Worst Case Execution Time Estimation

Pascal Raymond

Verimag-CNRS

MOSIG - Embedded Systems

Introduction

Program correction

e A reactive system is correct if:
< it computes the right outputs (functionality)

< it reacts fast enough (real-time)

e Synchronous approach addresses mainly the 1st problem (functionality)

while guarantying that the 2nd will be solvable
Goal of this course

e Brief state of the art in timing analysis, according two topics:
< hardware analysis (overview, deserve a whole course !)

— software analysis (feasibility)

e Then focus on the particular case of Synchronous Programs,

trying to exploit their specificities

Introduction

1/47

Timing analysis

e The whole reaction of the program must respect the real-time constraint
i.e. must be faster than any significant modification of the environment
e A reaction includes not only computation but also:
— inputs acquisition and outputs transfer,
— depends on physical and electronic devices (sensors, actuators, buses ...)

< The full problem is called: Worst Case Reaction Time estimation (WCRT)

e Moreover, computation may not be sequential:
< multi thread implementation, on single or multi core

< The general problem is referred as Schedulability Analysis

e However, there is (mandatory) basic problem:

— Estimate the Worst Case Execution Time (WCET) of a (piece of) purely

sequential code, running on a particular hardware architecture

Introduction 2/47

Execution Time Distribution

2
&
@b
N %) 4

2 % S O
kel : ® é\\ &
= All executions S S >
3] S N &
o} J{ > >
S K &
> s >
S $°\
o
O
E Tested executions
= -

Execution time -4

over-approximation

e Dynamic methods (test) give realistic, feasible exec. times , but are not safe

e Static methods (WCET analysis) give guaranteed upper bound to exec. time, but

necessarily over estimated

Introduction 3/47

Main sources of over-approximation

e Hardware:
— precise modeling of hardware state is impossible in practice
< abstractions (simplifications) are necessary
— these abstractions MUST be pessimistic, in order to get a safe upper bound
e But also Software:
<~ Some execution of the code are infeasible, because of the program semantics
(and/or also some assumptions we have on the inputs)

— Considering infeasible executions may lead to a false WCET

Introduction 4/47

WCET estimation: overview

The timing analysis problem

e given a binary code,
e and a (more or less) precise model of the hardware (processor, memory)

e found an upper bound of its execution time (given in cpu cycles)
The “right” structure to start with: Control Flow Graphs (CFG)

e |dentify Basic Blocks (BB):
< purely sequential piece of code

e Represent the control flow with transitions connecting the BB

WCET estimation: overview 5/47

Example of Control Flow Graph

foo:
str fp, [sp, #-4]!

add fp, sp, #0

cmp r3, #0
beq .L2

LL2:
1ldr r3,
1ldr r3,
str r3,
.L3:
mov r3,

[fp, #-20]
[r3, #0]
[fp, #-4]

#0

r3,
bne .L9
ldr r3,
mov r2,

cmp r2,

str [fp, #-12]
[fp, #-24]
r3, 1lsr #31
r3

ldr r3,

mov rO0,

[fp, #-4]
r3

add sp, fp, #0

b .L3
.L9:
ldmfd sp!, fp

Bl

\eriry block

B3

B4

B9

'
s

B5

X

7

Y
N

B8

Problems to solve:

Assign (local) WCET to each BB ...

exit block

e ... and penalties to transitions (jump vs sequence)

s e Find loop bounds (B8 to B4 !)
e Find the Worst Case execution path
WCET estimation: overview 6/47
Classical WCET tool organization
Micro-architecture analysis /\
e Control Flow Graph (CFG) construction annot.
< Basic Blocks of sequential instructions
. comp|lation transfer
(one entry, one exit)
< Connected by edges (contol flow) binary L
e Assign a local WCET to each BB/edge
requires model of the processor/hardware (:)
[CFG construction]
< instruction specification \
— hardware state (pipeline) J1-archi Worst Path Search
— flow history (caches) etc. analysis (e.g. IPET/ILP)
< N.B. given in cpu cycles) ’
Classical WCET tool organization 7/47

Classical WCET tool organization

Value analysis
e j.e. Data-Flow Analysis

e focus on program semantics:

which execution paths are feasible ?
e Must at least provide loop bounds

e In general performed at source level (C):

< May take into account user informations

(e.g. input ranges, input exclusions etc.)

