Forcing et réalisabilité classique

Lionel Rieg

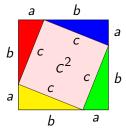
Plume — LIP — ENS de Lyon CPR — CÉDRIC — CNAM/ENSIIE

Thèse encadrée par Alexandre Miquel 17 juin 2014

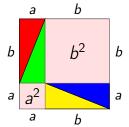
-3000 Multiplication, résolution d'équations quadratiques

-3000 Multiplication, résolution d'équations quadratiques

-500 Théorème de Pythagore → Arrivée des démonstrations



$$c^2 = a^2 + b^2$$



-3000 Multiplication, résolution d'équations quadratiques

-500 Théorème de Pythagore
 → Arrivée des démonstrations

- XIX^e Structures algébriques
 - Axiomatisation des entiers naturels par Peano

0, s (successeur)
$$\forall n \forall m. \ n+0=n$$

2 = s(s(0)) $\forall n \forall m. \ n+s(m)=s(n+m)$

-3000 Multiplication, résolution d'équations quadratiques

-500 Théorème de Pythagore
 → Arrivée des démonstrations

- XIX^e Structures algébriques
 - → Axiomatisation des entiers naturels par Peano
- XX^e Retour du calcul

[Hilbert00]

• Entscheidungsproblem : mécanisation de la vérité

[Turing36]

• Correspondance de Curry-Howard

[Curry58, Howard69]

→ Preuves = objets calculatoires

Qu'est-ce que le contenu calculatoire?

- Preuves : quel contenu calculatoire? quelle notion de calcul?
 - → Curry-Howard et réalisabilité
- Illustration de Curry-Howard pour le forcing
 - → arbres de Herbrand
 - → nouvelle preuve du théorème de Herbrand

Le λ -calcul [Church36]

Représenter le calcul :

- λ -calcul
- Fonctions récursives
- Machines de Turing

Représenter le calcul :

- λ-calcul
- Fonctions récursives
- Machines de Turing

λ -calcul = tout est fonction

mathématiques	λ -calcul	
$x \mapsto \mathfrak{e}$	λx. e	
f(x)	f x	

Exemples:

• $x \mapsto x + 3$ $\lambda x \cdot x + 3$

décalage d'une fonction :

$$f \mapsto x \mapsto f(x+2)$$
 $\lambda f. \lambda x. f(x+2)$

Calcul et expressivité

Calcul par β -réduction : $(\lambda x. M) N \rightarrow_{\beta} M[N/x]$

$$(\lambda x. x + 3) 2 \rightarrow_{\beta} 2 + 3$$

Calcul et expressivité

Calcul par
$$\beta$$
-réduction : $(\lambda x. M) N \rightarrow_{\beta} M[N/x]$
$$(\lambda x. x + 3) 2 \rightarrow_{\beta} 2 + 3$$
 Entiers de Church $\overline{n} := \lambda x. \lambda f. \underbrace{f(f...(f x)...)}_{n}$
$$\overline{0} := \lambda x. \lambda f. x$$

$$\overline{1} := \lambda x. \lambda f. f x$$

$$\overline{2} := \lambda x. \lambda f. f (f x)$$

$$\vdots$$

Calcul et expressivité

Calcul par
$$\beta$$
-réduction : $(\lambda x. M) N \rightarrow_{\beta} M[N/x]$
$$(\lambda x. x + 3) 2 \rightarrow_{\beta} 2 + 3$$
 Entiers de Church $\overline{n} := \lambda x. \lambda f. \underbrace{f(f...(f x)...)}_{n}$
$$\overline{0} := \lambda x. \lambda f. x$$

$$\overline{1} := \lambda x. \lambda f. f x$$

$$\overline{2} := \lambda x. \lambda f. f (f x)$$

$$\vdots$$
 successeur $\overline{s} := \lambda n. \lambda x. \lambda f. f(n x f)$ addition, multiplication, ...

