BDDC v2
A basic bdd-based logical calculator

Pascal RAYMOND

November 24, 2008, (rev. September 28, 2015)

BDDC is a tool for manipulating logical formula. It is based on a Binary
Decision Diagram library, that means that each formula is internally tran-
formed into a canonical form. In particular, if the formula (resp its negation)
is a tautologie, BDDC will transform it into the ”always true formula” (resp.
the ”always false formula”).

All classical operators are provided. Moreover the tool provides a ” functional-
like” language that allows the user to define his (her) own logical operators.

1 Description

1.1 Basic features

The bddc utility implements an interactive processor for the evaluation of
logical formula. It reads commands from the standard input, and prints
the result to the standard output. The main commands are those which in-
volve Boolean expressions: basically, bddc computes a bdd (binary decision
diagram [1, 2]), which is a canonical representation of the expression.

For instance, if the user types the expression "x + y.z ;”, the calculator
interprets symbols x, y and z as Boolean arguments (i.e., basic propositions),
and the whole expression as a Boolean function over those arguments. Note
that ”+” stands for logical or, and ”.” operator for logical and. The cal-
culator builds the bdd corresponding to the expression, and then prints a
polynomial representation of this canonical form; in the example, it simply
outputs "x + y.z” (useful, isn’t it?).

If the expression is a tautology, its bdd is the always-true function: for
instance, if the user types ”x => (y => x);” (=> is the logical implication),
the result is "true”.

1.2 Advanced features

The user may assign an expression to a variable, and then use this variable
to build a new expression (”>>” is the prompt symbol of the processor):

>>f = (y => x);

X + -y
>>x => f;
true

Moreover, the user may define new operators on bdds. For instance :

>>union(A, B) := A + B;

--new function: union, arity: 2
>>union(x.y, t);

x.y+t

Indeed, this example is quite stupid. Defining new operators becomes inter-
esting when using control operators and recursion (see 5.3, 6).

2 Lexical aspects

Lists are coma-separated ().
Identifiers are any strings starting with a letter, and containing only
letters, digits and underscore symbol, excepting the following keywords:

and constrain compare cuts cnf
del dnf else exec exist
false forall help high if

in ite implies let list
low nor not or print
quit reed restrict root set
size syntax then true xor

The sequence // starts a comment, which ends at the next new-line. The
sequence /* starts a comment, which ends at the next */ sequence.

3 Commands

The processor is started by the command bddc, then the user enters an
interactive session.

quit
exits the processor.

help

prints the list of commands.

exec "command-file"

reads commands from a file.

syntax

prints the syntax of logical expressions.

list

prints the list of arguments and variables in the current context (see 5.2).

exp;

builds the bdd corresponding to the expression in the current context, and
outputs a polynomial equivalent to this bdd.

ident := exp ;

builds the bdd corresponding to the expression in the current context, as-
signs it to the variable ident, and outputs a polynomial equivalent to this
bdd.

tdent(identlist) := exp;

defines a function, wich can be used latter in logical expression.

print ident

print a polynomial equivalent to the bdd held by the variable ¢dent. This
command is obsolete: it is equivalent to type "ident;”, since a identifier is a
logical expression.

size exp;

prints the size of the bdd corresponding to exp. This size is expressed as a
number of "bdd nodes” (see 5.1).

[dnf, cnf, reed] exp;

those commands are quite equivalent to typing ” exp;”, except that the out-
put is printed (respectively) in disjunctive, conjunctive, or Reed-Muller nor-
mal form (see 5.5).

set [dnf, cnf, reed]

sets the output mode (disjunctive, conjunctive, or Reed-Muller normal form see 5.5).

4 Logical expressions

The calculator provides all the classical Boolean operators, plus some other
specially dedicated to the bdd implementation. The syntax is infixed, and
the expression can be typed on more than one line, so don’t forget the
terminating symbol 7 ;”!

4.1 Boolean operators

false

(or 70”) always-false function.

true

(or 717”) always-true function.

ident

reference to an argument or a variable (depending on the current context).

not exp

(or "-ezp”) complement.

exrp or exp

(or "exp + exp”) disjunction.

exp and exp

(or "exp . exp”) conjunction.

exp Xor erp

(or ”exp <> exp”) exclusive or.

exp => exp

implication.

exp = exp

equivalence.

ite(exp,exp,exp)

functionnal ”if then else”; ”ite(f,g,h)” is equivalent to "f.g + -f.h".

forall identlist exp

universal quantifier.

exist identlist exp

existential quantifier.

(exp-list)

at most one true in the list.

nor exp-list

none is true in the list.

xor (exp-list)

exactly one true in the list. Warning: xor (x1,x2,...,xi) is NOT ”x1 xor x2
xor ... xor xi” (except for i=2).

