Simulation algorithm : is the protocol perfectly zeo-knowledge? 
1.  Choose k random bits b1 , …, bk and a random z<n;  

compute w= v1
b1. … .vk

bk mod n and y=z2 .w-1 mod n ;  
2.  Transcript is [ y ; b1 , …, bk  ; z ]      



Feige-Fiat-Shamir  
zero-knowledge authentication protocol 

!  A trusted part T computes a Blum integer n=p.q; n is public. 
 
! Alice (Prover)  builds her secret and public keys: 

–  For i=1, …, k: chooses at random si coprime to n 
–  Compute vi:=(si

2) mod n.  [NB vi ranges over all square coprime to n] 
  vi = quadratic residue  that admits si

 = modular square root 
–  Secret key: s1 , …, sk 
–  Public key:  v1 , …, vk and identity photo, … registered by T 

! Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages : 
1.  Alice chooses a random r<n and a sign u=±1; she sends y=u.r2 mod n to Bob. 
2.  Bob sends k random bits: b1 , …, bk  
3.  Alice computes z := r. s1

b1. … . sk
bk imod n and sends z to Bob. 

Bob authenticates iff z2  = +/- y.v1
b1. … .vk

bk mod n. 

!  Remark: possible variant: Alice chooses its own modulus n  

Feige-Fiat-Shamir  
               
 Truth: 
 X=Alice or anyone else? 

YES: 
“Authentication 
of Alice OK”  

NO: 
“Authentication of 
Alice KO » 

 
Case X = Alice       
(completeness) 

 
Always 

 
Impossible 

 
Case X ≠ Alice 
(soundness) 

 
Prob = 2-k 

 
Prob = 1 - 2-k 

!  Completeness 
-  Alice is allways authenticated (error prob=0)  

!  Soundness 
-  Probability for Eve to impersonate Alice = 2-k. If t rounds are performed:  2-kt  

!  Zero-knowledge 
-  A simulation algorithm exists that provides a transcript which is indistinguishable 
      with the trace of interaction with correct prover.  

 

Prob( Output of  
authentication) 



From zero-knowledge authentication 
 to zero knowledge signature 

 •  Only one communication: the message+signature 
•  The prover uses a CSPRNG (e.g. a secure hash function) to generate 

directly the random bits of the challenge 
•  The bits are transmitted to the verifier, who verifies the signature. 

•  Example: Fiat-Shamir signature  
–  Alice builds her secret key (s1 , …, sk) and public key (v1 , …, vk)  as before. 
–  Let M be a message Alice wants to sign. 
–  Signature by Alice 

1.  For i=1, …, t: chooses randomly ri and computes wi s.t. wi:=ri
2 mod n. 

2.  Computes h = H(M || w1 ||…|| wt ) this gives k.t bits bik,  that appear as random 
(similarly to the ones generated by Bob in step 2 of Feige-Fiat-Shamir) 

3.  Alice computes zi := ri. s1
bi1. … .sk

bik mod n    (for i = 1 .. t ) ; 
 She sends the message M and its  signature: σ =  (z1 … zt, b11 .. btk ) to Dan 

–  Verification of signature σ by Dan: 
1.  Dan computes yi := zi

2.( v1
bi1. … .vk

bik )-1mod n  for i=1..t 
A correct signature gives yi = wi  

2.  Computes H(M, || y1 ||…|| yt ) and  
he verifies that he obtains the bits   bik in Alice’s signature 

Zero-knowledge vs other 
asymetric protocols 

•  No degradation with usage. 
 

•  No need of encryption algorithm. 

•  Efficiency: often higher communication/computation overheads 
in zero-knowledge protocols than public-key protocols. 
 

•  For both , provable security relies on conjectures  
(eg: intractability of quadratic residuosity) 



Exercise 

•  Guillou-Quisquater zero-knowledge 
authentication and signature protocol. 

 

Feige-Fiat-Shamir  
zero-knowledge authentication protocol 
•  A trusted part T (or Alice) computes a Blum integer n=p.q; n is public. 
•  Alice (Prover)  builds her secret and public keys: 

•  For i=1, …, k: chooses at random si coprime to n and n random bits di  
•  Compute vi:=(si

2) mod n.  [NB vi ranges over all square coprime to n] 
 (-1)di vi = quadratic residue  that admits si

 = modular square root 
•  Secret key: s1 , …, sk . (Note that vi.si

2 =(-1)di        = 1 or -1 mod n)  
•  Public key:  v1 , …, vk and identity photo, … registered by T 

•  Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 msgs : 
1.  Alice chooses a random value r < n. She sends y:=r2 mod n to Bob. 
2.  Bob sends k random bits: b1 , …, bk  
3.  Alice computes z := r. s1

b1. … . sk
bk imod n and sends z to Bob. 