 λ -calcul = fondement de la programmation fonctionnelle

Correspondance de Curry-Howard

Lien preuves formelles / programmes fonctionnels

Logique	Programmes
formule	$type\;(\mathit{nat}\to\mathit{nat})$
preuve	programme $(\lambda x. x + 3)$

Correspondance de Curry-Howard

Lien preuves formelles / programmes fonctionnels

Logique	Programmes	
formule	$type\; (\mathit{nat} \to \mathit{nat})$	
preuve	programme $(\lambda x. x + 3)$	
calcul vérification de preuves	évaluation (β -réduction) vérification de types	
règle d'inférence	construction de programmation	
$(\Rightarrow_i, modus ponens)$	(λ, App)	
connecteurs (\land,\lor,\Rightarrow)	constructeurs de types $(\times, +, \rightarrow)$	
récurrence	programme récursif	

Exemple : transitivité de l'implication

$$Ax \frac{Ax}{\Gamma \vdash B \Rightarrow C} \frac{Ax}{\Gamma \vdash A \Rightarrow B} \frac{\Gamma \vdash A}{\Gamma \vdash B} \xrightarrow{\Rightarrow_{e}} \frac{Ax}{\Rightarrow_{e}}$$

$$\frac{A \Rightarrow B, B \Rightarrow C, A \vdash C}{A \Rightarrow B, B \Rightarrow C \vdash A \Rightarrow C} \xrightarrow{\Rightarrow_{i}} \frac{A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C}{\Rightarrow_{i}} \xrightarrow{\Rightarrow_{i}} \frac{A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C}{\Rightarrow_{i}} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{i}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \Rightarrow_{e}$$

$$\Rightarrow_{e}$$

$$\Rightarrow_{e$$

Exemple : transitivité de l'implication

$$g \ \mathsf{A} \times \frac{f \ \mathsf{A} \times \frac{}{\Gamma \vdash A \Rightarrow B} \quad \frac{}{\Gamma \vdash A} \xrightarrow{\mathsf{A} \times \times} \xrightarrow{\Rightarrow_{e} (\mathsf{App})}}{\frac{A \Rightarrow B, B \Rightarrow C, A \vdash C}{A \Rightarrow B, B \Rightarrow C \vdash A \Rightarrow C} \xrightarrow{\Rightarrow_{i} \lambda x} \xrightarrow{\mathsf{A} \times B} \frac{}{A \Rightarrow B \vdash (B \Rightarrow C) \Rightarrow A \Rightarrow C} \xrightarrow{\Rightarrow_{i} \lambda g} \xrightarrow{\mathsf{A} \times B} \frac{}{\vdash (A \Rightarrow B) \Rightarrow (B \Rightarrow C) \Rightarrow A \Rightarrow C}$$

$$= \mathsf{A} \times \mathsf$$

Que fait cette fonction?

Théorie des modèles pour Curry-Howard

 \rightsquigarrow relation entre programmes et formules : $t \Vdash A$

Fondée sur calcul plutôt que code

- + significatif
- + expressif (if 0 < 1 then 0 else true)
- Contient typage (adéquation)

Extraction de témoin

passer de $t \Vdash \exists x. A(x)$ à n tel que A(n) vrai (réalisable)

Limité à la logique constructive?

Théorie des modèles pour Curry-Howard

 \rightsquigarrow relation entre programmes et formules : $t \Vdash A$

Fondée sur calcul plutôt que code

- + significatif
- + expressif (if 0 < 1 then 0 else true)
- Contient typage (adéquation)

```
Extraction de témoin
```

```
passer de t \Vdash \exists x. A(x) à n tel que A(n) vrai (réalisable)
```

Limité à la logique constructive?

Non, ajouter un principe classique :

[Griffin90]

callcc :
$$((A \Rightarrow B) \Rightarrow A) \Rightarrow A$$
 (Peirce)

Exemple : le tiers exclu $(P \lor \neg P)$

$$\operatorname{Ax} \frac{ \bigvee_{i}^{1} \frac{ }{ \Gamma, P \vdash (P \lor \neg P) \Rightarrow \bot} \frac{ \bigvee_{i}^{1} \frac{ }{ \Gamma, P \vdash P \Rightarrow (P \lor \neg P)} \frac{ }{ \Gamma, P \vdash P} \overset{Ax}{\Rightarrow_{e}} }{ \xrightarrow{\Gamma, P \vdash P \lor \neg P} \Rightarrow_{e}} \overset{\vee^{2}}{\Rightarrow_{e}} \frac{ \frac{ \Gamma, P \vdash \bot}{ \Gamma \vdash \neg P} \Rightarrow_{i} }{ \frac{ (P \lor \neg P) \Rightarrow \bot \vdash P \lor \neg P}{ \vdash ((P \lor \neg P) \Rightarrow \bot) \Rightarrow (P \lor \neg P)} \overset{\Rightarrow}{\Rightarrow_{e}} }{ \xrightarrow{\vdash P \lor \neg P}} \overset{Ax}{\Rightarrow_{e}}$$