< Raise a transfer problem between C and bin
(traceability)

< Strongly depends on the compilation

comp|lation transfer

annot.

binary

,

N

[CFG construction]

Worst Path Search J

p-archi

analysis (e.g. IPET/ILP)

Classical WCET tool organization 8/47
Classical WCET tool organization
Path analysis
e Search Worst Execution Path (WEP) in the CFG annot. '/\
according to:
< Local weights provided by ji-archi analysis ~ 0mp/iation transfer
< Flow facts provided by Value analysis ,
binary annot.
e Algorithms: graph traversal possible...
® Most widely used: [CFG construction]
Implicit Path Enumeration Technique (IPET) \
< Encode the WP as an optimization problem: e Worst Path Search
an Integer Linear Program (IPL) analysis (e.g. IPET/ILP)
Classical WCET tool organization 9/47

In the following ...

e Introduction to micro-architecture analysis:
< why it becomes technically hard ...
< notion of (un)predictable architecture

— example of p-archi analysis: memory cache

e Quick overview of loop-bounds analysis:
< why it is theoretically complex (halting problem)

< classical (necessarily naive) solutions

e Path analysis:
< The Implicit Path Enumeration Technique

< notion of infeasible paths and relation with data-flow analysis

e Finally: WCET for (synchronous) programs

Classical WCET tool organization 10/47

Micro-Architecture Analysis

Goal

e find an upper bound to the execution time of a Basic Block

(purely sequential piece of binary code)
e idem for a transition

Analysing the binary instructions, the good old time...

e until the 80’s, processors where (mostly) time predictable, e.g. MC68000:
< instruction (according to the user manual):
WCET(ADD.L #5,DO0) =10 cpu cycles
< sequence:
WCET (instr1 ; instr2) = WCET(instr1) + WCET(instr2)
< branching penalty, e.g. bne 0x00EF42:
taken: +4 penalty not taken: —2 penalty
— finally: not “exact” (e.g. instruction fetch pipeline), but fairly precise ...

Micro-Architecture Analysis 11/47

Analysing the binary instructions, nowadays

e Nowadays: the “additive” principle is false even for very “simple” architecture:
< complex (micro)-instruction pipeline (3/4 instructions in parallel)
<> branch prediction in pipeline: big penalty when the “guess” is wrong!
< memory caches: LOAD/STORE may be 10 times faster if the address is in
cache (hit) or not (miss)
< even more complicated with several cache layers !
e Exec Time depends on the precise state of the architecture
— WCET(HWS, instr1 ; instr2) = WCET(HWS, instr1) + WCET(HWS’, instr2)
— where HWS’ = Post(HWS, instr1)
e |n practice:
— The number of actual HWS is untractable

— Need to abstract (simplify) ... while keeping safe (over-approximation)

Micro-Architecture Analysis 12/47

Analysing the binary instructions, nowadays (cntd)

e “monotonicity principle”
— AHS = abstract = set of (concrete) HWS
— WCET(AHS, instr1 ; instr2) < WCET(AHS, instr1) + WCET(AHS’, instr2)
< where AHS’ D | J Post(HWS, instr1) s.t. HWS € AHS
e A BIG problem: timing anomalies
— there exist machines s.t. MONOTONICITY DOEST NOT HOLD
* i.e. local WCET does not lead to global WCET
* Example: speculation anomaly read x; if cond then B else C(x)

pred. miss B canceled
cache hit
eval cond
(prefetch B
c)
cache miss ("agx)
(eval cond)
c)

< and plenty of anomalies as soon as multi threading and concurrency is involved !

Micro-Architecture Analysis 13/47

Analysing the binary instructions, nowadays (cntd)

e Classification of architectures:

— from. Wilhelm et al., Memory Hierarchies, Pipelines and Buses for Future
Architectures in Time-critical Embedded Systems, IEEE TCAD, Jul. 2009

— Timing Compositional
* No timing anomalies, e.g. ARM7

< Compositional with bounded effects
* Timing anomalies limited (i.e anomalies do not cross branches)
* e.g. (probably) TriCore

<~ Non-compositional
* Timing anomalies with observed domino effect (i.e anomalies cross branches)

* e.g. PPC 755

Micro-Architecture Analysis 14/47

Modern archi vs (hard) Real-time

e Most of advanced features improve average execution time

but make worst case highly unpredictable

e Hard-real time domains try to use only Timing Compositional architecture (perhaps

with bounded effects)
n.b. It is often possible to disable unpredictable features (e.g. branch prediction)

e However, analysing features like pipeline and memory caches is mandatory to get

realistic (not too pessimistic) estimation.

15/47

Micro-Architecture Analysis

Micro-archi analysis: memory cache example

Principle of a simple, one-layer cache

Memory
[y
lo Cache
C1
Co
line s @
- . C <« » Processing unit
- Ck
la t
ln

e Memory divided in pieces called lines: @ = line number + offset

e Cache contains a fixed number of copies of memory lines
e Processor need to acces @ = line lq + offset:
— l@ is in the cache: HIT, costs few cycles
— l@ is NOT in the cache: MISS,
a cache entry is chosen, its content replaced by (the whole) [;,
costs tens to hundreds cycles

Micro-archi analysis: memory cache example

16/47

Cache and WCET analysis

e HIT costs much less than MISS
e Supposing MISS all the time is safe but far too pessimistic
e For any memory access in the program:
< if one can prove that it is necessarily a HIT, count a HIT
< otherwise count a MISS (even if it may be a HIT: over-approximation)

e is it possible to predict HIT/MISS ?

