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Abstract

Most cryptographic hash functions rely on a simpler primitive called a compression function, and in nearly all cases, there
is a reduction between some of the security properties of the full hash function and those of the compression function.
For instance, a celebrated result of Merkle and Damg̊ard from 1989 states that a collision on the hash function cannot
be found without finding a collision on the compression function at the same time.

This is however not the case for another basic requirement, namely second preimage resistance. In fact, on many
popular hash functions it is possible to find a second preimage on the iteration without breaking the compression function.
This paper studies the resistance of two practical modes of operations of hash functions against such attacks. We prove
that the known generic second preimage attacks against the Merkle-Damg̊ard construction are optimal, and that there is
no generic second preimage attack faster than exhaustive search on Haifa, a recent proposal by Biham and Dunkelman.
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1. Introduction

Hash functions are ubiquitous cryptographic primitives.
They are used in authentication, encryption, signature
schemes, and serve as a building block in many higher-level
cryptographic functionality. Their are often assumed to
implement a public random function, and in all cases, the
very minimum requirement which can be expected from a
cryptographic hash function H : {0, 1}∗ → {0, 1}n is that
it should be:

• One-way. Given h ∈ {0, 1}n, finding a preimage
M such that H(M) = h should not be significantly
faster than hashing 2n random messages with H.

• Second-Preimage Resistant. Given M ∈ {0, 1}∗, find-
ing a second preimage M

� such that H(M) = H(M �)
should not be significantly faster than hashing 2n

random messages with H.

• Collision-Resistant. Finding two distinct messages
M and M

� such that H(M) = H(M �) should not
be significantly faster than evaluating H about 2n/2

times.

Most modern hash functions are the product of the
combination of a compression function, hashing a small
number of bits (typically 512) into a smaller number (typ-
ically 256), and of a mode of operation, describing how
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the compression function should be used to process arbi-
trarily big messages. The most popular and well-known
mode of operation is the Merkle-Damg̊ard construction,
introduced in 1989 and named after its two independent
inventors [1, 2]. One of its distinctive features is that it
promotes the collision-resistance and preimage resistance
of the compression function to the full hash function: for
instance, a collision on the compression function can be de-
duced efficiently from a collision on the full hash function.
Thus, in order to build a collision-resistant hash function,
it is sufficient to design a collision-resistant compression
function.

However, this is unfortunately not for case for sec-
ond preimage resistance. There is no proof that a sec-
ond preimage adversary against the hash function could
be turned into an adversary against the compression func-
tion. Even worse, in 2005, Kelsey and Schneier, extending
a recent result of Joux [3], gave a generic second preimage
attack against Merkle-Damg̊ard [4]. Here, the adjective
“generic”means that the attack does not exploit any prop-
erty of the compression function, and that it would work
even if the compression function were a public random
function. In some sense, it is an attack against the mode
of operation itself. This attack finds a second preimage of
any message of length about � by evaluating the compres-
sion function only 2n

/� times. Its inventor also re-exposed
an older result of Dean [5], who showed a similar attack in
the case where fixed points could be efficiently found on the
compression function (and it is the case for many popular
compression functions). Later on, Andreeva, Bouillaguet,
Fouque, Hoch, Kelsey and Shamir found a new generic
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second preimage attack [6], capable of dealing with vari-
ants of the Merkle-Damg̊ard mode specifically designed to
avoid the Kelsey-Schneier attack, such as Rivest’s dithered
hashing [7].

1.1. Towards Provable Resistance to Generic Attacks.
The existence of generic second preimage attacks, and

of a few other generic attacks [3, 8], demonstrated that
there was definitely a problem with the Merkle-Damg̊ard
construction, and motivated further research, and new modes
of operations have emerged. It also motivated hash func-
tion designers to provide proofs that their mode of oper-
ation is sounds, and that it does not suffer from generic
attacks.

1.1.1. New Modes
In 2005, Lucks introduced the Wide-Pipe Hash [9]. The

idea is to keep the internal state of the hash function twice
as big as the hash, so to finding a collision on the inter-
nal state by brute-force is infeasible. Using this fact, Lucks
provided proofs that generic second preimage attacks could
not be faster than brute force. The drawback is a slightly
larger memory footprint. This strategy has had a great
success, and it has been implemented by many hash func-
tion proposals that have advanced to the second round
of the ongoing SHA-3 competition, namely Blue Midnight
Wish, ECHO, Fugue, Gröestl, JH, SIMD and Skein.