$$= \frac{ (P \lor \neg P) \Rightarrow \bot \vdash P \lor \neg P}{ \xrightarrow{\vdash (P \lor \neg P) \Rightarrow \bot} \Rightarrow_{e}} \overset{\Rightarrow}{\Rightarrow_{e}}$$

$$= \frac{ (P \lor \neg P) \Rightarrow \bot \vdash P \lor \neg P}{ \Rightarrow_{e}} \overset{\Rightarrow}{\Rightarrow_{e}}$$

$$= \frac{ (P \lor \neg P) \Rightarrow \bot \vdash P \lor \neg P}{ \Rightarrow_{e}} \overset{\Rightarrow}{\Rightarrow_{e}}$$

$$= \frac{ (P \lor \neg P) \Rightarrow \bot}{ \vdash (P \lor \neg P) \Rightarrow \bot} \overset{\Rightarrow}{\Rightarrow_{e}}$$

$$= \frac{ (P \lor \neg P) \Rightarrow \bot}{ \vdash (P \lor \neg P) \Rightarrow \bot} \overset{\Rightarrow}{\Rightarrow_{e}}$$

$$= \frac{ (P \lor \neg P) \Rightarrow \bot}{ \vdash (P \lor \neg P) \Rightarrow \bot} \overset{\Rightarrow}{\Rightarrow_{e}} \overset{\Rightarrow}{\Rightarrow_{e}}$$

$$= \frac{ (P \lor \neg P) \Rightarrow \bot}{ \vdash (P \lor \neg P) \Rightarrow \bot} \overset{\Rightarrow}{\Rightarrow_{e}} \overset{\Rightarrow}{$$

callcc $(\lambda k. right (\lambda x. k (left x))) : P \vee \neg P$

Exemple : le tiers exclu $(P \lor \neg P)$

$$\begin{array}{c} \text{left } \vee_i^1 \\ \text{k Ax } \frac{1}{\frac{\Gamma,P \vdash P \Rightarrow (P \lor \neg P)}{\Gamma,P \vdash P \Rightarrow (P \lor \neg P)}} \frac{\Gamma,P \vdash P}{\Gamma,P \vdash P \lor \neg P} \xrightarrow{\Rightarrow_e} \text{(App)} \\ \text{right } \vee_i^2 \\ \frac{\Gamma}{\Gamma \vdash \neg P \Rightarrow (P \lor \neg P)} \frac{\frac{\Gamma,P \vdash \bot}{\Gamma \vdash \neg P} \Rightarrow_i \lambda x.}{\frac{\Gamma,P \vdash \bot}{\Gamma \vdash \neg P} \Rightarrow_e \text{(App)}} \xrightarrow{\Rightarrow_e} \text{(App)} \\ \text{callcc} \\ \text{Peirce} \frac{\frac{(P \lor \neg P) \Rightarrow \bot \vdash P \lor \neg P}{\vdash ((P \lor \neg P) \Rightarrow \bot) \Rightarrow (P \lor \neg P)} \Rightarrow_i \lambda k.}{\vdash P \lor \neg P} \xrightarrow{\Rightarrow_e} \text{(App)} \\ \text{avec } \Gamma := P \lor \neg P \Rightarrow \bot \\ \text{callcc} \left(\lambda k. \ right \left(\lambda x. \ k \ (left \ x)\right)\right) : P \lor \neg P \end{array}$$

Backtrack!

Quid pour la sémantique?

Reformulation réalisabilité dans un cadre classique \(\sim \text{callcc} = \text{backtrack} : nouvelle évaluation (KAM) \)

Paramétrée par un pôle ⊥ → propriété à observer

Réalisateurs pour ⊥ (False)

- ullet pas interprété par \emptyset
- ¬A conserve un sens calculatoire

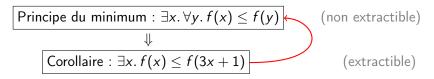
Extraction de témoin

- cas général : témoins pas fiables (backtrack)
- fiables pour $\forall \vec{x}. \exists \vec{y}. A(\vec{x}, \vec{y})$ (formules Π_2^0)

Exemple d'évaluation : le principe du minimum

$$f: nat \rightarrow nat$$

 $[\mathsf{Berardi}, \mathsf{Coquand}, \mathsf{Miquel} \ \mathsf{et} \ \mathsf{al}]$



Exemple : $f := x \mapsto |x - 1000|$

X	3x + 1	f(x)	f(3x+1)	backtrack?
0	1	1000	999	√
1	4	999	996	✓
4	13	996	987	✓
13	40	987	960	✓
40	121	960	879	✓
121	364	879	636	✓
364	1093	636	93	✓
1093	3280	93	2280	X

Mes contributions en réalisabilité classique

Réalisabilité classique comme langage de programmation

Types de données primitifs en réalisabilité classique :

- généralisation des nombres (entiers, rationnels)
- listes, arbres...