Bob computes  w=z2.v1
b1. … .vk

bk and authenticates iff y=w or y=-w mod n. 
 

•  Soundness and completeness, perfectly zero knowledge 
•  Probability for Eve to impersonate Alice = 2-k. If t rounds are performed:  2-kt  
•  Alice always authenticated (error prob=0)  
•  Zero knowledge: transcript  



IP and NP 

Complexity classes 
•  Decision problems (1 output bit: YES/ NO) 
•  Deterministic polynomial time: 

–  P : both Yes/No sides  
–  NP : certification for the Yes side 
–  co-NP: certification for the No side 

•  Randomized polynomial time: 
–  BPP: Atlantic City: prob(error) < 1/2 
–  RPP: Monte Carlo: prob(error YES side)=0 ; prob(error NO side)< 1/2 
–  ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0  

 
•  IP  Interactive proof 

–  Verifier: randomized polynomial time 
–  Prover: interactive (dynamic), unbound power 

•  F(x) = YES => it exists a correct prover Π such that   Prob[ Verifier (Π, x) accepts ] = 1; 
•  F(x) = NO => for all prover Π:            Prob[ Verifier (Π, x) accepts ] < 1/2. 

–  Theorem: IP = PSPACE   (interaction with randomized algorithms helps!) 
 

•  PCP: Probabilistiic Checkable Proofs (static proof) 
–  PCP( r, q ) :  the verifier uses random bits and reads q bits of the proof only. 
–  Theorem: NP=PCP( log n, O(1) )    



#3-SAT in IP 
•  Arithmetization in F2: each clause c has a poly. Q(c)  

•  Q( not(x) ) = 1-x     Q(x and y) = x.y 
•  Q( x or not(y) or z)=Q(not( not(x) and y and not(z))= 1–( (1-x).y.(1-z) ) 

•  Let F = c1 and … and cm a 3-SAT CNF formula, and  
g(X1, …, Xn) = Q(c1).Q(C2). … .Q(cm) :   deg(g) ≤ 3m 
 Then   #F = Σb1=0,1… Σbn=0,1 g(b1, …, bn) 

•  Since #F ≤ 2n, for p>2n,    (#F=K) is equivalent to (#F=K mod p) 
–  To limit to a polynomial number of operations, computation is performed 

mod a prime p in 2n .. 2n+1 (provided by prover and checked by verifier) 

 
•  Let hn(Xn) = Σb1=0,1… Σbn-1=0,1g(b1, b2, …, bn-1, Xn):  

  hn is an univariate polynomial (in Xn) of degree ≤ m 

#3-SAT: interactive polynomial proof 

Verifier 
 input:   F(X1, …, Xn) = (c1 and … and cm)           
             K an integer;  let g(x) = Πi=1,n Pol(ci) 
Accepts iff convinced that #F = K.  
Preliminar receive p, check p is prime in {2n, 22n} 
 Compute g(X1, …, Xn)= Πi=1,n Pol(ci)   deg(g)≤3m 
Check K= ΣX1=0,1… ΣXn=0,1 g(X1, …, Xn)  [p] : 
 1. If n=1, if (g(0)+g(1) = K ) accept ; else reject.  
    If n≥2, ask  hn(X) to P. 

 
 3. Receive s(X) of degree ≤m. 
    Compute v=s(0)+s(1); if (v ≠ K) reject. 
    Else choose r=random(0, … p-1); let Kn = s(r) 
    and use the same protocol to  check 
        Kn=ΣX1=0,1… ΣXn-1=0,1 g(X1, …, Xn-1, r) [p]  

Prover 
 Preliminar: sends p prime in {2n, 22n} 

2.  Send s(X) ;  [note that if P is not 
cheating, s(X) = hn(X)  ] 

Theorem: This is a sound and complete, polynomial time randomized 
                  interactive proof of #3-SAT.   
Moreover, prob( V rejects |  K ≠ #F) ≥ (1-m/p)^n ,  
                  also prob(error) ≤ 1-(1-m/p)^n  ≤ mn2-n .  
 



The End. 

What have we learned? 

•  Perfect secrecy: the ciphertext has 
always the same distribution, it provides 
no information on the plaintext.   
– Eg: OTP 

•  Computational security : 
– Based on the assumption that a one-way 

function exists. 
•  So that P ≠ NP  



•  One way-function and crypto hash functions 
–  Compression + extension scheme (with padding) 
–  Sponge construction  
–  Encryption from one-way function with short keys (of 

length n-c) to encrypt long messages (of length n) 
–  One-way from block cipher 

•  Secure pseudo-random generator 
–  Indistinguishability from true random (deskewing) 
–  Left and right unpredicability 

•  Interactive zero knowledge protocol 
–  Soundness + completness 
–  Zero-knowledge: simulation that provides a transcript 

indistinguighable from the correct interaction!  


