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Execution of Synchronous Data Flow Programs
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on the interference

code generation

Single-core

static non-preemptive scheduling

� �
int main_app(i1, i2)
{

na = NA(i1);
ne = NE(i2);
nb = NB(na);
nd = ND(na);
nf = NF(ne);
o = NC(nb,nd,nf);
return o;

}� �
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Response Time Analysis

R = PD + IBUS(R)

+ IPROC(R) + IDRAM (R)

◦ Response Time

◦ Processor Demand
◦ Bus Interference
(given a model of the bus arbiter)
◦ Interference from preempting tasks

(no preemption: IPROC = 0)
◦ Interference from DRAM refreshes

(out of scope. IDRAM = 0)

◦ Recursive formula ⇒ fixed-point algorithm.
◦ Multiple shared resources (memory banks)

IBUS(R) =
∑
b∈B

IBUS
b (R)

where B: a set of memory banks

ü Requires a model of the bus arbiter
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Response Time Analysis with Dependencies

PE2

PE1

PE0
τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates.

2 Compute response times

... ... ... a fixed-point is reached!

3 Update the release dates.

4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

Rl+1
i ←PDi + IBUS(Rl

i,reli)
end for

1 initial reli

initial rel 0
i

Rl+1
i 6= Rl

i

2
Rl+1

i 6= Rl
i

Update release dates
for all i do
reli ← latest finish time of all the de-
pendencies
end for

3

Ri

2Ri
new reli
repeat

4

new reli
repeate

reli did not change
Return: (reli,Ri)
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Convergence Toward a Fixed-point
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◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ no monotonicity: Ri and reli may grow or shrink at
each iteration. ?

Theorem
At each iteration, at least one task finds its final release date.

Full proof in our technical report:
http://www-verimag.imag.fr/TR/TR-2016-1.pdf
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Evaluation: ROSACE Case Study 1
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Evaluation: ROSACE Case Study

Task Processor Demand (cycles) Memory Demand (accesses)
altitude 275 22
az_filter 274 22
h_filter 326 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

Table: Task profiles of the FMS controller

◦ Profile obtained from measurements

◦ Memory Demand: data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

� Experiments: Find the smallest schedulable hyper-period
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Evaluation: Experiments
Taking into account the memory banks improves the analysis with a factor in [1.77,2.52]
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Conclusion

◦ A response time analysis of SDF on the Kalray MPPA 256

◦ Given:
◦ Task profile
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference.
◦ Release dates respecting the dependency constraints.

◦ Not restricted to SDF

model of
the multi-level arbiter

double fixed-point
algorithm
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Future Work

◦ Model of the Resource Manager.

◦ Model of the NoC accesses.
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Multicore Response Time Analysis
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R1 = 10 + 3×10 + 2×10 = 60

R2 = 10 + 3×10 + 2×10 + 2×10 = 80

R3 = 10 + 3×10 + 2×10 + 2×10 + 0 = 80 (fixed-point)
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The Global Picture
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