Nombres réels en réalisabilité classique

- cadre uniforme efficace pour tous les réels
- extraction sur les réels calculables (Σ₁⁰)

Formalisation Coq de la réalisabilité classique (assistant de preuves)

- → avec ses extensions
- → utile pour vérifier des réalisateurs

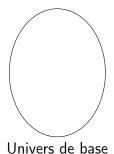
Réalisabilité classique et forcing

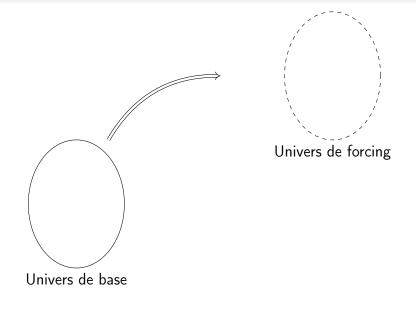
- Inventé par Paul Cohen en 63

 → indépendance hypothèse continu (CH : 2^{ℵ₀} = ℵ₁)
- But : ajouter des objets idéaux

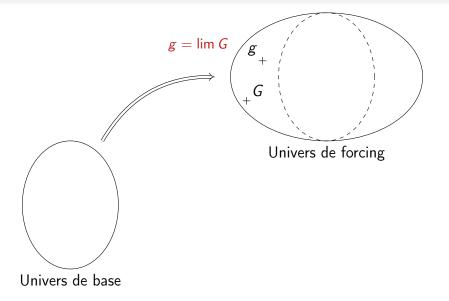
 ⇒ généralisation des extensions de corps

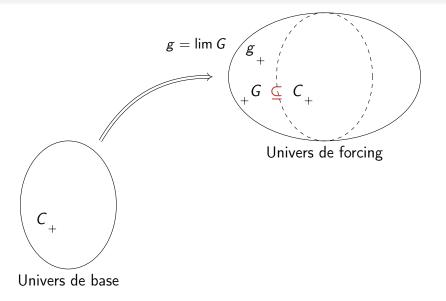
 ⇒ filtre générique ≈ nouvelle racine
- Nouveaux sous-ensembles aux ensembles infinis
 → pour casser CH : ℵ₂ nouveaux sous-ensembles de ω
- Modèles plus larges de ZF

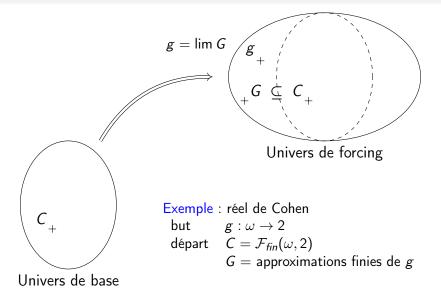


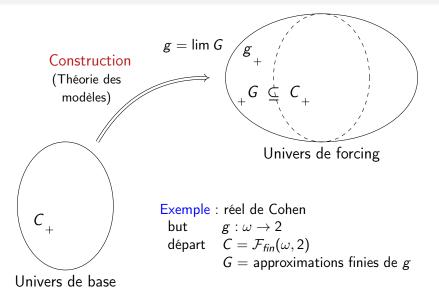


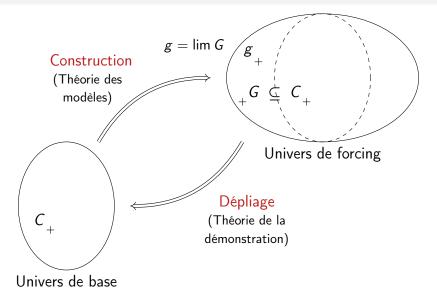


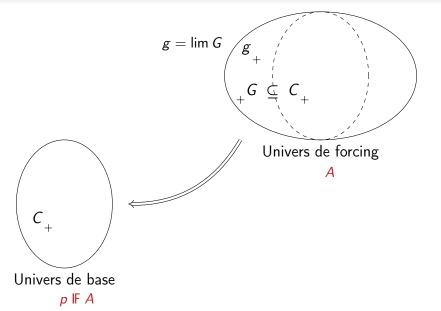












Interprétation calculatoire du forcing

Méthode:

