
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. COMPUT. c© 2010 Society for Industrial and Applied Mathematics
Vol. 39, No. 5, pp. 2090–2112

INFORMATION-THEORETICALLY SECURE PROTOCOLS AND
SECURITY UNDER COMPOSITION∗

EYAL KUSHILEVITZ† , YEHUDA LINDELL‡ , AND TAL RABIN§

Abstract. We investigate the question of whether the security of protocols in the information-
theoretic setting (where the adversary is computationally unbounded) implies the security of these
protocols under concurrent composition. This question is motivated by the folklore that all known
protocols that are secure in the information-theoretic setting are indeed secure under concurrent
composition. We provide answers to this question for a number of different settings (i.e., considering
perfect versus statistical security, and concurrent composition with adaptive versus fixed inputs). Our
results enhance the understanding of what is necessary for obtaining security under composition, as
well as providing tools (i.e., composition theorems) that can be used for proving the security of
protocols under composition while considering only the standard stand-alone definitions of security.

Key words. theory of cryptography, secure multiparty computation, information-theoretic
security, security under composition

AMS subject classifications. 94A60, 68Q17, 68Q25

DOI. 10.1137/090755886

1. Introduction.

1.1. Background. In the setting of secure multiparty computation, a set of
parties with private inputs wishes to jointly compute some function of their inputs.
Loosely speaking, the security requirements of such a computation are that nothing
is learned from the protocol other than the output (privacy), and that the output
is distributed according to the prescribed functionality (correctness). More exactly,
the result of an execution of a secure protocol must be like the result of an “ideal
execution” with a trusted party who honestly computes the function for the parties
(cf. [7] or [18, section 7.1]). These security requirements must hold in the face of
a malicious adversary who controls some subset of the parties and can arbitrarily
deviate from the protocol instructions. We focus on secure function evaluation here
(although we do not know of any difference between this setting and that of reactive
functionalities). Our results hold for both static and adaptive corruptions.

Secure multiparty computation has been studied in a number of different scenar-
ios. One important distinction relates to the power of the adversary, yielding two
main settings.

1. The information-theoretic setting. In this setting, the adversary is compu-
tationally unbounded. Thus, security here does not rely on any unproven
complexity assumptions; rather, it is “information theoretic.” There are two
levels of security that have been considered here.

∗Received by the editors April 13, 2009, accepted for publication (in revised form) December
20, 2009; published electronically March 5, 2010. An extended abstract of this work appeared in
Proceedings of the 38th Annual ACM STOC, 2006.

http://www.siam.org/journals/sicomp/39-5/75588.html
†Department of Computer Science, Technion Israel Institute of Technology, Haifa 32000, Israel

(eyalk@cs.technion.ac.il). This author’s research was supported by grant 36/03 from the Israel Sci-
ence Foundation.

‡Department of Computer Science, Bar-Ilan University, Ramat Gan, 52900, Israel (lindell@cs.biu.
ac.il).

§IBM T.J. Watson Research, Yorktown Heights, NY 10598 (talr@us.ibm.com).

2090



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2091

(a) Perfect security. Very informally, here the result of a real execution
of the protocol with a real adversary must be exactly the same as the
result of an ideal execution with a trusted party and an ideal-world
adversary/simulator.

(b) Statistical security. Here, the result of the real protocol execution need
“only” be statistically close to the result of an ideal execution.

It has been shown that, assuming that more than two thirds of the parties are
honest (or assuming a simple majority if the parties are additionally given a
broadcast channel), it is possible to securely compute any functionality [5, 10,
28, 2]. We note that these results assume that the parties can communicate
via perfectly secure communication channels.

2. The computational setting. In this setting, the adversary is assumed to run in
probabilistic polynomial-time, and the security of protocols typically relies on
the assumed hardness of some problem (such as factoring a large composite
into its prime factors). Under appropriate cryptographic assumptions, it
has been shown that any functionality can be securely computed, even if
an overwhelming majority of the parties are corrupted [29, 19].1

Another important distinction relates to the setting in which the protocol is exe-
cuted. We relate here two possible scenarios.

1. The stand-alone model. In this setting, the secure protocol is executed only
once, and it is assumed that this is the only protocol being executed. This
was the standard setting for analyzing protocols initially; e.g., the results of
[29, 19, 5, 10, 28, 2], cited above, were all obtained in this setting.

2. Security under composition. In this setting, a protocol is executed many
times, possibly alongside other (secure and insecure) protocols. Security in
such cases is referred to as security under composition. There are many
different types of composition, and we will mention two here.
(a) Concurrent general composition (a.k.a. universal composition). In this

setting, a protocol is run many times in an arbitrary network, possibly
alongside other (secure and insecure) protocols. Concurrent composition
implies that the scheduling of the delivery of all messages sent (even mes-
sages sent between honest parties) is fully controlled by the adversary.
See, e.g., [12, 27, 8].

(b) Concurrent self-composition. In this setting, a single protocol is run
many times concurrently (with itself) in a network. See, e.g., [15, 13, 14].
Again, the scheduling of the delivery of all messages sent is under the
control of the adversary.

The question of security of protocols under concurrent composition has re-
ceived a lot of attention recently (see, e.g., [14, 12, 27, 8, 23, 25, 24] and much
more).

It was believed that all protocols (or at least, all known protocols) that are secure
in the information-theoretic setting, even when proven secure only in the stand-alone
model, are secure under concurrent composition. In this paper, we study this belief
and more generally the interesting connection between information-theoretic security
and security under composition. Our aim in initiating this study is twofold. First, as
our results demonstrate, understanding this connection deepens our understanding of
what is required for obtaining security under composition. Second, due to its complex

1When no honest majority is assumed, the definition of security is slightly relaxed so that fairness
is not required.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2092 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

nature, the task of proving the security of protocols under composition is a difficult
one and we obtain a number of results that simplify this task.

1.2. Our results. As we have mentioned, the folklore prior to our work seems to
have been that all protocols that are secure in the information-theoretic stand-alone
setting are also secure under concurrent general composition. The reason for this
folklore appears to be based on the fact that all known protocols in the information-
theoretic setting are proven secure using a straight-line black-box simulator,2 and the
existence of such a simulator was believed to suffice for proving the security of a
protocol under concurrent general composition. Indeed, it is common to hear the
claim that universal composability (that implies security under concurrent general
composition) is essentially the same as stand-alone security with the exception that
the simulator is not allowed to rewind the adversary. We begin by showing that this
folklore belief is false. That is, we obtain the following, informally stated, proposition.

Theorem 1.1 (counterexample—informal). There exist protocols that are sta-
tistically secure in the stand-alone information-theoretic model and are proven secure
using straight-line black-box simulation, and yet are not secure under concurrent gen-
eral composition.

The idea behind the proof of Theorem 1.1 is quite simple and is due to the issue
of “delayed inputs.” Namely, in the setting of concurrent general composition, the
parties run completely asynchronously and so some parties may begin a protocol
execution before others begin. In fact, some parties may begin a protocol execution
before others have even determined their input to that execution. This results in
a possible scenario whereby the first message that one party sends in a protocol
execution can be set as the input of another party to that execution. If the first
message of the parties has high entropy, then in the stand-alone setting one party’s first
message will equal another party’s input with only negligible probability. Thus, one
can construct a protocol that will fail if this happens (and so will not be secure under
concurrent general composition), but is otherwise statistically secure with straight-line
simulation.

Although Theorem 1.1 demonstrates that stand-alone information-theoretically
secure protocols are not necessarily secure under concurrent general composition, the
fact that the source of the problem seems to be “delayed inputs” (as described above)
implies that there may be a simple way to circumvent the problem. In addition, the
proof of Theorem 1.1 relies inherently on the ability of the stand-alone protocol to
fail (albeit with negligible probability). This raises the question as to whether or not
delayed inputs are problematic in the setting of perfect security. We consider these
questions and more.

Perfect security. We prove the following theorem regarding perfectly secure pro-
tocols.

Theorem 1.2 (perfect security—informal). Every protocol that is perfectly secure
in the stand-alone model, and has a straight-line black-box simulator, is secure under
concurrent general composition.

The intuition behind the proof of Theorem 1.2 is that if a protocol is not secure
under concurrent general composition, then there must be some setting of inputs and

2A black-box simulator is one that works while being given only oracle access to the adversary;
see [17, section 4.5] for a detailed definition. Such a simulator is straight-line if it interacts with the
adversary in the same way as real parties. That is, it first sends the adversary all of the messages
it expects to receive from the honest parties in the first round. It then proceeds round by round,
without ever going back.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2093

random tapes for the honest parties in the concurrent setting for which the protocol
“fails” (i.e., does not behave as it should). Although such a “fail event” may happen
with only negligible probability in the stand-alone setting, this is enough to contradict
perfect security that requires that protocols never fail.

Contrasting Theorems 1.2 and 1.1, we uncover a fundamental gap between the
statistical and perfect notions of security; namely, perfectly secure protocols have a
real advantage over statistically secure protocols, and so perfect security is not just
an issue of aesthetics. To the best of our knowledge, this is the first example of such
a separation.