In 2006, Biham and Dunkelman introduced Haifa, the
HAsh Iterative FrAmework in [10]. Haifa is a collection of
slight tweaks to the original Merkle-Damg̊ard mode, and
it does not enlarge the internal state. Its inventors claimed
that generic second preimage attacks against Haifa would
require a workload of 2n. This claim was not backed by a
security proof, but no attack has been found so far. The
decisive modification suggested by Haifa to the original
Merkle-Damg̊ard construction in order to thwart generic
second preimage attacks is the addition of a round counter
input to the compression function. This idea also has
had a great success, and it is implemented in four sec-
ond round SHA-3 candidates: BLAKE, ECHO, SHAvite-3
and Skein. The second-round candidate Shabal also has a
round counter, but it has a very different mode of opera-
tion.

In this paper, we will disregard the wide-pipe hash
and focus on narrow-pipe1 modes of operation, and more
specifically on Merkle-Damg̊ard and Haifa. The exact re-
sistance to generic second preimage attack of these two is
in fact unknown. Existing attacks give an upper-bound
above the birthday paradox, and the fact that a second
preimage is also a collision give a birthday-lower bound.
However, there is still a gap between those. So, the generic
second preimage security of Merkle-Damg̊ard is known to
lie somewhere between 2n/2 and 2n

/� queries, for messages

1We call “narrow-pipe” a construction where the internal state
has the same length as the digest

of size �, which that of Haifa lie somewhere between 2n/2

and 2n queries.

1.1.2. New proof Techniques
Since the introduction of the random oracle (RO) method-

ology by Bellare and Rogaway [11], cryptographic hash
functions have been widely used in protocols where they
act as the concrete realization of the random oracles (which
are public random functions). In other terms, the implicit
assumption was that a hash function should be a public
function with no special property, “as good” as if it were
randomly chosen amongst all functions with the same do-
main and range. This was clearly not the case of the
Merkle-Damg̊ard mode of operation, even with an ideal
compression function.

To face this challenge, the community widely used the
indifferentiability framework introduced by Maurer et al. [12]
to assess the security of new modes of operation. The
proof that a mode of operation H is indifferentiable from
a random oracle shows that in any cryptographic proto-
col, a random oracle can be replaced by the H-iteration of
a public random function (with fixed input length). This
guarantee amongst other things the impossibility of generic
attacks on the mode of operation.

This methodology has had some successes as well, in al-
lowing Coron, Dodis, Malinaud and Puniya to show that a
minor tweak of Merkle-Damg̊ard, called Prefix-Free-Merkle-
Damg̊ard was impossible to differentiate from a RO in less
than 2n/2 queries [13]. It also enabled Chang and Nandi to
show that any generic attack against the wide-pipe hash
would require 2n

/n queries [14].
Unfortunately, this proof technique cannot be used for

our purpose. First of all, it cannot say anything about
Merkle-Damg̊ard: this venerable mode of operation is not
indifferentiable from a random oracle, because of the so-
called length extension attack. More fundamentally, indif-
ferentiability can only be proved up to the birthday bound.
This follows from the fact that once a collisions on the
compression function has been found, then it can often be
used to build efficiently several pairs of colliding message
by exploiting the iterated nature of the process, and thus
allowing a distinguisher to tell apart the iteration from a
random function.

Obtaining provable security for one of the main prop-
erty of cryptographic hash functions therefore requires an
ad hoc approach.

1.2. Related Work.
Keyed hash functions provably achieving (keyed) sec-

ond preimage resistance beyond the birthday bound in the
standard model (based on the hardness of a computational
problem) have been proposed as early as 1989 by Naor and
Yung, under the name of Universal One-Way Hash Func-
tions (UOWHF) [15]. The same (keyed) security notion
has also been called “Target Collision Resistance” by Bel-
lare and Rogaway in 1997 [16], and “everywhere second
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preimage resistance” (eSec) by Rogaway and Shrimpton in
2004 [17]. Modes of operation promoting the eSec prop-
erty of the compression function to the whole construction
were proposed by Bellare and Rogaway in 1997 [16] and
by Shoup in 2000 [18]. Shoup’s construction is remark-
able as it has an n-bit internal state and provably achieves
O

�
2n−�

�
second preimage resistance for messages of size

at most �. This bound has recently been shown to be
tight thanks to the second preimage attack of [6]. How-
ever, these schemes hardly made it to the world of practi-
cal cryptography, as keyed hash functions are rarely used,
even though they are sufficient for signature applications.