Dépliage construction de forcing [Cohen63]

→ transformation de formules/preuves

Vision à travers Curry-Howard [Krivine10]

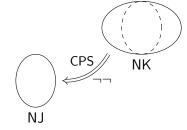
→ transformation de programmes non typés

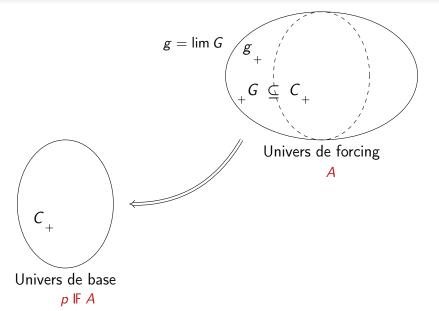
Intégration à l'évaluation [Miquel13]

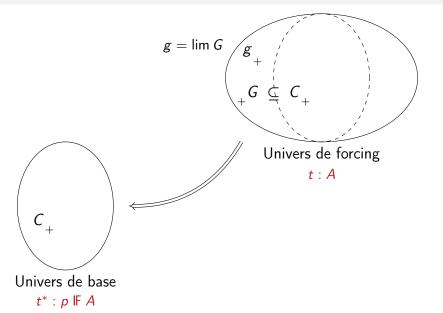
→ de KAM à KFAM

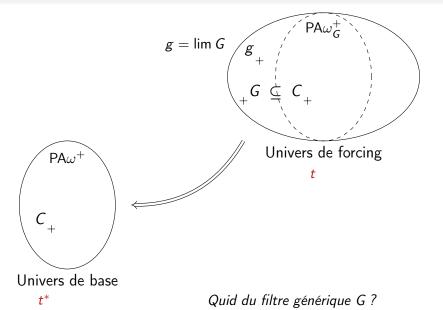
Similaire à :

- ¬¬-traductions
- traductions CPS
- callcc









Traduction du filtre générique

Restriction : C arithmétique

Extension de la traduction $A \mapsto p$ IF $A \ni G$: (dans $PA\omega^+$)

 $p \Vdash x \in G := p \le x$ (x condition)

Traduction du filtre générique

Restriction : C arithmétique

Extension de la traduction
$$A \mapsto p$$
 IF $A \ni G$: (dans $PA\omega^+$)

$$p \Vdash x \in G := p \le x$$
 (x condition)

Termes de preuves pour les propriétés de $G: t_i: p$ IF A_i

• non vide :
$$1 \in G$$
 (A_1)

• inclus dans
$$C$$
: $\forall p \in G. p \in C$ (A_2)

• filtre 1 :
$$\forall p \forall q. (p \cdot q) \in G \Rightarrow p \in G$$
 (A₃)

• filtre 2 :
$$\forall p \in G. \forall q \in G. (p \cdot q) \in G$$
 (A_4)

• généricité :
$$\forall S. \dots$$
 (A_5)

 \rightsquigarrow extension de la traduction $t \mapsto t^*$ aux propriétés de G

Au final, ...

Traduction du filtre générique

Restriction : C arithmétique

Extension de la traduction
$$A \mapsto p$$
 IF $A \ni G$: (dans $PA\omega^+$)

$$p \Vdash x \in G := p \le x$$
 (x condition)

Termes de preuves pour les propriétés de $G: t_i: p \Vdash A_i$

• non vide :
$$1 \in G$$
 (A_1)

• inclus dans
$$C$$
: $\forall p \in G. p \in C$ (A_2)

• filtre 1 :
$$\forall p \forall q. (p \cdot q) \in G \Rightarrow p \in G$$
 (A₃)

• filtre 2 :
$$\forall p \in G. \forall q \in G. (p \cdot q) \in G$$
 (A_4)

• généricité :
$$\forall S....$$
 (A₅)

 \rightsquigarrow extension de la traduction $t\mapsto t^*$ aux propriétés de G

Au final, une transformation complète de $PA\omega_G^+$ dans $PA\omega^+$

KAM = machine abstraite pour évaluer les programmes

ldée : passer de

$$t \xrightarrow{(\ldots)^*} t^* \xrightarrow{\mathsf{KAM}} u^*$$

à

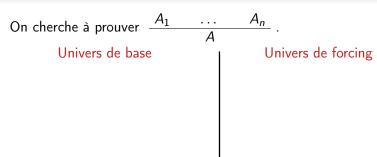
$$t \longrightarrow {}^{\mathsf{KFAM}} \longrightarrow \iota$$