Beyond its theoretical interest, Theorem 1.2 provides a useful tool for proving the
security of protocols under concurrent composition. Specifically, it suffices to consider
that the standard stand-alone definitions and security in the far more complex setting
of concurrent composition can be derived as long as a perfect, black-box straight-line
simulator is constructed. Thus, a corollary of Theorem 1.2 is that the protocol of [5]
is secure under concurrent general composition.3

We remark that, under strictly more stringent conditions, a theorem similar to
Theorem 1.2 was proven in [12], and that the theorem of [12] is also sufficient to derive
the security of [5] under concurrent general composition. See section 1.3 for a more
detailed comparison of their work with ours.

Fixed inputs. As we have seen, statistical security under straight-line black-box
simulation is insufficient for obtaining security under concurrent general composition.
Furthermore, our proof of this relies on the fact that one party’s input can be derived
from another party’s behavior in the protocol. This raises the question as to whether
straight-line black-box simulation suffices when inputs cannot be dynamically chosen,
and in particular in the setting of fixed inputs where each honest party receives all of
its inputs before any execution begins. That is, at the onset, each party receives a
vector of inputs x = (x1, x2, . . .) and uses xi as its input to the ith protocol execution.
(We note that despite the fact that this looks like a very relaxed notion of security,
until now there was no known separation between security under general composition
with fixed or with adaptively chosen inputs.) We show that security under straight-
line black-box simulation does suffice for obtaining security under concurrent general
composition with “fixed inputs.” That is, we prove the following theorem.

Theorem 1.3 (fixed inputs—informal). Every protocol that is secure in the
stand-alone model, and has a straight-line black-box simulator, is secure under con-
current general composition with fixed inputs.

Theorem 1.3 holds for computational, statistical, and perfect security. Therefore,
as a corollary to Theorem 1.3, we obtain that the protocols of [10, 28, 11]—which have
straight-line black-box simulators—are all secure under concurrent general composi-
tion with fixed inputs. Also, by combining Theorem 1.3 with Theorem 1.1, we obtain
the first separation between security under general composition with fixed inputs and
with adaptively chosen inputs. That is, we have the following corollary.

Corollary 1.4. There exist protocols that are secure under concurrent general
composition with fixed inputs, and are not secure under concurrent general composition
with adaptively chosen inputs.

Since general composition implies self-composition, we have that every protocol

3The protocol of [5] was designed for the synchronous setting whereas, in the setting of con-
currency, the network is essentially asynchronous [6, 16, 4]. Thus, what we really refer to here
is an appropriately modified version of [5]; see section 2 for a detailed discussion on the issue of
synchronicity.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2094 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

that is secure in the stand-alone model, and has a straight-line black-box simulator,
is secure under concurrent self-composition with fixed inputs. This is interesting for
historical reasons as the classic problem of concurrent zero-knowledge [14] is exactly
in the setting of concurrent self-composition with fixed inputs.

Theorem 1.3 states that any protocol that is proven secure with a straight-line
black-box simulator is secure under concurrent general composition with fixed inputs
(and therefore also secure under concurrent self-composition with fixed inputs). Since
self-composition is a more restricted setting, this begs the question as to whether
straight-line black-box simulation—without fixed inputs—suffices for achieving con-
current self -composition. However, by the equivalence shown in [24] (stating that
concurrent self- and general composition are almost equivalent for adaptively cho-
sen inputs), this is clearly not possible because, as stated in Theorem 1.1, black-box
straight-line simulation does not suffice for concurrent general composition.

Input availability/start synchronization. Finally, we ask whether there is a sim-
ple property of protocols that can be required, in addition to a protocol having a
straight-line black-box simulator, so that it will be secure under concurrent general
composition. We have shown that requiring fixed inputs, i.e., that all inputs to all
invocations of the executed protocols be set prior to the start of any protocol, yields
security under concurrent general composition. However, this is a very restrictive re-
quirement that applies to the invocations and not to the protocol, and it severely limits
the applicability of the protocols. We therefore ask whether it is possible to achieve
concurrent general composition by imposing a less restrictive (and more realistic)
property on the protocol. Our aim is to define a minimal property that circumvents
the problem of “delayed inputs,” with the hope that this suffices for achieving security
under composition.

We show that it is sufficient to require that the inputs of all parties participating
in each specific invocation of a protocol be fixed before this execution begins. We call
this property input availability. We stress that the inputs need not be fixed before all
protocol executions begin (as in the assumption of fixed inputs); rather, we require
that the inputs of all parties to each specific execution be fixed before that execution
begins. Formally, this holds if all honest parties have read (and fixed) their input to
an execution before any of the honest parties sends the first message of the proto-
col. In order to see why this seemingly small modification makes a difference, recall
Theorem 1.3, which states that the existence of a straight-line black-box simulator
is sufficient to demonstrate security under composition as long as the parties’ inputs
are fixed before any execution begins. Now, if the parties’ inputs are not fixed at the
onset, but are fixed before a specific execution begins, then it is still possible to view
everything that happened before the specific execution as auxiliary input that deter-
mines the parties’ inputs to that execution. This enables us to reduce the security of
the specific execution to the stand-alone setting, while the auxiliary input is used to
emulate all the other concurrent executions. Stated differently, when input availabil-
ity holds, the setting is essentially the same as that of fixed inputs (cf. Theorem 1.3),
and so security under concurrent general composition holds.

We stress that when input availability does not hold, it is not possible to emulate
all concurrent executions outside of a specific execution using an auxiliary input. This
is because, by definition, auxiliary input is fixed before the protocol execution begins
and thus must be independent of the random tapes of the parties. However, if a
party’s input is determined only after other parties have already begun the execution,
then there is no guarantee of independence. Indeed, this is exactly how we prove the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2095

counterexample of Theorem 1.1.
Importantly, it is possible to ensure that the above property holds using a simple

protocol preamble that we call start synchronization. Specifically, when a party has
received its input to an execution and is ready to begin executing, it broadcasts a
message to all other parties that it is ready to begin. The parties then only commence
the actual execution after they have heard from all other parties that they are ready.
This has the effect of ensuring that the actual protocol execution begins only after all
parties’ inputs have already been fixed (because no party begins until it hears from
all other parties that they are ready to start, meaning that they already have input).
This modification captures the essence of what is needed for the composition, which
is that the inputs for each single execution of a protocol be known prior to the start
of the execution. Thus, we have the following theorem.

Theorem 1.5 (black-box straight-line and start synchronization—informal). Ev-
ery protocol that is secure in the stand-alone model and has start synchronization and
a straight-line black-box simulator is secure under concurrent general composition.

We remark that Theorem 1.5 holds for computational, statistical, and perfect
security. Since any protocol can easily be modified so that it has start synchronization,
we achieve the following corollary (informally stated).

Corollary 1.6. Assuming a broadcast channel and an honest majority, every
(standard, nonreactive) functionality can be computed by a statistically secure protocol
under concurrent general composition.

Note that Corollary 1.6 is stated in terms of functionalities while our other results
are stated as results about protocols; the corollary is obtained by applying Theorem 1.5
to the protocols of [28, 2], once modified by adding start synchronization. We remark
that this is the first proof of the existence of such protocols. The main novelty of this
corollary is that it is the first proof that there exist protocols that achieve fairness in
the setting of concurrent general composition, assuming an honest majority (previ-
ously, this was known only for the case that more than two thirds of the parties are
honest). The fact that the protocol of [28] is universally composable and thus secure
under concurrent general composition was claimed with a high-level proof sketch in
an early version of [8].

Summary. Table 1 below summarizes our results; the security level “all” means
that the result holds for computational, statistical, and perfect security. We remark
that the proof of Theorem 1.3 is actually a simple special case of the proof of Theo-
rem 1.5. We therefore first prove Theorem 1.5 (in section 6) and only then Theorem 1.3
(in section 7).

Table 1

A summary of our results.

Theorem Simulator Security level Composition
Theorem 1.1 straight-line, statistical or not necessarily secure under

black-box computational concurrent general composition
Theorem 1.2 straight-line, perfect secure under concurrent

black-box general composition
Theorem 1.3 straight-line, all secure under concurrent general

black-box composition with fixed inputs
Theorem 1.5 straight-line, all secure under concurrent

black-box + start synchronization general composition

A definitional discussion. A fundamental difference between the definitions of
security in the stand-alone setting and security under composition via universal com-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2096 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

posability [8] is the question of whether the distinguisher is passive and views the
result of the execution after it terminates (as in the stand-alone setting) or whether
it is interactive and views the intermediate stages of the computation as well (as in
universal composability). (Note that although we formally use the definition of con-
current general composition, and not universal composability, these are known to be
equivalent [25].) In this light, it is possible to technically interpret our results as a
study of the relation between security under passive and interactive distinguishers,
and not as a study of the relation between stand-alone security and security under
composition. Nevertheless, the equivalence of universal composability (a stand-alone
definition with an interactive distinguisher) and concurrent general composition (a
definition that considers composition and a passive distinguisher) demonstrates that
these perspectives are essentially the same.