In 2008, two key-less modes of operation were pre-
sented, that also obtain beyond-birthday second preim-
age security: Yasuda’s split-padding [19] and Andreeva’s
Three-property-secure hash function [20]. However these
proposal did not really make it to the practical world.

1.3. Our Goal and our Results.
The object of this paper is to provide beyond the birth-

day bound provable resistance against second preimage at-
tacks for Merkle-Damg̊ard and Haifa.

Our contribution is to show that if the compression
function is treated as a random oracle, then the second
preimage resistance is Ω

�
2n−k

�
for 2k-blocks messages in

Merkle-Damg̊ard, and Ω (2n) for Haifa. We therefore
demonstrate that the existing generic second preimage at-
tacks against Merkle-Damg̊ard are optimal and that there
is no generic second preimage attack at all against Haifa,
therefore closing the gap between attacks and proofs.

The main idea common to all the proofs presented in
this paper is almost directly adapted from the existing
generic second preimage attacks: we lower-bound the com-
plexity of one particular step common to all these attacks,
namely when some kind of a possible prefix has to be“con-
nected” to the target message.

Our security proofs are particularly simple and apply
to practical construction that were not designed with prov-
able security in mind. This is nevertheless the first time,
to our knowledge, that a non-trivial security result above
the birthday bound is given for practical narrow-pipe con-
structions.

1.4. Organization of the Paper.
The organization of this paper is as follows: in Section 2

we define a few notations we use through the rest of the
paper, give formal definitions of the modes of operation
we consider and discuss our security model. In Section 3
we offer proofs of security for the Merkle-Damg̊ard and
Haifa modes of iteration in the random oracle model. We
conclude the paper in Section 4.

2. Preliminaries and Definitions

Throughout the paper
��M

�� denotes the length of M in
blocks (and not in bits as usually done), i.e.,

��M
�� = � if

M has � blocks.

2.1. Iterated Constructions of Hash Functions
2.1.1. The Merkle-Damg̊ard mode of iteration.

The Merkle-Damg̊ard mode of iteration was indepen-
dently suggested in 1989 by Merkle [1] and Damg̊ard [2].
The hash function H

F : {0, 1}∗ → {0, 1}n is built by it-
erating a compression function F : {0, 1}n

× {0, 1}m
→

{0, 1}n. The hash process works as follows:

• Pad and split a message M into r blocks x1, . . . , xr

of m bits each.

• Set h0 to the initialization value IV .

• For each message block xi compute hi = f (hi−1, xi).

• Output H
F (M) = hr.

The padding is done usually by appending a single ’1’
bit followed by as many ’0’ bit as needed to complete a m-
bit block including the length of M in bits (the well-known
Merkle-Damg̊ard strengthening). The strengthening guar-
antees that a collision on F can be directly read off from
a collision on H

F .

2.1.2. The Haifa mode of iteration.
The HAsh Iterative FrAmework (Haifa), introduced

by Biham and Dunkelman [10], is a Merkle-Damg̊ard con-
struction where a bit counter and salt are added to the
input of the compression function, amongst other features.
We shall disregard the salt and all the other features through-
out this paper (as they do not affect our results). We will
therefore describe a study a simplified version of Haifa,
but our result are directly applicable to the full version.
We describe an instance of Haifa with a 64-bit counter
(this matches the sizes used in currently deployed hash
functions). The HAsh Iterative FrAmework H

F is built
by iterating a compression function F : {0, 1}n

×{0, 1}m
×

{0, 1}64
→ {0, 1}n as follows:

• Pad and split a message M into r blocks x1, . . . , xr

of m bits each.

• Set h0 to the initialization value IV .

• For each message block xi compute hi = F (hi−1, xi, i).

• Output H
F (M) = hr.

The padding is done by appending a single ’1’ bit fol-
lowed by as many ’0’ bit as needed to complete an m-bit
block after the message length and the digest size are ap-
pended.