KAM = machine abstraite pour évaluer les programmes terme ★ pile ≻ terme' ★ pile'

Exemple:
$$t := (\lambda x. \lambda y. x + y) 23$$

```
\mathsf{KAM} = \mathsf{machine} \; \mathsf{abstraite} \; \mathsf{pour} \; \mathsf{\'evaluer} \; \mathsf{les} \; \mathsf{programmes} \\ \mathsf{terme} \; \star \; \mathsf{pile} \; \succ \; \mathsf{terme'} \; \star \; \mathsf{pile'} \\ \\ \mathsf{Push} \qquad t \; u \quad \star \quad \pi \; \succ \; t \quad \star \quad u \cdot \pi \\ \mathsf{Grab} \qquad \lambda x. \; t \quad \star \quad u \cdot \pi \; \succ \; t [u/x] \, \star \qquad \pi \\ \mathsf{Save} \qquad \mathsf{callcc} \; \star \quad t \cdot \pi \; \succ \; t \quad \star \quad k_\pi \cdot \pi \\ \mathsf{Restore} \qquad k_{\pi'} \qquad \star \quad t \cdot \pi \; \succ \; t \qquad \star \qquad \pi' \\ \\ \\ \uparrow \qquad \downarrow \qquad \qquad \uparrow \qquad \downarrow
```

Conclusion : forcing = case mémoire + monitoring



On cherche à prouver $A_1 \dots A_n \over A$ Univers de base
Univers de forcing
Choisir C

On cherche à prouver $A_1 \dots A_n$

Univers de base

- Choisir C
- Poser les prémisses

 $x_1:A_1,\ldots,x_n:A_n$

On cherche à prouver $A_1 \dots A_n$

Univers de base

- Choisir C
- Poser les prémisses

 $x_1:A_1,\ldots,x_n:A_n$

Univers de forcing

Relever les prémisses

On cherche à prouver $A_1 \dots A_n = A_n$.

Univers de base

- Choisir C
- 2 Poser les prémisses $x_1 : A_1, \dots, x_n : A_n$

- 3 Relever les prémisses
- Faire la preuve (avec g, G) $t(x_1, \ldots, x_n) : A$

On cherche à prouver $A_1 \dots A_n = A_n$.

Univers de base

- Choisir C
- Poser les prémisses $x_1 : A_1, \dots, x_n : A_n$

Traduire le forcing $t^*(x_1^*, \dots, x_n^*) : 1 \text{ IF } A$

- 3 Relever les prémisses
- Faire la preuve (avec g, G) $t(x_1, \ldots, x_n) : A$

On cherche à prouver $\frac{A_1 \quad \dots \quad A_n}{A}$.

Univers de base

- Choisir C
- 2 Poser les prémisses $x_1: A_1, \dots, x_n: A_n$

- Traduire le forcing $t^*(x_1^*, \dots, x_n^*) : 1 \text{ IF } A$
- **6** Éliminer le forcing $w t^*(x_1^*, \dots, x_n^*) : A$

- 8 Relever les prémisses
- Faire la preuve (avec g, G) $t(x_1, \ldots, x_n) : A$

On cherche à prouver $\frac{A_1 \quad \dots \quad A_n}{A}$.

Univers de base

- Choisir C
- 2 Poser les prémisses $x_1: A_1, \dots, x_n: A_n$

- Traduire le forcing $t^*(x_1^*, \dots, x_n^*) : 1 \text{ IF } A$
- Éliminer le forcing $w \ t^*(x_1^*, \dots, x_n^*) : A$
- Extraire un témoin (réalisabilité classique)

- 8 Relever les prémisses
- Faire la preuve (avec g, G) $t(x_1, \ldots, x_n) : A$

Motivations : théorème de Herbrand

Théorème:

[Herbrand30]

Si $\exists x. A(x)$ est vrai dans tout modèle syntaxique, alors on a une preuve de $A(w_1) \lor ... \lor A(w_n)$

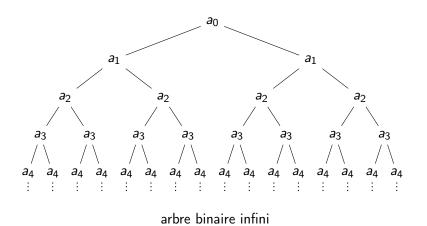
Fondement logique du problème :

$$\exists x. A(x) \mapsto A(w_1) \vee \ldots \vee A(w_n)$$

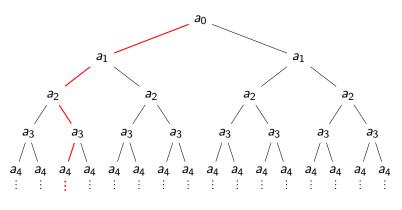
Fondement informatique du problème : arbre infini \mapsto arbre fini