1.3. Related and subsequent work. As we have mentioned, the question of
composition of information-theoretic protocols was previously studied in [12]. Those
authors showed that any protocol that is secure under their definition (which is a slight
modification of the definition of [26]) is secure under concurrent general composition.
There are three main requirements in the definition considered in [12]: (a) the protocol
must be perfectly secure; (b) a straight-line black-box simulator must be used; and
(c) there must be a fixed “committal round” at which point all of the parties’ inputs
are fully defined by the protocol traffic, but no parties have yet received output. In
contrast, our proof of Theorem 1.2 requires (a) and (b), but not (c). (We note that
the proof of [12] relies explicitly on this property, as stated in [12, section 4.3].) Apart
from Theorem 1.2, there is no overlap between our work and the work of [12]. Indeed,
they leave the question of statistical security open, and we provide both positive and
negative answers (depending on the setting).

An interesting question that arises from our work relates to the necessity (or lack
thereof) of straight-line simulation in our results. Specifically, both Theorems 1.2
and 1.3 require that the original black-box simulator be “straight-line”. This raises
the question as to whether the requirement that the simulator be straight-line is
inherent or whether similar theorems could be proven also if the simulator is not
straight-line. In the conference version of this paper [22] we claimed that the theorems
could be extended to any black-box simulator by showing a method to convert a
rewinding polynomial-time simulator into a straight-line exponential-time simulator
(even though the resulting simulator is not efficient, this can still be of some interest
in the information-theoretic setting). However, our proof was erroneous and it was
shown in [1] that there exist perfectly secure protocols (for the stand-alone model) for
which any black-box simulator must use rewinding and which are not secure under
concurrent composition even with an inefficient simulator.

We remark that the proof of a similar result to Theorem 1.1 was obtained inde-
pendently and concurrently in [21]. In [21] it is also proven that any protocol that is
perfectly secure under bounded concurrent general composition is also secure under
(unbounded) concurrent general composition. We prove a much stronger result here;
namely, that it suffices to prove perfect security in the stand-alone model.

2. On concurrent composition and the synchronous model. In this paper,
we consider protocols that were proven secure in the stand-alone model, and we ana-
lyze their security in the setting of concurrent composition. There are two “standard”
modes of message scheduling in the stand-alone setting: synchronous scheduling and
asynchronous scheduling. In the first, all parties send the messages of a given round at



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2097

the same time, and these messages arrive at their destination instantaneously.4 In the
asynchronous setting [6, 16, 4], the adversary is given full control over the scheduling
of the sending and receiving of messages, with the requirement that all messages be
eventually delivered. Now, in the standard model of concurrent computation [8], the
adversary is given full control over the delivery of messages, as in the asynchronous
model, but need not ever deliver messages sent by the honest parties. That is, unlike
in the asynchronous setting where all messages must eventually be delivered, in the
standard concurrent setting the adversary may completely block some of the honest
parties and never deliver their messages. As such, it is not possible to guarantee out-
put delivery or fairness (at least when concurrency is modeled in this way). Thus, the
best that we can hope for in the concurrent setting is security with abort (meaning
that the adversary may receive output while the honest parties do not), as in the
stand-alone setting with no honest majority.5

As we have mentioned, in this paper we analyze the security under concurrent
composition of protocols that were designed for the stand-alone model. In order to
maintain compatibility between these models, we consider the security under con-
current composition of protocols that are secure with abort in the stand-alone model
when the adversary has full control over message delivery. We stress that this includes
the capability of the adversary to completely block messages between honest parties,
unlike the stand-alone asynchronous model where all messages must eventually be de-
livered. Since this is not the standard model for stand-alone computation (neither for
the synchronous nor asynchronous model), we need to discuss how to execute these
protocols when the adversary has full control including blocking. For the synchronous
model, we show below how to convert any secure protocol designed as a stand-alone
protocol (with or without abort) into a protocol that is secure with abort in the model
where the adversary has full control over message delivery (including blocking). The
case of the asynchronous setting is more straightforward. The adversary’s actions in
the concurrent setting (where message blocking is allowed) is actually a prefix of an
adversary’s actions in the asynchronous setting where all messages must eventually
be delivered (this can be seen by viewing a blocked message simply as a message that
was not yet delivered). This immediately implies that the security of any protocol
designed in the asynchronous setting is not violated by the scheduling of an adversary
who can also block messages. We stress, however, that if the adversary does not com-
plete the delivery of messages as required in the asynchronous setting, then output
delivery and fairness may not be achieved. This implies that the level of security
obtained is still only security with abort. We conclude that asynchronous stand-alone
protocols can be executed unmodified in the presence of an adversary who is also
allowed to block messages, with the result that security with abort is achieved. We
now proceed to describe the transformation for the synchronous protocols.

4It is typically assumed that the adversary may receive the messages from the honest parties in
any given round before it sends its own. This is called “rushing.”

5In the asynchronous stand-alone model of secure computation, output delivery and fairness are
guaranteed to some extent. Loosely speaking, the definition of [4] allows the adversary to exclude up
to t honest parties’ inputs from the computation (where t denotes the maximum number of corrupted
parties), but guarantees fairness and output delivery for all others. This can be achieved because the
adversary must eventually deliver all messages; see [4] for details. (We remark that the exclusion of t
parties is possible because the honest parties cannot know whether those t parties are corrupted and
will never send their messages or whether they are honest and the adversary has not yet delivered
their messages. Thus, they cannot wait for all messages because they may be from corrupted parties
and so may never arrive.) In contrast, when no parties’ messages need to be eventually delivered, it
is not possible to do better in general than security with abort.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2098 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

Modifying synchronous protocols for the concurrent setting. Protocols that were
designed for the stand-alone synchronous model are proven secure based on the as-
sumption that the protocol advances from round to round based on some global clock
(or round synchronizer). In particular, it is assumed that all parties send and receive
their round i messages before proceeding to round i+1. When the adversary has the
ability to schedule the messages as it wishes, then some parties may receive all round
i messages and therefore proceed to send their round i+1 messages before others have
concluded the previous round. In such a case, the security properties of the protocol
may be violated.

In order to solve this problem, we modify the stand-alone synchronous protocol
so that no party will proceed to round i + 1 before all parties conclude round i,
irrespective of when and if messages are delivered. We achieve this by adding a
“synchronization step” between each round of the protocol. Specifically, after an
honest party has sent its round i messages, it is instructed to wait for all of its
incoming round i messages. Then, upon receiving all round i messages, the party
broadcasts a notification to all other parties that it has completed round i. It then
continues to wait to receive notifications that all parties have completed round i. Once
all notifications are received, the parties proceed to round i+1. (We can also assume
that honest parties concatenate the round index to every message they send so that
the adversary cannot replay messages from previous rounds.) Such modifications
can be trivially made to every protocol that is secure with or without abort in the
synchronous setting, and the result is a protocol that remains secure with abort when
the adversary has full control over message delivery. (We stress that when applying
the transformation to a protocol that is secure without abort, meaning that fairness
and output delivery are guaranteed, the result is still a protocol that is only secure
with abort. Thus, in all cases, fairness and output delivery are no longer guaranteed
since the adversary can mount a simple denial-of-service attack by not forwarding a
parties’ messages.)

3. Definitions and notation. In this paper we study the connection between
a number of different notions of security for multiparty computation. Specifically, we
refer to information-theoretic security (perfect and statistical) and to computational
security. In addition, we consider stand-alone computation (where only a single proto-
col execution takes place) versus concurrent general composition. Finally, we consider
the restriction to the case that all inputs are fixed ahead of time.

In this section, we present the definitions and terminology that we use in this
paper. We provide only brief outlines of the definitions and refer the reader to [18,
Chapter 7] for definitions of secure multiparty computation in the stand-alone setting,
and [25] for the definition of security under concurrent general composition.

Preliminaries. A function μ is negligible if for every polynomial p there exists an
integer N such that for every k > N it holds that μ(k) < 1/p(k). Two distribution
ensembles {X(k, a)}k∈N,a∈{0,1}∗ and {Y (k, a)}k∈N,a∈{0,1}∗ are computationally indis-

tinguishable, denoted {X(k, a)} c≡ {Y (k, a)}, if for every nonuniform polynomial-time
distinguisher D there exists a negligible function μ such that for all a ∈ {0, 1}∗ and
k ∈ N,

|Pr[D(X(k, a)) = 1]− Pr[D(Y (k, a)) = 1]| ≤ μ(k).

Two distribution ensembles as above are statistically close, denoted {X(k, a)} s≡
{Y (k, a)}, if for every nonuniform distinguisher (not necessarily polynomial-time)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2099

there exists a negligible function μ such that for all a and k,

|Pr[D(X(k, a)) = 1]− Pr[D(Y (k, a)) = 1]| ≤ μ(k).