2.2. Computational Model
The proofs presented in this paper assume that the

compression function is an ideal primitive, to which information-
theoretic (i.e., computationally unbounded) adversaries have
oracle access. Their only obstacle to achieving an attack
is the randomness of the query response. The number of
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queries sent to the primitive can then be used as a mean-
ingful complexity measure (because the adversary cannot
obtain any kind of advantage by computation alone with-
out querying the function). In any case, it gives a lower-
bound on the time complexity of the adversary. This set-
ting is very similar to the analysis of block cipher-based
constructions in the ideal cipher model of Black, Rogaway
and Shrimpton [21].

We often denote by q the number of queries sent to the
compression function F by an adversary A. For the sake of
convenience, we enforce second preimage adversaries not
to abort, to always return a message M , even if they do
not win the security game, and to evaluate H

F (M) before
terminating, by issuing the corresponding queries to the
compression function. We also enforce adversaries not to
ask the same query twice.

2.3. Second Preimage Resistance.
Amongst the numerous notions of second preimage re-

sistance, we will consider the one defined by the following
game: a second preimage adversary A has oracle access to
a compression function F . It receives a randomly gener-
ated challenge M of length �, and succeeds if it outputs
a second message M

� such that M �= M
� and H

F (M) =
H

F (M �), where H is an iteration mode for F (such as
Merkle-Damg̊ard or Haifa). Such an adversary (q, �, ε)-
breaks H

F if after at most q queries to F its success
probability is lower-bounded by ε. A hash function H

F

is (q, �, ε)-second preimage resistant (SPR) if the advan-
tage for messages of length � of any attacker asking at
most q queries is upper-bounded by ε.

3. Security Proofs

We now come to the core of this paper, namely that
it is possible to achieve beyond-the-birthday-bound sec-
ond preimage resistance when the compression function is
considered to be ideal.

3.1. Second Preimage Resistance of the Merkle-Damg̊ard
Construction

We now prove that the complexity of known generic
second preimage attacks against Merkle-Damg̊ard, which
is of order 2n

/� for messages of length �, are optimal.

Theorem 1. Let F be a public random function, H
F be

the Merkle-Damg̊ard iteration of F , and A be a second
preimage adversary against H

F which (q, �, ε)-break H
F .

Then:
ε ≤ q · �/2n

.

Proof. Consider an adversary A that (q, �, ε)-breaks the
second preimage resistance of H

F . We denote by hi, for
1 ≤ i ≤ �, the chaining values obtained while hashing M ,
according to the description in section 2.1.1. If A succeeds
in finding a second preimage, then in particular A has

found a collision. As argued in section 2.1.1, in the pres-
ence of the Merkle-Damg̊ard strengthening, this implies a
collision on the compression function F . In our case, there
exists an index i0 such that one of the colliding chaining
value is hi0 . This collision on F is therefore actually a
second preimage of hi0 for F . Note that because F is a
random function, all the hi’s are random values.2

We now give an upper bound on the probability that
A finds a second preimage of one out of � random chaining
values. We simulate the execution of A, and bookmark the
queries sent to the oracle for F . Every time A submits a
new query to the oracle, it receives a uniformly-distributed
random value. The probability that A wins thanks to this
particular query is upper-bounded by the probability that
this random value is one of the hi’s. This probability is
exactly � · 2−n. Since A sends at most q queries, A wins
with probability at most q · � · 2−n. �

It must be noted that this proof is fairly general, be-
cause it reduces the problem of finding a second preimage
for H

F to the problem of finding a second preimage of one
out of many random chaining values for F . It actually
covers nearly all the existing iterated hash functions; for
example, it could be adapted to the Envelopped Merkle-
Damg̊ard mode of iteration of Bellare and Ristenpart [22],
to Shoup’s UOWHF [18], to Rivest’s dithered hash [7], to
Haifa [10], etc.

3.2. Second Preimage Resistance of Haifa

The inventors of Haifa claim that it has optimal resis-
tance against generic second preimage attacks. The bound
given by theorem 1 is however not strong enough to back
up their claim. A slightly more involved proof technique
is required to prove that Haifa achieves optimal second
preimage resistance. The next theorem captures the intu-
itive idea that the known generic second preimage attacks
do not work against Haifa.

Theorem 2. Let F be a public random function and H
F

be the Haifa-iteration of F , and A a second preimage ad-
versary that (q, �, ε)-break H

F . Then:

ε ≤ q/2n−1
.