Hypothèse clé :

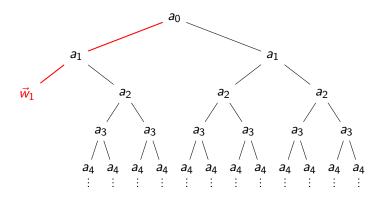
branche infinie \mapsto branche finie



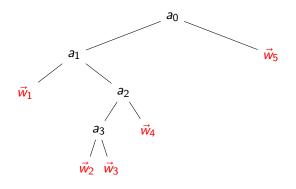
21/26



branche infinie quelconque



hypothèse clé : coupe à profondeur finie



conclusion par le théorème de l'éventail

Inconvénient de cette méthode

- Gérer explicitement la structure arborescente
- 2 Besoin d'une énumération (point de vue logique)
- 3 Contenu calculatoire reporté au théorème de l'éventail

Le forcing résout ces problèmes :

- Une seule branche à considérer
- Branche non ordonnée
- Interprétation calculatoire du forcing

Forcing pour les arbres de Herbrand

Intuition : g = une branche infinie générique qui représente toutes les autres \rightsquigarrow plus besoin de gérer la structure d'arbre

Forcing pour les arbres de Herbrand

Intuition : g = une branche infinie générique qui représente toutes les autres \rightsquigarrow plus besoin de gérer la structure d'arbre

C :=branches finies dans l'arbre infini

G := certaines branches finies compatibles entre elles

$$g := \bigcup G$$

Forcing pour les arbres de Herbrand

```
Intuition : g = une branche infinie générique qui représente toutes les autres \rightsquigarrow plus besoin de gérer la structure d'arbre
```

C := branches finies dans l'arbre infini + information pour reconstruire l'arbre final

G := certaines branches finies compatibles entre elles

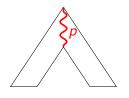
 $g := \bigcup G$

Quel est leur contenu calculatoire précis?

Interprétations calculatoires

Pour $p \in C$: un zipper dépendant pour arbre

- un contexte d'arbre de Herbrand
- avec un trou à la position p



Pour G: $(p \Vdash x \in G := p \le x)$ un ensemble mouvant qui change en fonction de la position dans l'arbre

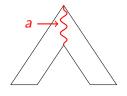
Pour les programmes t_i : p IF A_i : les primitive d'accès à l'information stockée dans $x \in G$

Cas particulier de la généricité :

$$p$$
 IF $\forall a \in \mathsf{Atom}$. $\exists q \in G$. $\exists b \in \mathsf{Bool}$. test $a \, b \, q = 1$

2 cas :

- $a \in p$: répondre b comme dans p
- $a \notin p$: on essaie à la fois true et false

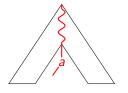


Cas particulier de la généricité :

$$p$$
 IF $\forall a \in \mathsf{Atom}$. $\exists q \in G$. $\exists b \in \mathsf{Bool}$. test $a \, b \, q = 1$

2 cas :

- $a \in p$: répondre b comme dans p
- $a \notin p$: on essaie à la fois true et false

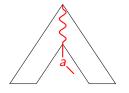


Cas particulier de la généricité :

p IF $\forall a \in \mathsf{Atom}$. $\exists q \in G$. $\exists b \in \mathsf{Bool}$. test $a \, b \, q = 1$

2 cas :

- $a \in p$: répondre b comme dans p
- $a \notin p$: on essaie à la fois true et false

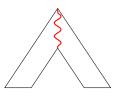


Cas particulier de la généricité :

 $p \mid F \mid \forall a \in Atom. \exists q \in G. \exists b \in Bool. test a b q = 1$

2 cas :

- $a \in p$: répondre b comme dans p
- $a \notin p$: on essaie à la fois true et false



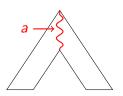
```
\begin{split} \lambda caf. \text{ let } p,t &:= \alpha \, c \text{ in} \\ \text{if } \text{test } a \text{ true } p \text{ then } f \, (\alpha \, c) \text{ id } \text{true* id*} \text{ else} \\ \text{if } \text{test } a \text{ false } p \text{ then } f \, (\alpha \, c) \text{ id } \text{false* id*} \text{ else} \\ f \, \langle (a,\text{true}) \cup p, \lambda u. \\ f \, \langle (a,\text{false}) \cup p, \lambda v. \\ t \, (\text{merge } a \, u \, v) \rangle \text{ id } \text{false* id*} \rangle \text{ id } \text{true* id*} \end{split}
```