We write {X(k, a)} ≡ {Y (k, a)} if the distributions are identical.
Secure multiparty computation. In the setting of secure multiparty computation,

n parties, denoted P1, . . . , Pn, wish to jointly compute some function f of their inputs
in a secure fashion. The standard way of defining security in this scenario is to require
that a real protocol “behave” just like an ideal execution involving a trusted third
party who computes the function for the parties [20, 3, 26, 7]. More specifically, an
ideal execution is defined in which the parties simply hand their inputs to a trusted
third party, who then computes the function and returns the designated outputs to
each party. When considering security with abort, the trusted party first hands the
output to the adversary, who may then decide whether or not the honest parties
also receive output [18, Chapter 7]. A protocol is said to be secure with abort if for
every adversary attacking a real execution of the protocol, there exists an ideal-world
adversary (running in an ideal execution) such that the output of the honest parties
and the ideal-world adversary in the ideal execution is “close” to the output of the
honest parties and the real adversary in the real protocol execution. As we have
mentioned, the real model that we consider in this paper is one where the adversary
has full control over the delivery of messages between parties, including the ability to
never deliver messages.

There are a number of different settings for this definition. In the information-
theoretic setting, the real-world adversary and ideal-world adversary are computation-
ally unbounded. Here, there are two notions of security: perfect security, where the
outputs of the ideal model are required to be identically distributed to the outputs
of the real model, and statistical security, where the outputs of the ideal model are
required to be statistically close to the outputs of the real model. We say that a pro-
tocol computes a function f with perfect security (resp., statistical security) if it meets
the requirements in the information-theoretic setting (with the appropriate notion
of “closeness”; identical distribution for perfect security and statistical closeness for
statistical security). In the computational setting, the real-world and ideal-world ad-
versaries run in probabilistic polynomial-time and the outputs of the ideal model are
required to be computationally indistinguishable from the outputs of the real model.
In this setting, we say that a protocol computes a function f with computational secu-
rity.

Security is defined as follows. Let k be the security parameter. We denote a
real execution of a protocol ρ with adversary A by realρ,A(z)(k,x), where z is the
auxiliary input of A and x is the vector of the parties’ inputs. Likewise, we denote
by ideal

f
S(z)(k,x) an execution in the ideal model where the trusted party computes

the function f , S is the ideal-world adversary (or simulator), and k, z, and x are as
above. For a full specification of the ideal and real executions, see [7] and [18, Chapter
7]. We are now ready to present the definitions.

Definition 3.1 (secure computation).
1. Information-theoretic security. A protocol ρ computes f with statistical secu-

rity and abort if for every real-model adversary A there exists an ideal-model
adversary S running in time that is polynomial in the running time of A such
that {

ideal
f
S(z)(k,x)

}
k∈N;z,x∈{0,1}∗

s≡ {
realρ,A(z)(k,x)

}
k∈N;z,x∈{0,1}∗ .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2100 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

Protocol ρ computes f with perfect security and abort if {idealfS(z)(k,x)} ≡
{realρ,A(z)(k,x)}.

2. Computational security. A protocol ρ computes f with computational security
and abort if for every nonuniform probabilistic polynomial-time real-model
adversary A there exists a nonuniform probabilistic polynomial-time ideal-
model adversary S such that

{
ideal

f
S(z)(k,x)

}
k∈N;z,x∈{0,1}∗

c≡ {
realρ,A(z)(k,x)

}
k∈N;z,x∈{0,1}∗ .

All of our results in this paper hold for both static and adaptive adversaries. An
adaptive adversary can “adaptively” choose which honest parties to corrupt through-
out the execution, based on its view so far. In the case of a static adversary, the set
of corrupted parties is fixed at the onset.

Black-box straight-line simulation. In our presentation, we will refer to black-box
straight-line simulation. Informally speaking, a black-box simulator is a universal
ideal-world adversary (i.e., it is a single simulator that works for all real adversaries)
that interacts with the real adversary in a black-box way only (i.e., it uses only oracle
access to the real adversary). Furthermore, a black-box simulator is straight-line if
the real adversary maintains state between oracle calls, in the same way as in a real
protocol execution. Stated differently, a black-box straight-line simulator interacts
with the real adversary in essentially the same way as real parties in a real protocol
interaction (the only difference is that the simulator may simultaneously play the
role of many parties). When S is a black-box simulator, we denote the output of an

ideal-model execution by ideal
f
SA(z)(k,x); note that S is given oracle access only to

A and in particular is not given the auxiliary input z.6 This is the standard way of
defining black-box simulation; see [17, section 4.5].

Concurrent general composition. In the setting of concurrent general composition,
a secure protocol ρ that computes a function f is run concurrently to an arbitrary
other protocol π (where π represents many arbitrary protocols running concurrently
in the network). In order to define security, a real execution of π with secure protocol
ρ is compared to an idealized setting where protocol π is run, but the parties also
have access to a trusted party that computes f . Furthermore, instead of running ρ,
the parties send their inputs to the trusted party (like in the regular ideal model).
This setting is called the hybrid model, because a trusted party is used for computing
f , but real messages are also sent for computing π. The security requirement here is
that for every real adversary A and every arbitrary protocol π, there exists an ideal-
world adversary S such that for every set of inputs to π, the output of the ideal-world
adversary and the honest parties in an ideal/hybrid execution of π with a trusted party
computing f is “close” to the output of the real adversary and the honest parties in
a real execution of π with ρ. We stress that the inputs to ρ (or equivalently to f)
are determined by π. This models the setting that ρ is run in an arbitrary network
(modeled by π) and the inputs to ρ are influenced by other protocol executions that
take place in this network. We denote by realπρ,A(z)(x) a real execution of ρ with π,
with adversary A, inputs x, and auxiliary input z for A. Furthermore, we denote by
hybrid

f

π,SA(z)(x) a hybrid execution of protocol π with ideal calls to f , and inputs x

6Observe that if S is given the auxiliary input, then it is no longer really a black-box simulator. In
particular, one can define a “universal” adversary A that receives for auxiliary input the description
of an adversary and then runs that adversary. If S is given the auxiliary input, then it has the
strategy of A.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2101

and z as above. Detailed definitions of security under concurrent general composition
can be found in [25]. (We remark that although the above refers to a single execution
of a protocol ρ, security in this case is actually equivalent to security in the case where
a polynomial number of protocols ρ1, ρ2, . . . are concurrently with each other and with
π.)

Concurrent general composition with fixed inputs. The only difference between
this case and the above definition is that the input to ρ is fixed before the execution
of π begins. Formally, this is modeled by handing each party a pair of inputs (xi, yi),
where xi is party Pi’s input to π and yi is its input to ρ. (Likewise, when considering
the more general setting that π is run concurrently with protocols ρ1, ρ2, . . . , the
inputs to all executions of ρ1, . . . are fixed before π begins. In this case, each party
receives a vector of inputs (xi, y

1
i , y

2
i , . . .) such that xi is party Pi’s input to π and

yji is its input to ρj .) Security is required to hold for all possible vectors of inputs
of all possible lengths (that is, we quantify over all adversaries, all polynomials p(·),
and all possible vectors of inputs of length p(n)). As above, we will use the simpler
formulation where a single execution of a protocol ρ is run together with an arbitrary
protocol π.

Universal composability [8]. Universal composability is a definition of security
that considers a stand-alone execution of a protocol in a special setting involving an
environment machine Z, in addition to the honest parties and adversary. As with the
standard definition, ideal and real models are considered where a trusted party carries
out the computation in the ideal model and the real protocol is run in the real model.
The environment adaptively chooses the inputs for the honest parties, interacts with
the adversary throughout the computation, and receives the honest parties’ outputs.
Security is formulated by requiring the existence of an ideal-model simulator S so
that no environment Z can distinguish between the case that it runs with the real
adversaryA in the real model and the case that it runs with the ideal-model simulator
S in the ideal model. The importance of this definition is a composition theorem that
states that any protocol that is universally composable is secure under concurrent
general composition [8]. It has also been shown that full equivalence holds; that
is, any protocol that is secure under concurrent general composition (as formulated
above) is also universally composable [25]. Thus, all of our results here for concurrent
general composition hold equivalently for universal composability.

4. A counterexample to the folklore. It seems to be well-accepted folklore
that any protocol that is secure with a straight-line black-box simulator is secure under
concurrent composition. This folklore probably stems from the fact that all known
protocols for the information-theoretic setting have black-box straight-line simulators
and are assumed (though most of them do not have proofs) to be secure under con-
current composition. In this section we show that this folklore is false. Specifically,
we present a protocol that is statistically secure and has a straight-line black-box
simulator, yet is not secure under concurrent general composition. (Recall that in
the setting of concurrent general composition, a secure protocol runs concurrently
to arbitrary other protocols.) We note that the simulator that we present for this
protocol also runs in polynomial-time. Thus, the counterexample holds also for the
computational setting.