Proof. We simulate the execution of the adversary A,
and bookmark the queries sent by A to F : it is a set S of
tuples (x, m, c, y), with y = F (x, m, c). We suppose that A
evaluates H

F (M), so A sends the corresponding queries to
the oracles at some point. Let us denote these particular
queries (hi−1, mi, ci, hi)1≤i≤�. In particular, H

F (M) = h�.
Suppose now that A wins. We first eliminate the spe-

cial case when A finds a preimage of h� for F (this essen-
tially means that A has found a preimage without using
the fact that M is known).

2We note that this claim is not necessarily true when the message
is long and there are collision between the various chaining values.
However, as this has a non-negligible probability only when � ≥
O(2n/2), we allow ourselves to disregard such very long messages.
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1. If
��M

�� �=
��M �

��, then the values of the counter enter-
ing the compression function in its last invocation are
different. Therefore, A has found a second preimage
on F . Each query has a probability 2−n to give this
preimage, because F is a random function.

2. Otherwise,
��M

�� =
��M �

��. This means that A has
found collision with M , similarly to what happens
in the proof of theorem 1. We model this situation
with the following event, that we call E. Intuitively,
E is realized as soon as A submits a query to F the
answer of which gives a second preimage of one of the
hi. Formally, E is realized if and only if there is in S a
query (x, m, i0, hi0) for a given value of i0 (recall that
hi0 is the i0-th chaining value obtained in the process
of hashing M), and such that (x,m) �= (hi0 , mi0).

Claim 1. If A wins and
��M

�� =
��M �

��, then E is realized.

Justification. Thanks to the result of Merkle-Damg̊ard,
we know that there is a collision on the compression func-
tion where one of the colliding hash value is one of the
hi. However, this is not sufficient to say that E is real-
ized, because we would need to know that the values of
the counter are actually the same. We now prove that it
is indeed the case.

Lemma 3 (CR Preservation on Haifa). Let H
F be the

Haifa iteration of an arbitrary compression function F . If
H

F (M) = H
F (M �) with M �= M

� and
��M

�� =
��M �

��, then
there is a collision on F , with the same value of the counter
(this means that E is realized).

Proof. let us note M = x1, . . . , xr, M
� = x

�
1, . . . , x

�
r,

h0 = h
�
0 = IV , hi = F (hi−1, xi, i) and h

�
i = F (h�i−1, x

�
i, i).

Since hr = h
�
r, either there is a collision on F (with

counter value r), or (xr, hr−1) = (x�r, h�r−1). In the latter
case, either there is a collision for F (with counter value r−

1) or (xr−1, hr−2) = (x�r−1, h
�
r−2). This argument repeats.

Since
��M

�� =
��M �

��, then either there is a collision for F

at some point (with the same counter value), or xi = x
�
i,

for all i, 1 ≤ i ≤ r. In the latter case, M = M
�, which is

impossible. This completes the proof of the lemma. �
To complete the proof of theorem 2, we now show an

upper-bound on the probability that E is realized. When
A submits its i-th query to the simulator (and note that
the number i is part of the query), a random value is cho-
sen by the simulator and returned to A. The event E is
realized if and only if this value is hi, and this happens
with probability 2−n. This query may also allow A to in-
vert h� with probability 2−n. Each query allows A to win
with probability 2−(n−1), and there are q queries, which
completes the proof. �

4. Conclusion: What do we Learn From These
Proofs?

These two results rely crucially on the fact that the
compression function is modeled as a public random func-

tion. For this reason, it could be argued that since no
actual compression function will ever satisfy this hypoth-
esis, then our results are vacuous.

Considering the underlying primitive to be ideal is a
natural idea when reasoning about modes of iteration of
hash functions. The 64 block-cipher based compression
functions first analyzed by Preneel, Govaerts and Van-
dewalle [23] were later proved secure in the Ideal Cipher
model by Black, Rogaway and Shrimpton [21], i.e. assum-
ing that the underlying primitive is ideal. At the very least,
the security results obtained in our model imply security
against generic attacks, so they say something meaningful
about the security of the mode of iteration itself.

For example, we know that the existing generic second
preimage attacks [6, 8, 4] are almost optimal: in order to
find a second preimage of a message of size � on Haifa

in less than 2n operations, or on Merkle-Damg̊ard in less
than 2n

/� operations, an attacker will have to take a look
at what is happening inside the compression function.
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