TD 13 : Bases de Gröbner et complétion

{lionel.rieg,paolo.tranquilli}@ens-lyon.fr

Exercice 1. Complétion

- 1. Rappeler le lemme de Newman et celui de Knuth-Bendix.
- 2. En déduire une méthode pour transformer un système de réécriture noethérien en système de réécriture confluent. C'est l'idée qui sous-tend l'algorithme de complétion de Knuth-Bendix.
- **3.** Adapter cet algorithme pour calculer des formes normales modulo un ensemble d'égalités. Quel type d'égalités peut poser problème? Que se passe-t-il dans ce cas?

Exercice 2.

Bases de Gröbner et algorithme de Buchberger

Si \mathbb{K} est un corps, alors $\mathbb{K}[X]$ est principal et tout idéal est engendré par le pgcd de ses polynômes générateurs. Ainsi, l'idéal $\langle X^3-X,X^3+1\rangle$ est engendré par $\operatorname{pgcd}(X^3-X,X^3+1)=X+1:$ $\langle X^3-X,X^3+1\rangle=\langle X+1\rangle=(X+1)\mathbb{K}[X].$ En revanche, il n'en est pas de même pour les polynômes multi-variés.

1. Si on prend l'idéal \mathcal{I} généré par $\{X^2Y-Y, XY^2-X\}$, donner un polynôme admettant deux restes modulo \mathcal{I} premiers entre eux.

Un ordre \prec sur les monômes est dit admissible si

- a) il est total,
- b) il contient l'ordre divise sur les monômes : $m_1|m_2 \implies m_1 \leq m_2$,
- c) il est compatible avec le produit : $m_1 \prec m_2 \implies m \cdot m_1 \prec m \cdot m_2$.
 - **2.** Montrer que l'ordre divise est un bel ordre, c.-à-d. que pour toute suite de monômes $(m_i)_{i \in \mathbb{N}}$, il existe deux indices i < j tels que $m_i | m_j$.
 - 3. Montrer qu'un ordre admissible est nœthérien.

Etant donné un polynôme f, on définit :

- le monôme de tête t_f , c'est le plus grand monôme de f pour l'ordre \prec
- le coefficient de tête c_f , c'est le coefficient de t_f dans f
- le reliquat du polynôme $r_f = f c_f t_f$.

Pour simplifier, on supposera dans la suite qu'aucun des polynômes f_i n'est nul.

Si f est un polynôme unitaire, alors on définit une règle de réduction $t_f \xrightarrow{f} -r_f$, qui oriente l'égalité $t_f = -r_f$ de $\mathbb{K}[\vec{X}]/\langle f \rangle$.

Si
$$F = \{f_1, \dots, f_k\}$$
, alors on pose

$$\stackrel{F}{\longrightarrow} = \bigcup_{i=1}^{k} \stackrel{f_i}{\longrightarrow} = \stackrel{f_1}{\longrightarrow} \cup \cdots \cup \stackrel{f_k}{\longrightarrow}$$

4. Soient $f, g, g', h \in \mathbb{K}[X_1, \dots, X_n]$ avec f unitaire, m un monôme et b dans \mathbb{K}^* . Montrer les trois propriétés suivantes :

```
a) f \xrightarrow{f} 0
```

b)
$$g \xrightarrow{f} g' \implies bm \cdot g \xrightarrow{f} bm \cdot g'$$

c)
$$g \xrightarrow{f} g' \implies h + g \xrightarrow{f} h + g'$$

Une base de Gröbner G est un ensemble fini de polynômes générateurs d'un idéal $\mathcal I$ qui permet de décider l'appartenance à $\mathcal I$ et assure l'unicité du résidu modulo $\mathcal I$. La propriété qui la caractérise est que l'ensemble $\{t_g \mid g \in G\}$ engendre l'idéal $\{t_f \mid f \in \mathcal I\}$, ce qui implique en particulier que G engendre $\mathcal I$.

Elle peut être calculée par l'algorithme de Buchberger donné ci-dessous.

Données – Un ensemble fini de polynômes unitaires $F = \{f_1, \dots, f_k\}$ – Un ordre admissible

Résultat Un ensemble fini de polynômes G_i qui est une base de Gröbner de $\langle f_1, \ldots, f_k \rangle$.

```
i := 0;
G_0 := \mathbf{F};
B_0 := \{ \{f, g\} \subset F \mid f \neq g \};
Tant que B_i = \emptyset, faire
   Choisir une paire \{f,g\} \in B_i,
   Calculer le S-polynôme S(f, g),
   Calculer une \xrightarrow{G_i} forme normale h de S(f,q),
   Si h \neq 0, alors
     B_{i+1} := (B_i \setminus \{ \{f, g\} \}) \cup \{ \{ k, c_h^{-1}h \} \mid k \in G_i \};
     G_{i+1} := G_i \cup \{c_h^{-1}h\};
     i := i + 1;
   Si h = 0, alors
     B_{i+1} := B_i \setminus \{ \{f, g\} \};
     G_{i+1} := G_i ;
     i := i + 1.
Retourne G_i
```

où le S-polynôme S(f,g) est la différence des réduits de la plus petite paire critique des règles \xrightarrow{f} et \xrightarrow{g} .

- **5.** Calculer S(f,g) en fonction de f et g.
- **6.** Appliquez l'algorithme de Buchberger pour calculer une base de Gröbner de l'ensemble de polynômes $\{X^2Y-Y, XY^2-X\}$.
- 7. Le polynôme $Y^5 Y^3$ appartient-il à l'idéal engendré par $\{X^2Y Y, XY^2 X\}$? On donnera une démonstration fondée sur la base de Gröbner calculée à la question précédente.
- **8.** Montrer que l'algorithme de Buchberger retourne une base de Gröbner. Est-elle optimale ? Peut-on faire mieux ?
- 9. Montrer que l'algorithme de Buchberger termine. Quelle est sa complexité?