The main idea behind our counterexample is as follows. In the stand-alone model,
the parties’ inputs are all fixed before the execution begins. In contrast, in the setting
of concurrent general composition, a party’s input to the secure protocol may depend
on messages that it receives in another protocol. Furthermore, since the scheduling



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2102 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

is concurrent (and controlled by the adversary), it is possible that a party’s input to
a secure protocol ρ is defined after other parties have already begun running ρ. Such
an event cannot happen in the stand-alone model, where all the parties’ inputs are
fixed before the execution begins.

Universal composability—discussion. We note that our example highlights an im-
portant issue regarding the definition of universal composability [8]. Namely, this
definition has two stringencies over other definitions. First, it requires that the sim-
ulator be straight-line and black-box. Second, it requires that the inputs may be
chosen adaptively (by an external environment). It seems to have been generally be-
lieved (although not stated in [8]) that the first stringency is the main one needed for
achieving composition. Our example shows that both are actually necessary.

The counterexample. Our counterexample consists of a certain protocol that com-
putes the three-party constant function f defined by f(x1, x2, x3) = (0, 0, 0), where
|x1| = |x2| = |x3| = k. (That is, all parties receive 0, irrespective of the values of
their inputs; obviously, this function can also be computed by other protocols that do
guarantee any type of security.) Specifically, we prove the following proposition.

Theorem 4.1. Assuming an honest majority of participants, there exist a func-
tion f and a protocol that computes f with statistical/computational security in the
stand-alone model and with black-box straight-line simulation, that is not secure under
concurrent general composition. This holds for both static and adaptive corruptions.

Proof. We begin by presenting a three-party protocol that computes the function
f(x1, x2, x3) = (0, 0, 0) with statistical security in the stand-alone model and with
black-box straight-line simulation, in the case of an honest majority.

Protocol 4.2.

1. Party P2 chooses a random string r2 of length k/2 and sends it to P1.
2. Party P1 chooses a random string r1 of length k/2 and sends it to P2.
3. Parties P1 and P2 define r = (r1, r2), where (a, b) denotes the concatenation

of a and b. If one of the parties does not receive the ri value from the other,
then it just waits. If one of the parties receives an invalid value (i.e., one not
of length k/2), then it sets r to a uniformly distributed string of length k.

4. Parties P1 and P2 both send r to P3.
5. If P3 received the same string from both P1 and P2, and the string equals its

input x3, then it outputs 1. Otherwise, it outputs 0.
6. P1 and P2 always output 0.

We begin by showing that Protocol 4.2 is secure in the stand-alone model. In-
tuitively, the protocol is secure because P3 outputs 1 only in the case that r equals
its input. However, since at least one of P1 or P2 is honest, and thus chooses ri at
random (i ∈ {1, 2}), the probability that r equals P3’s input is at most 2−k/2.

Claim 4.3. Protocol 4.2 computes f with statistical/computational security in
the stand-alone model with black-box straight-line simulation and an honest majority.

Proof. In order to prove Claim 4.3, we construct a simulator S as follows.

1. If no parties are corrupted, then S internally runs the code of all parties for
the adversary A and outputs whatever A outputs.

2. If P3 is corrupted, then S internally runs the code of the honest parties and
hands the adversary A controlling P3 the messages that it expects to receive
from the honest parties. At the end, S outputs whatever A outputs.

3. If P1 is corrupted, then S interacts with the adversary A controlling P1 just
as the honest P2 would (sending it a random r2 and receiving back r1). Upon
receiving r1 from A, simulator S simulates sending r = (r1, r2) to P3. At the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2103

end, S outputs whatever A outputs.
4. If P2 is corrupted, then S behaves in a symmetrical way to the case that P1

is corrupted.
Since we assume an honest majority, these are all the possible corruption scenarios.
We claim that the above simulation results in outputs that are statistically close to
a real execution. Notice that the only possible difference between a real execution
with an adversary A and an ideal execution with S is in the case that the messages
that P3 receives from P1 and P2 equal its input x3 (because in this case P3 outputs 1,
whereas in an ideal execution it always outputs 0). However, we claim that this can
happen only with negligible probability. In the case that one of P1 or P2 receives an
invalid string ri, this is clear (because the aborted party sends a truly random string
of length k to P3). In all other cases, this follows from the fact that at least one
of P1 or P2 are honest (recall that we assume an honest majority here). Therefore,
the entropy of the string received by P3 is at least k/2. Since x3 is fixed before the
execution began, the probability that an honest P3 outputs 1 is at most 2−k/2. We
conclude that Protocol 4.2 computes f with statistical (and hence computational)
security,7 completing the proof of Claim 4.3.

We now prove that Protocol 4.2 is not secure under concurrent general composi-
tion.

Claim 4.4. Protocol 4.2 does not compute f with statistical or computational
security in the setting of concurrent general composition.

Proof. The idea behind the proof of this claim is that the input of P3 is not
necessarily fixed before P1 and P2 start running their protocol. Since we are working
in a concurrent setting, this is inevitable. We begin by describing a protocol π that
contains an ideal call to f . (The protocol π is the “arbitrary protocol” that runs
concurrent to the secure Protocol 4.2.)

Arbitrary protocol π.
1. Party P1 sends a random string s ∈R {0, 1}n to P3.
2. Parties P1 and P2 send the trusted party computing f the input 0n.
3. Party P3 sends the trusted party computing f the input s (as received from

P1) and outputs whatever output it receives back from the trusted party.
4. Parties P1 and P2 record their outputs whenever they receive them from the

trusted party and they output these recorded values.
Consider now a real execution of π with Protocol 4.2 replacing the trusted computation
of f (Steps 2–4), and an adversary A who controls a corrupted P1. In such an
execution, parties P1 and P2 begin running Protocol 4.2. (Note that P3 does not
start running Protocol 4.2 until it receives its input s from P1 in π.) P1 receives a
string r2 from the honest P2 and chooses its own random r1. The adversarial strategy
of A controlling P1 here is to send s = r = (r1, r2) to P3 as part of the protocol π
(i.e., Step 1 in protocol π), and to send r1 to P2 as part of Protocol 4.2 (i.e., Step 2
in Protocol 4.2). A then proceeds with Protocol 4.2 following the instructions of P1

honestly. (In particular, it sends r = (r1, r2) to P3 and outputs 0.)
Notice that in a real execution of π with Protocol 4.2 and adversary A, in Proto-

col 4.2 party P3 always receives messages from P1 and P2 that equal its input x3. This

7One minor issue here relates to the fact that by our description, it is possible that P3 does not
receive output. This occurs if it waits forever for P1 and P2 to send their messages. The simplest
way of dealing with this is just to state that our definition of security does not require the parties to
generate output. This makes sense when we move to the full concurrent setting, where the adversary
controls all scheduling. If we want to assume some synchrony or timing, this is also fine. Then, P3

will just wait the appropriate amount of time and will output 0 if it didn’t receive both messages.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2104 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

is because P3 sets its input x3 to equal s, and P1 is able to make s = r. Therefore,
P3 always outputs 1 from such an execution of Protocol 4.2 with π and A. By the
definition of π, this means that P3 also always outputs 1 from π in such an execution
with A. (Recall that in a real execution of π with Protocol 4.2, the output of f is
replaced with the output of Protocol 4.2.)

It remains to note that for all simulators working in a hybrid/ideal model where
π is run together with an ideal call to a trusted party computing f , the output of the
honest parties P2 and P3 from π is always 0, because this is the output always sent
by the trusted party. Therefore, the outputs of the real and ideal (hybrid) executions
are easily distinguishable. This completes the proof of Claim 4.4.

Theorem 4.1 follows by combining Claims 4.3 and 4.4.

5. Perfect security and concurrent general composition. Theorem 4.1
states that black-box straight-line simulation and statistical security do not suffice
for achieving security under concurrent general composition. In this section, we show
that if the protocol has a black-box straight-line simulator and is perfectly secure, then
it is secure under concurrent general composition.

Theorem 5.1. Let f be a function, and let ρ be a protocol that computes f
with perfect security and abort in the stand-alone model, with a black-box straight-
line simulator. Then, ρ computes f with perfect security under concurrent general
composition. Furthermore, if the black-box simulator for ρ in the stand-alone model
runs in polynomial-time, then so does the simulator for ρ in the setting of concurrent
general composition. This holds for both static and adaptive adversaries.