Cas particulier de la généricité :

 $p \mid F \mid \forall a \in Atom. \exists q \in G. \exists b \in Bool. test a b q = 1$

2 cas :

- $a \in p$: répondre b comme dans p
- $a \notin p$: on essaie à la fois true et false



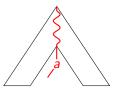
```
\begin{split} \lambda caf. \text{ let } p,t &:= \alpha \, c \text{ in} \\ \text{if } \text{test } a \text{ true } p \text{ then } f\left(\alpha \, c\right) \text{ id } \text{true* id*} \text{ else} \\ \text{if } \text{test } a \text{ false } p \text{ then } f\left(\alpha \, c\right) \text{ id } \text{false* id*} \text{ else} \\ f\left\langle \left(a, \text{true}\right) \cup p, \lambda u. \right. \\ f\left\langle \left(a, \text{false}\right) \cup p, \lambda v. \right. \\ t\left(\text{merge } a \, u \, v\right)\right\rangle \text{ id } \text{false* id*} \rangle \text{ id } \text{true* id*} \end{split}
```

Cas particulier de la généricité :

 $p \mid F \mid \forall a \in Atom. \exists q \in G. \exists b \in Bool. test a b q = 1$

2 cas :

- $a \in p$: répondre b comme dans p
- $a \notin p$: on essaie à la fois true et false



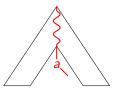
```
\lambda caf. let p,t:=\alpha c in if test a true p then f(\alpha c) id true* id* else if test a false p then f(\alpha c) id false* id* else f(a, \text{true}) \cup p, \lambda u. f(a, \text{false}) \cup p, \lambda v. t(\text{merge } au \ v)) id false* id*) id true* id*
```

Cas particulier de la généricité :

p IF $\forall a \in \mathsf{Atom}$. $\exists q \in G$. $\exists b \in \mathsf{Bool}$. test $a \, b \, q = 1$

2 cas :

- $a \in p$: répondre b comme dans p
- $a \notin p$: on essaie à la fois true et false



```
\lambda caf. let p, t := \alpha c in if test a true p then f(\alpha c) id true* id* else if test a false p then f(\alpha c) id false* id* else f(a, \text{true}) \cup p, \lambda u. f(a, \text{false}) \cup p, \lambda v. t(\text{merge } a u v)) \text{ id false* } id^*) \text{ id true* } id^*
```

Conclusion

Contributions:

- réalisabilité classique : vers un vrai langage de programmation
- Calcul par forcing :
 - → meilleurs algorithmes, pas plus d'expressivité
 - → ajout d'une case mémoire à un programme fonctionnel
- Compréhension complète du comportement du forcing
 - → Exemple des arbres de Herbrand

Perspectives:

- autres exemples de calcul par forcing (bar récursion...)
- autres traits impératifs (données)
- cas général du générique

Conclusion

Contributions:

- réalisabilité classique : vers un vrai langage de programmation
- Calcul par forcing :
 - → meilleurs algorithmes, pas plus d'expressivité
 - → ajout d'une case mémoire à un programme fonctionnel
- Compréhension complète du comportement du forcing
 - \leadsto Exemple des arbres de Herbrand

Perspectives:

- autres exemples de calcul par forcing (bar récursion...)
- autres traits impératifs (données)
- cas général du générique

Merci de votre attention

Conclusion

Contributions:

- réalisabilité classique : vers un vrai langage de programmation
- Calcul par forcing :
 - → meilleurs algorithmes, pas plus d'expressivité
 - → ajout d'une case mémoire à un programme fonctionnel
- Compréhension complète du comportement du forcing
 - \leadsto Exemple des arbres de Herbrand

Perspectives:

- autres exemples de calcul par forcing (bar récursion...)
- autres traits impératifs (données)
- cas général du générique

Merci de votre attention

Nombres réels en réalisabilité classique

Deux genres de constructions :

- coupures de Dedekind
- suites de Cauchy

Avantages de chaque :

- Dedekind : ordre
- Cauchy : opérations algébriques

Réels extractibles : définis par une formule Σ_2^0

- → extraction par totalité
- → exemple : racine de polynômes