4.2 Control operators

Those operators allow the user to control the way expressions are evaluated.

compare(exp,exrp)

returns 1 (the always-true function) if the two expressions are logically equiv-
alent, 0 (the always-false function) otherwise.

implies(exp,exp)

returns 1 if the first expression implies the second one, 0 otherwise.

cuts(exp,exp)

returns 1 if the intersection of the two expressions is not empty (i.e. their
logical and is not 0), 0 otherwise.

if exp then exp else exp

lazy ”if”: if the first operand is always-true (resp. always-false), the second
(resp. third) operand is not evaluated; otherwise, it behaves as the ite
operator.

let ident := exp in exp

local variable definition : the first expression is evaluated in a new context
where ident is undefined. Then, the second expression is evaluated in a new
context where the first result is associated to ident. The original context is
then restaured, and the second result is returned (see 5.2 for details).

4.3 Bdd decomposition

The following operators are specific to the bdd representation: in particular,
they do depend on the internal order of the arguments.

Every formula ”£” that actually depends on at least one argument (i.e.
neither 0 nor 1) is equivalent to ”f = if root(f) then high(f) else
low(£f)”, where:

e root(f) is the least argument f actually depends on, according to the
argument total order.

e neither high(f) nor low(f) depend on root (f)

See 5.4 for more details on Shannon decomposition and BDD.

root(exp)

the least argument which the expression depends on.

high(exp)

the "high” branch of the expression (i.e. the formula when the root-var is
true).

low (exp)

the ”low” branch of the expression (i.e. the formula when the root-var is
false).

root (exp-list)

when called with more than one argument, the root function returns the
minimal root-var of all the expressions. This generalisation is quite useful
when defining recusive functions on the bdd stucture.

supp(exp)

returns the ”support” of the exopression, that is, the ”or” of all arguments
the formula depends on.

4.4 Simplification modulo care-set

The following operators are specific to the bdd representation: in particular,
they do depend on the internal order of the arguments.

It is often the case that a particular formula is manipulated under a set
of assumptions, or ”care-set”.

restrict(exp,exp)

"restrict(f,g)” is a function equivalent to ”£” if ”g”; the result is simplier
than ”£” (less bdd nodes). The result is a function h satisfying:

if(fAg=0) then h=0
if(fv-g=1) then h=1
Otherwise, h is some function satisfying:

(fAg)=h=(fV~g)

N.B. The result is undefined if the second operand is 0.

constrain(exp,exp)

(also called the generalized cofactor) is a kind of "restrict” operation. The
result is not garanted to be "smaller” than f, but it has an interesting (but
not trivial) property: let h = constrain(f,g)

h(x) = f(2') where 2’ = "the closer point to x in g”

The precise definition of the ”closer point ...” function is a little bit
complicated (and depends on the variable ordering), but the main result is
that the choice of ' does not depend on f.

N.B. The result is undefined if the second operand is 0.

4.5 Priorities

Expressions can be enclosed within parenthesis. Some priorities are used to
resolve ambiguities:

e not, exist, forall,
e eclse

e and

e or

e => (right associative)

e = xor (right associative)

e in
For instance:
let z :=t = v in - exist x if y then x else z + z =y => z ;
is interpreted as:

let z := (¢t = v) in ((- (exist x (if y then x else z)) + z) = (y => 2z));

5 Appendix

5.1 Notes on BDD size

The tool uses a internal representation knowned as ”signed binary decision
diagrams” (SBDD). With this representation, a boolean function F' and its
negation —F are (almost) represented by the same internal structure (they
differ only on a boolean flag). With classic BDDs, the internal representation
of F' and —F are disjoints. As a consequence, the cost of the negation is
constant with SBDDs, since it is linear with classical BDDs. Moreover, it
is known that this representation is always cheaper (in size and in time
computation) than classical BDDs.

5.2 Notes on identifiers

The calculator deals with several kinds of identifiers:

arguments are the (global) free variables, i.e. identifiers that was once
used without being first declared.

global variables are the identifiers introduced at the top level by a assign-
ment command.

local variables are either formal parameters of a user-defined function, or
identifiers introduced by a let operator.

The way an identifier is interpreted (i.e. the identifier’s status) depends
on the current context. Intuitively, at the top level, there is a global context,
giving the status of arguments and global variables. The status of a global
identifier is implicitly given by its first occurence: if it first appears in the
left hand side of an assigment, the status is variable; if it first appears in an
expression, the status is argument. One can type "1ist” to see the current
global context :

>>x = a . b;

X :=a . b

>>1ist

parameters are: a b
variables are: x

An argument cannot be re-used as a global variable; a variable, indeed, can
be re-assigned:

>>a = X;

can’t assign "a'", not a variable
>>x := a + b;

x :=a+b

Arguments are globals, while the scope of variables can be restricted

using the let ... in ... operator.
>>y = let z := ¢ +d in z;
y :=c+d

>>]list --note that z has disappeared, but not c and d:
arguments are: a b c d
variables are: x y

If id is a variable, let id := ... shadows the current value of id:

>>y;

c +d

>>z := let y := (let y := e.f in y.g) in x + y;
z :=a+b+ef.g

>>y,

c+d

Moreover, a local declaration shadows the status of the identifier:

>>a;

a

>>let a := e.f in a;
e.f
>>a;

a

5.3 Notes on user-defined functions

For the time being, no static verifications are made on user-defined functions.
We can simply give the semantics for function calls: if the user has defined a
function foo(il, ..., ik) := exp;, then foo(el, ..., en), where el,
..., €n are correct expressions, is a correct expression equivalent to:

let i1l el in

let in := en in

exp;

In particular, a user-defined function may use free identifiers, but it is
indeed quite dangerous: depending on the context call, those identifiers will
be interpretted either as arguments, global variables, or even local variables
of the current scope!