Proof. The idea behind the proof of this theorem is as follows. Assume, by
contradiction, that ρ is not secure under concurrent general composition. Loosely
speaking, this means that there exists a protocol π and an adversary A such that
a real execution of π and ρ with A cannot be simulated in the hybrid world where
π is run together with a trusted party who computes f .8 In particular, it must be
that the output distribution of the adversary and honest parties in ρ, when running
it together with π, is not the same as their output distribution when they just send
their inputs to a trusted party computing f . The main idea here is to use this fact to
attack a stand-alone execution of ρ. Specifically, we construct a stand-alone adversary
Aρ who attacks ρ by internally simulating the entire π execution for A, while running
the protocol ρ externally with the honest parties. If Aρ’s simulation of π is “good,”
then it follows that the stand-alone execution of ρ will be the same as when it is run
together with π. Thus, the output of ρ in this stand-alone execution will not be the
same as the output of an ideal execution with a trusted party computing f . The
problem with this approach is that in order for Aρ’s simulation of π to be “good,”
it must somehow guess the honest party’s inputs and random coins in a way that
will make the combination of the internal π simulation and the external ρ execution
look the same as a full external execution of π with ρ. This is especially problematic
because in the setting of concurrent composition, the honest parties’ inputs to ρ may
be determined by π (whereas in the stand-alone model, the inputs of the honest
parties are fixed ahead of time). Nevertheless, in the case of perfect security, this
is not a problem because we only need Aρ’s attack on ρ to “succeed” with nonzero

probability. In particular, even a statistical distance of 2−nO(1)

between the real and

8We remark that we prove the theorem directly for security under concurrent general composition,
without going through the definition of universal composability [8]. Those who feel more comfortable
using universal composability can just think of the protocol π as the environment Z and everything
remains the same.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2105

ideal executions is not allowed. Now, with very small probability, Aρ’s guesses are
“correct,” and in this case, the output distribution and execution of ρ with Aρ is the
same as after an execution of π and ρ with A. By the contradicting assumption, this
output distribution is not simulatable in the ideal model, and so we have that the
real and ideal distributions are not identical, in contradiction to the perfect security
of ρ in the stand-alone model. We note that the above contains the main idea behind
the proof. However, the structure of the actual proof is a little different. We now
proceed to the formal proof. For the sake of simplicity, we provide the proof for the
case of static adversaries. In the case of adaptive corruptions, the only difference is
that the Aρ needs to corrupt a party whenever A does and then provide A with the
entire state of that party. This is not a problem because the state of all parties in π
is known completely by A (who runs the entire π execution internally) and the state
of a newly corrupted party in ρ is learned by Aρ when it carries out the corruption.
(The simulation strategy in the case of adaptive corruptions is derived in the same
way.)

In this proof, without loss of generality, we consider only the case that the arbi-
trary protocol π has a single ideal call to f . We note that in the case that a single
universal simulator is provided for all protocols π (as will be the case here), this is
equivalent to the case that π has any polynomial number of ideal calls to f (see the
full version of [25] for a proof). Recall that we denote by realπρ,A(z)(x) the distribu-
tion of the outputs of the adversary A with auxiliary input z and the honest parties
in a real execution of π with ρ when given input vector x. Likewise, we denote by
hybrid

f
π,SA(z)(x) the distribution of the outputs of the adversary S and the honest

parties in a hybrid execution of π with a trusted party computing f when given input
vector x. (We don’t use a security parameter k here in the notation because it is not
needed when considering perfect security.)

Let f be a function, let ρ be a protocol that computes f with perfect security,
and let Sρ be the black-box straight-line ideal-model simulator for ρ that is assumed
to exist. Then, we construct a simulator S for the setting of concurrent general
composition as follows. Let A be a real-model adversary, and let π be an arbitrary
protocol that contains a single ideal call to f . Then, S invokes the real adversary A
and forwards all π-messages untouched between A and the honest parties (recall that
S runs a real execution of π with external parties). In contrast, when A begins the ρ
execution, S invokes a copy of Sρ and forwards all ρ-messages between A and Sρ (in
contrast to the π-messages that are sent externally, ρ is internally simulated by S using
Sρ). More specifically, when A outputs a ρ-message to be sent to an honest party,
S hands this message to Sρ. Likewise, Sρ’s reply is handed back to A as if coming
from an honest party. In addition, whenever Sρ sends an input to the trusted party
computing f , simulator S sends the same input. Likewise, outputs sent to S from the
trusted party are forwarded to Sρ. (We note that the π execution continues by just
forwarding π-messages between A and the honest parties, even while the simulation
of ρ takes place. Notice that the real execution of π can continue concurrently with
the simulation of ρ because Sρ is straight-line, and so it never needs to rewind.9)
Whenever A halts, simulator S copies A’s output to its own output tape and halts.

We now prove that for every arbitrary protocol π (with a single ideal call to f)

9If Sρ were to rewind A, then a problem would arise in the case that a π-message that A sent
before rewinding is changed by A after rewinding. In particular, since these messages are sent
externally to honest parties, they cannot be changed at a later stage.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2106 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

and every real adversary A,

(5.1)
{
hybrid

f

π,SA(z)(x)
}
z,x∈{0,1}∗

≡
{
realπρ,A(z)(x)

}
z,x∈{0,1}∗

.

Assume, by contradiction, that this is not the case. This implies that there exists a
protocol π, an adversary A, and a vector of inputs x such that (5.1) does not hold.

First, assume that the output of each honest party in π includes its local input to
and output from the ideal call to f (or likewise, its local input to and output from the
execution of ρ). Clearly (5.1) does not hold here as well, because we only provided
more output. Next, modify the protocol π to π′ so that the honest parties output
their local input to and output from f (or ρ) only, and not their original π-output.
This is the only difference between π and π′. In particular, the honest parties run π
to the end as before, following the same instructions. We now claim that (5.1) also
does not hold with respect to π′. That is,

(5.2)
{
hybrid

f
π′,SA(z)(x)

}
�≡

{
realπ′ρ,A(z)(x)

}
.

This requires justification because in π′ the output distribution is different (and con-
tains less “information”). In order to see that (5.2) holds, we show that if this were
not the case, then (5.1) would hold. This follows from the fact that the only difference

between hybrid
f
π,S(x) and realπρ,A(x) for the honest parties is that the output from

f is obtained from the trusted party in hybrid and from the execution of ρ in real.
Furthermore, protocol π refers only to the input to ρ and output from ρ and thus
only the input to and output from ρ influence the honest parties’ output in π. This
implies that if the joint input/output distribution to ρ are identically distributed in
hybrid and real, then the honest parties’ outputs from π are identically distributed
in hybrid and real.10 One subtle point that needs to be clarified is that the output
of the honest parties in π is also influenced by the messages that they receive from
the adversary. However, by the definition of S, the messages received by the honest
parties within the execution of π are identical in the hybrid and real executions;
indeed, S merely forwards these messages unmodified between A and the honest par-
ties. This contradicts the assumption that (5.1) does not hold, and so we conclude
that (5.2) holds.

Now, let xρ be a vector of inputs to ρ such that in the event that the inputs deter-

mined by π′ to f (or equivalently to ρ) equal xρ, the hybrid
f
π′,S(x) and realπ′ρ,A(x)

distributions are not identical. Such a vector of inputs xρ to ρ must exist, because
otherwise the hybrid and real distributions would be identical. (More formally, we

can break up the distributions of hybridf
π′,S(x) and realπ′ρ,A(x) according to all

possible sets of inputs to f and ρ in an execution of π′ with x. Then, it must be that
for at least one of these “subdistributions,” the hybrid and real distributions are
not identical.)

We are now ready to construct an adversary Aρ that attacks a stand-alone exe-
cution of ρ, and succeeds when the input vector to ρ equals xρ. Adversary Aρ works
by internally emulating all the honest parties in the execution of π′, and externally
running the ρ execution. Specifically, Aρ sets the inputs of the (internally-emulated)
parties running π′ to x, and also chooses uniformly distributed random tapes for these
parties. Then, Aρ invokes A and perfectly emulates an execution of realπ′ρ,A(x),

10This is not necessarily true for the adversary’s output. However, the adversary’s output is
unchanged in π and π′.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2107

by passing all π′-messages between A and the internally-emulated honest parties. In
contrast, when the execution of ρ is reached, Aρ sends A’s ρ-messages externally to
the real honest parties running ρ. Likewise, ρ-messages received externally by Aρ

are internally handed back to A. We note that the internal emulation of π continues
concurrently to the external execution of ρ (according to the scheduling determined
by A). At the end of the external execution of ρ, adversary Aρ guesses the outputs
of the honest parties (from the set of all possible outputs) and uses them in the con-
tinuation of the internal emulation of π.11 Aρ continues this internal emulation of
π′ until A halts. At this point Aρ outputs A’s output, as well as its guesses for the
honest parties’ inputs to ρ and their outputs. Aρ then halts.

First, observe that with nonzero probability, the inputs of the internally-emulated
honest parties to ρ equal xρ (and therefore match the real inputs of the external
parties). This must hold because otherwise xρ would not have been chosen above (an
xρ which appears with zero probability cannot contribute to a statistical difference
between the real and hybrid distributions). Furthermore, the guess of Aρ with
respect to the honest parties’ outputs from ρ is also correct with nonzero probability.
Now, conditioned on these guesses being correct, the output of the honest parties from
ρ along with the portion of Aρ’s output that is copied from A’s output is distributed
exactly according to realπ′ρ,A(z)(x). Furthermore, in an ideal-model simulation by
Sρ, once again conditioned on the guesses being correct, the output of the (ideal)
honest parties along with the appropriate portion of Sρ’s output is distributed exactly

according to hybrid
f
π′,SA(z)(x).

Notice finally that because Aρ outputs its guesses for the inputs and outputs of
the honest parties (and whether or not they are correct can be derived from comparing
Aρ’s output to the real inputs and outputs of the honest parties), the “subdistribu-
tion” of the guesses of Aρ being correct is disjoint from the case that the guesses of
Aρ are incorrect. Since it follows from the contradicting assumption that this subdis-
tribution is not identically distributed in the real and ideal executions, we conclude
that {

ideal
f

SAρ(z)
ρ

(xρ)

}
�≡

{
realρ,Aρ(z)(xρ)

}
,

in contradiction to the perfect security of ρ with the black-box simulator Sρ.
The “furthermore” in the theorem statement follows from the fact that the simu-

lator S that we constructed merely invokes A and the simulator Sρ for ρ. Thus, if Sρ

runs in time that is polynomial in the running time of A, so does S. This completes
the proof.

The computational setting. In the information-theoretic setting, ideal secure chan-
nels are assumed to exist. However, in the computational model only authenticated
channels are used. Thus, information-theoretic protocols cannot be used directly in
the computational setting. Fortunately, this is easy to fix; it suffices to use com-
putationally secure channels as formulated in [9] (these can be constructed from
any CCA2-secure public-key encryption scheme, or any public-key encryption scheme

11This guess can be made efficient by guessing the honest parties’ inputs and random tapes. In
the case that the messages sent by the real honest parties are consistent with the guessed inputs and
random tapes, Aρ sets their outputs according to these values and the messages sent by A to the
honest parties (if the guess of Aρ is correct here, it follows that Aρ holds the view of the honest
parties and so can compute their exact outputs). Otherwise, Aρ sets their outputs to some default
values. Notice that if Aρ’s input and random-tape guesses are correct, then so are the output guesses.
Furthermore, the input and random-tape guesses are correct with nonzero probability.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2108 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

when assuming authenticated channels. We denote by ρ′ the protocol which is iden-
tical to ρ except that all messages are sent encrypted, according to the scheme shown
in [9]. This yields the following corollary.

Corollary 5.2. Assume the existence of public-key encryption schemes. Let f
be a function, and let ρ be a protocol that computes f with perfect security and abort
in the stand-alone model and has a black-box straight-line simulator. Then, protocol
ρ′ defined above securely computes f under concurrent general composition in the
computational setting.

6. Straight-line black-box simulation and start synchronization. Theo-
rem 4.1 states that statistical security and black-box straight-line simulation do not
suffice for achieving security under concurrent general composition. In this section,
we show that a mild additional requirement can be made on the protocol so that it
does suffice. Namely, we prove that if a secure protocol has a black-box straight-line
simulator, and no party sends any message that depends on its input or random tape
until all parties have announced that they have started, then the protocol is secure
under concurrent general composition. This result holds for all levels of security, even
computational security.

Start synchronization. We say that a protocol ρ has start synchronization if it
begins with the following steps for all parties:

1. Send “begin ρ” to all parties.
2. Wait until “begin ρ” messages are received from all parties. Then, continue

the execution of ρ.
We stress that the inputs to the protocol are read by each party before it sends its
begin ρ message, and are therefore fixed before the actual execution of ρ begins (or,
more exactly, before any honest party sends a message that depends on its input or
random tape). We prove the following theorem.

Theorem 6.1. Let f be a function, and let ρ be a protocol that computes f
with computational (resp., statistical or perfect) security and abort in the stand-alone
model, and with a black-box straight-line simulator. Furthermore, assume that ρ has
start synchronization. Then, ρ computes f with computational (resp., statistical or
perfect) security under concurrent general composition. This holds for both static and
adaptive adversaries.

Proof. The case of perfect security follows from Theorem 5.1, even without start
synchronization. It therefore remains to prove the theorem for the computational
and statistical cases. We present the proof for the computational setting; only minor
modifications are needed for the statistical case. Also, as in the proof of Theorem 5.1,
we provide the proof only for the case of static adversaries; dealing with adaptive
corruptions here is straightforward. The intuition behind this theorem comes from
the counterexample of section 4. Specifically, notice that the security of the protocol
there is compromised by having one party’s input depend on messages sent by the
other parties in ρ itself. When there is start synchronization, this cannot happen.
Technically, the proof utilizes start synchronization by the following observation. As-
sume that all of the parties’ inputs to ρ in a concurrent execution with some protocol
π, depend only on π (as is indeed the case when there is start synchronization). Then,
all of the computation of π can be thrown into an auxiliary input for an adversary at-
tacking a stand-alone execution of ρ. Thus, we can use the stand-alone security of ρ to
derive security under concurrent general composition. (Note that an auxiliary input
can be correlated to the parties’ inputs to ρ but not to their random tapes in ρ. Thus,
this strategy cannot work if there is no start synchronization, as is demonstrated in



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2109

the counterexample of section 4.)
We begin the proof in a very similar fashion to the proof of Theorem 5.1. That

is, we use the simulator Sρ that exists for ρ (by the assumption that it is secure in the
stand-alone model) in order to construct a simulator S for the setting of concurrent
general composition. As in the proof of Theorem 5.1, the simulator S works by
forwarding all of the π-messages untouched (where π is an arbitrary protocol that
contains an ideal call to f), and using Sρ to deal with all of the ρ-messages. More
specifically, let f be a function, let ρ be a protocol that computes f with computational
security, and let Sρ be the black-box straight-line ideal-model simulator for ρ that is
assumed to exist. Then, we construct a simulator S for the setting of concurrent
general composition as follows. Let A be a real-model adversary, and let π be an
arbitrary protocol that contains a single ideal call to f (as discussed in the proof of
Theorem 5.1, considering a single call to f suffices). Then, S invokes the real adversary
A and forwards all π-messages untouched between A and the honest parties (recall
that S runs a real execution of π with external parties). In contrast, when A begins
the ρ execution, S invokes a copy of Sρ and forwards all ρ-messages between A and Sρ

(in contrast to the π-messages that are sent externally, ρ is internally simulated by S
using Sρ). More specifically, whenA outputs a ρ-message to be sent to an honest party,
S hands this message to Sρ. Likewise, Sρ’s reply is handed back to A as if coming
from an honest party. In addition, whenever Sρ sends an input to the trusted party
computing f , simulator S sends the same input. Likewise, outputs sent to S from the
trusted party are forwarded to Sρ. We note that the π execution continues by just
forwarding π-messages between A and the honest parties, even while the simulation
of ρ takes place. Notice that the real execution of π can continue concurrently with
the simulation of ρ because Sρ is straight-line, and so never needs to rewind (this is
where the straight-line property of Sρ is used). Whenever A halts, simulator S copies
A’s output to its own output tape and halts.

Let k be the security parameter (i.e., all parties are assumed to run in time that
is polynomial in k). Recall that we denote by realπρ,A(z)(k,x) a real execution of
the protocol π with real protocol ρ, where A has auxiliary input z, and the vector of
the parties’ inputs equals x. Likewise, we denote by hybrid

f
π,SA(z)(k,x) the hybrid

execution of π with ideal calls to f , where the parties’ inputs are x, and the ideal-world
adversary/simulator is given oracle (i.e., black-box) access to A(z).

We now prove that for every arbitrary protocol π (with a single ideal call to f)
and every real adversary A,

(6.1)
{
hybrid

f

π,SA(z)(k,x)
}
x,z∈{0,1}∗;k∈N

c≡
{
realπρ,A(z)(k,x)

}
x,z∈{0,1}∗;k∈N

.

Assume, by contradiction, that this is not the case. This implies that there exists
a protocol π, a distinguisher D, an adversary A, a polynomial p, and a vector of
inputs x and auxiliary input z such that for infinitely many k’s,

∣∣∣Pr [D (
hybrid

f

π,SA(z)(k,x)
)
= 1

]
− Pr

[
D(realπρ,A(z)(k,x))

]∣∣∣ > 1

p(k)
.

We use this to contradict the security of ρ. That is, we show that there exists a
distinguisher Dρ, real-world adversary Aρ, polynomial q, and an auxiliary input zρ
and vector of inputs xρ such that for infinitely many k’s,

(6.2)

∣∣∣∣Pr
[
Dρ

(
ideal

f

SAρ(zρ)
ρ

(k,xρ)

)
= 1

]
− Pr

[
D(realρ,Aρ(zρ)(k,xρ))

]∣∣∣∣ > 1

q(k)
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2110 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

in contradiction to the assumption that Sρ is a “good simulator.”
As we have mentioned above, the key point in the proof is to use the auxiliary

input zρ for Aρ in a stand-alone execution of ρ in place of the execution of π together
with ρ. Specifically, a secure protocol must remain secure when the adversary receives
any auxiliary input, even one that is correlated with the honest parties’ inputs. In
particular, for every vector of inputs xρ to ρ, security must hold when the auxiliary
input zρ consists of a vector of inputs x and random coins r for the honest parties
(and the adversary) such that when π is run with the adversary A, inputs x, and
random tapes r, the honest parties’ inputs to f (or equivalently to ρ) are those given
in xρ. (Note that the random tapes r in zρ are actually chosen uniformly from all
those meeting the requirement.) Before proceeding, we stress that defining such an
auxiliary input is possible only if the inputs of the parties in ρ are independent of the
ρ-execution itself. This is ensured because ρ begins with start synchronization.