5.4 Notes on Shannon decomposition

The bdd decomposition is a special case of Shannon decomposition, where
the choice of the decomposition variable is forced by the actual bdd repre-
sentation. The general Shannon decomposition does not depend on the bdd
structure, and can be obtained using logical operators; for all variable x and
function f, we have f = (z A f1) V (-z A f0), where (in bddc syntax):

f1
f0 :

constrain(f,x);
constrain(f,-x);

exist x (x.f); -- or better: fi1
exist x (-x.f); -- or better: fO :

5.5 Notes on output format

By default, the tool prints the results in a disjunctive normal form (sum
of 7ands”). The idea is to make the result as ”"readable” as possible. The
quality of the "result” dramaticaly depends on the internal order of the
arguments. For example, depending on the order of its arguments, the
expression "if A then B else C” can produce different (but equivalent)
polynomials, such as "A.B + -A.C + B.C” or "B.A + -A.C”. Indeed, the
second form is ”better” since it is more concise, but the problem of printing
the simpliest polynomial equivalent to a given function is exponential. So,
there is no guarantee on the ”quality” of the print result.

The user can also prints the results in a conjonctive normal form (product
of or’s). This is the dual of the first form.

The Reed-Muller normal form consists in expressing the boolean func-
tions as polynomials in "and” and "xor” (the always-true function ”1” is
also necessary). This form is canonical (modulo the commutativity and
associativity of the operators). For instance:

>>reed (if A then B else C);
>>B.A <> A.C <> C

>>reed (not A);

>>A <> 1

This form is interesting (since it is canonical), but it can seem ”strange”
and unreadable for most people! Moreover, there is no ”"simple” relation

10

between the size of the Reed-Muller form and a classical polynomial form:
one form can be exponentially better or worse than the other:

>>A + B + C;
A+B+ C

>>reed (A + B + C);
A.B.C <> A.B<>A.C<>A<>B.C<>B<>C

>>A <> B <> C;
A.B.C + A.-B.-C + -A.B.-C + -A.-B.C

>>reed (A <> B <> C);
A <> B<>C

6 Examples

6.1 Programming the negation

The following function implements the Boolean negation. Indeed, using this
function is quite ineffective, since the built-in not operator does the same
thing in constant time, but this simple algorithm shows the genaral structure
of any unary bdd-based operator.

negation(a) :=
if compare(a, true) then false
else if compare(a, false) then true
else ite(root(a), negation(high(a)), negation(low(a)));

In order to understand this algorithm, remain that any bdd a is either:
e true, i.e. the always true formula,
e false, i.e. the always false formula,

e aternary ”expression” of the form ite(root(a), high(a), low(a)),
where root(a) is an argument !, and high(a) and low(a) are two
formulas not depending in root (a).

The algorithm first treat the basic cases, by comparing the parameter
to the constants true and false, and after the genaral case, where the
parameter still depends on some argument. In this case, the function is
recursively called on the corresponding high and low parts, and the results
are combined under a test of the root argument.

!More precisely the identity formula associated to an argument

11

6.2 Finding an implicant in a bdd

This is another example of unary function, that builds, if it exists, an mono-
mial that implies a :

path(a) :=
if compare(a, true) then true
else if compare(a, false) then false
else if compare(high(a), false) then (not root(a) and path(low(a)))
else (root(a) and path(high(a)))

6.3 Programming the union

The following function implements the Boolean or. The only interest is in
showing how to build a binary operator. We first treat the basic cases, where
either a, b are constants. Then, we treat the case where both a and b are
”binary” bdds. In this last case, we use the binary extension of the root
operator to get the "minimal” argument between root(a) and root (b)),
and call it min root. Then, the recursive calls are made by decomposing
both parameters according to min_root.

union(a, b) :=
if (compare(a, true) or compare(b, false)) then a
else if (compare(b, true) or compare(a, false)) then b
else let min_root := root(a, b) in
ite(min_root,
union(constrain(a, min_root), constrain(b, min_root)),
union(constrain(a, not min_root), constrain(b, not min_root))

)

The use of the generalized cofactor in the recursive calls may seem
a little bit tricky. It is justified by the fact that (for instance) either
constrain(a, min root) = a if min root # root(a), or constrain(a,
min_root) = high(a) if min_root = root(a).

References

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Comput-
ers, C-27(6), 1978.

[2] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, C-35(8):677-692, 1986.

12