Next, we describe an adversaryAρ attacking ρ. AdversaryAρ internally invokesA
and perfectly simulates the honest parties’ actions in π by running the π-instructions
of the honest parties on the inputs and random tapes specified in its auxiliary input
zρ. In contrast to the π-messages that are internally emulated by Aρ for A, all of the
messages belonging to ρ are forwarded by Aρ from A to the external honest parties
and back. At the end of the execution of ρ, adversaryAρ halts, outputting A’s current
view.

Given the above, we show that by the contradicting assumption, there exists at
least one vector of inputs xρ to ρ with associated auxiliary input zρ such that a real
execution of ρ with adversary Aρ, auxiliary input zρ, and inputs xρ, can be distin-

guished from an ideal execution of f with adversary/simulator SAρ(zρ)
ρ and inputs xρ.

We prove this by showing that if this is not the case (i.e., if (6.2) does not hold), then
this would imply that (6.1) holds (in contradiction to the assumption). To see this,
notice that an efficient distinguisher Dρ who receives the adversary’s view after the
execution of ρ is completed (including its outputs from ρ or f), the auxiliary input
zρ of the adversary, and the honest parties’ outputs from ρ or f , can complete the
execution of π itself and obtain the outputs of A and all the honest parties. Now, if
Dρ receives outputs from a real execution of ρ, the output distribution that it will in-
ternally compute will be exactly realπρ,A(z)(k,x). In contrast, if Dρ receives outputs
from an ideal execution of f , the output distribution that it will internally compute
will be exactly hybrid

f
π,SA(z)(k,x). (This holds due to the construction of S that

runs Sρ for the ρ part of the execution, and everything else is run according to A.)
We conclude that if (6.1) does not hold, then there exist xρ and zρ such that Dρ

can distinguish between ideal and real as in (6.2). This contradicts the assumed
security of ρ.

7. Black-box straight-line simulation and fixed inputs. Theorem 4.1 states
that black-box straight-line simulation does not suffice for achieving security under
concurrent general composition. In this section, we show that it does however suffice
for achieving security under concurrent general composition with fixed inputs. Recall
that in the setting of fixed inputs, each party Pi receives a pair of inputs (xi, yi) before
the execution begins. Then, party Pi uses xi as its input to π and it uses yi as its
input to ρ.

Theorem 7.1. Let f be a probabilistic polynomial-time function, and let ρ be a
protocol that computes f with computational (resp., statistical/perfect) security and
abort in the stand-alone model under black-box straight-line simulation. Then, ρ com-
putes f with computational (resp., statistical/perfect) security under concurrent gen-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INFORMATION-THEORETIC PROTOCOLS AND COMPOSITION 2111

eral composition with fixed inputs.
The proof of this theorem is a simple, special case of the proof of Theorem 6.1,

where instead of using the auxiliary input to fix the inputs to ρ, they are already fixed
ahead of time.

Acknowledgment. We would like to thank the anonymous referees for their
very helpful comments.

REFERENCES

[1] M. Backes, J. Müller-Quade, and D. Unruh, On the necessity of rewinding in secure mul-
tiparty computation, in Proceedings of the 4th IACR TCC, Lecture Notes in Comput.
Sci. 4392, Springer-Verlag, Berlin, 2007, pp. 157–173.

[2] D. Beaver, Multiparty protocols tolerating half faulty processors, in Proceedings of the
CRYPTO’89, Lecture Notes in Comput. Sci. 435, Springer-Verlag, New York, 1990, pp.
560–572.

[3] D. Beaver, Foundations of secure interactive computing, in Proceedings of the CRYPTO’91,
Lecture Notes in Comput. Sci. 576, Springer-Verlag, New York, 1991, pp. 377–391.

[4] M. Ben-Or, R. Canetti, and O. Goldreich, Asynchronous secure computation, in Proceed-
ings of the 25th Annual ACM STOC, San Diego, 1993, pp. 52–61.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations, in Proceedings of the 20th Annual ACM
STOC, Chicago, 1988, pp. 1–10.

[6] G. Bracha, An asynchronous (n− 1)/3-resilient consensus protocol, in Proceedings of the 3rd
ACM PODC, Vancouver, 1984, pp. 154–162.

[7] R. Canetti, Security and composition of multiparty cryptographic protocols, J. Cryptology, 13
(2000), pp. 143–202.

[8] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in
Proceedings of the 42nd IEEE FOCS, Las Vegas, 2001, pp. 136–145; also available online
from http://eprint.iacr.org/2000/067.

[9] R. Canetti and H. Krawczyk, Universally composable notions of key exchange and secure
channels, in Proceedings of the EUROCRYPT 2002, Lecture Notes in Comput. Sci. 2332,
Springer-Verlag, Berlin, 2002, pp. 337–351.

[10] D. Chaum, C. Crépeau, and I. Damgard, Multiparty unconditionally secure protocols, in
Proceedings of the 20th Annual ACM STOC, Chicago, 1988, pp. 11–19.

[11] R. Cramer, I. Damgard, S. Dziembowski, M. Hirt, and T. Rabin, Efficient multiparty
computations with dishonest minority, in Proceedings of the EUROCRYPT’99, Lecture
Notes in Comput. Sci. 1592, Springer-Verlag, Berlin, 1999, pp. 311–326.

[12] Y. Dodis and S. Micali, Parallel reducibility for information-theoretically secure computation,
in Proceedings of the CRYPTO 2000, Lecture Notes in Comput. Sci. 1880, Springer-Verlag,
Berlin, 2000, pp. 74–92.

[13] D. Dolev, C. Dwork, and M. Naor, Nonmalleable cryptography, SIAM J. Comput., 30
(2000), pp. 391–437.

[14] C. Dwork, M. Naor, and A. Sahai, Concurrent zero-knowledge, J. ACM, 51 (2004), pp.
851–898.

[15] U. Feige, Alternative Models for Zero Knowledge Interactive Proofs, Ph.D. thesis,
Weizmann Institute of Science, Rehovot, Israel, 1990; also available online from
http://www.wisdom.weizmann.ac.il/∼feige.

[16] P. Feldman, Asynchronous Byzantine Agreement in Constant Expected Time, unpublished
manuscript, 1989.

[17] O. Goldreich, Foundations of Cryptography, Vol. 1, Cambridge University Press, Cambridge,
UK, 2001.

[18] O. Goldreich, Foundations of Cryptography, Vol. 2, Cambridge University Press, Cambridge,
UK, 2004.

[19] O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game, information-
theoretically secure protocols and security under composition, in Proceedings of the 38th
Annual ACM STOC, Seattle, 2006, pp. 109–118.

[20] S. Goldwasser and L. Levin, Fair computation of general functions in presence of immoral
majority, in Proceedings of the CRYPTO’90, Lecture Notes in Comput. Sci. 537, Springer-
Verlag, New York, 1990, pp. 77–93.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2112 EYAL KUSHILEVITZ, YEHUDA LINDELL, AND TAL RABIN

[21] D. Hofheinz and D. Unruh, Simulatable security and polynomially bounded concurrent com-
posability, in Proceedings of the 27th IEEE Symposium on Security and Privacy, Oakland,
CA, 2006, pp. 169–183.

[22] E. Kushilevitz, Y. Lindell, and T. Rabin, Information-theoretically secure protocols and
security under composition, in Proceedings of the 38th Annual ACM STOC, Seattle, 2006,
pp. 109–118.

[23] Y. Lindell, Bounded-concurrent secure two-party computation without setup assumptions, in
Proceedings of the 35th Annual ACM STOC, San Diego, 2003, pp. 683–692.

[24] Y. Lindell, Lower bounds for concurrent self composition, J. Cryptology, 21 (2008), pp. 200–
249.

[25] Y. Lindell, General composition and universal composability in secure multi-party computa-
tion, J. Cryptology, 22 (2009), pp. 395–428.

[26] S. Micali and P. Rogaway, Secure computation, in Proceedings of the CRYPTO’91, Lecture
Notes in Comput. Sci. 576, Springer-Verlag, New York, 1991, pp. 392–404.

[27] B. Pfitzmann and M. Waidner, Composition and integrity preservation of secure reactive
systems, in Proceedings of the 7th ACM Conference on Computer and Communication
Security, Athens, 2000, pp. 245–254.

[28] T. Rabin and M. Ben-Or, Verifiable secret sharing and multiparty protocols with honest
majority, in Proceedings of the 21st Annual ACM STOC, Seattle, 1989, pp. 73–85.

[29] A. C.-C. Yao, How to generate and exchange secrets, in Proceedings of the 27th Annual IEEE
FOCS, Toronto, 1986, pp. 162–167.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