Micro-archi analysis: memory cache example

17/47

Predictability of caches

e Characteristics of a simple cache:
< Fully Associative caches: any line of the memory can be stored in any line of the cache
< Least Recently Used replacement policy: in case of miss, the evicted line is the least
recently accessed one
e With these properties, the cache behavior is highly predictable:
< Suppose that the cache has 4 lines,
< and that the program has just accessed 4 different memory lines a, then b, then ¢, then d,
then whatever is the initial state of the cache, we know that:
* the cache contains a,b,c,d,
* the LRU line, that will be replaced in case of miss, is a (and then b, c etc).

Micro-archi analysis: memory cache example 18/47

Concrete State of a LRU cache

e AstateisafunctionC : C' — LU
< (' = 1---kis the set of cache line indices
— L =1---nis the set of memory line indices
< () denotes an empty cache line (very initial state only)
e Age of cache line:
< cache lines are sorted from most recently used (1) to least recently used (k)
< in case of MISS, lines are shifted:

1T 2 3 4 1T 2 3 4
access e =

albl|lc]|d elal|lb|c

< i.e. in case of HIT, order is updated:

17 2 3 4 17 2 3 4
access ¢ =
alblc]|]d clal|lb]d

e Notation: C' = up(C, a) (the update of cache C after access a)

e n.b. “behavioural” modeling, in real hardware lines don’t move but are re-numbered !

Micro-archi analysis: memory cache example 19/47

Uncertainty in cache analysis

e when analysing a piece of code:
< the starting state is (in general) not precisely known
< even if it is known, the code may result in several possible states

<~ example (with a 4-lines cache):

if (access(a)) { ;2 3 4
access(b);
access(c);

} else {
access(b); ; P 3 4
access{a};
access(c);

beginning, cacheis | 2 | 2 | 2 | 2

end of “then” branch, cacheis | ¢ | o | a | 2

}

access(d); 1 2 3 4
access(e);
access(a); //HIT or MISS ?

end of “else” branch, cacheis | ¢ | a | b | 2

last access (a) may be a HIT or a MISS...

< safe approximation: count a MISS

how to represent uncertainty ?

Micro-archi analysis: memory cache example 20/47

Abstract State of a LRU cache

e What a (safe) abstraction must satisfy:
< abstract state = a set of concrete state (A = {C})
< abstract union, when merging abstract states:
AUA ={cru{ch
< abstract update:
A= Aup(A,a) = A DUccgup(A, a)
> HIT-preserving:
access(a)isHITin A = VC € A access(a)isHITinC

Micro-archi analysis: memory cache example 21/47

Abstract State of a LRU cache (cntd)

e Classical abstraction, “max age” A : C — L U o0
— A(a) = j means
“in all concrete state, line a is present and its age (position) is < 3”
— A(a) = oo means
“in all concrete state, line a is NOT present”
— aisHITinA = A(a) # o
— merge:
A=A UAy < YaeC Aa) = MAX(A(a), Ax(a))
e Abstract update A" = Aup(A,a) <
— A'(a) =1
— Vb#a A(b) =if A(b) < k then A(b) + 1 else oo

Micro-archi analysis: memory cache example 22/47
Back to the example
e Notation: A = {z/A(z) =1} | {z/A(x) =2} | {z/A(x) =3} | {z/A(z) =4}
e {x/A(x) = oo} are not represented
* L1]
a
Iallll'/\lallll
b b
*Ib la| []
Bl] |l '
yELET T
C
C
lc[blal | [c[a[b] |
[c] [a,b] | MERGE
d
y [E1<[T2
e
 JERECIC
a
y[eleldlc]
Micro-archi analysis: memory cache example 23/47

Cache analysis and loops

L1 fa] |

»
- QO -

IHIIII'/\IHIIII
b b
(b fa] [1]
b [af [| *
a
*I [I T |
c
C
Lelbfa] | [CTa o] |
[e [[ab[|

-+ v -

@ In case of loop, merge initial, re-run...
® Re-merge, re-run ...

® Re-merge, fix-point: stop

Note: convergence is trivial, monotonicity in finite latice

24/47

Micro-archi analysis: memory cache example

Loop bounds Analysis

Goal

e find an upper bound for the umber of time each back-edge in the CFG can be taken

e strongly related to the HALTING problem, and thus undecidable (in general)

The classical Collatz problem

void collatz(int n){
assert(n> 0);
while (n != 1) {

if (n & 1)
n=3*xn+ 1;
else
n=n/ 2;

e |t is widely believed that this program halts for any n

e But nobody knows how to prove it (for now, and

probably for a long time ...)

25/47

Loop bounds Analysis

The general approach: termination analysis

e Handles any kind of “loops” (recursion, for, while ...)
e Tries to find a decreasing measure of the loop
e Hardly (fully) automatic

Loop bounds in Real-time applications

e Pragmatic approach: the program is supposed to be real-time, thus the loops must be
bounded by some simple decreasing measure.
e A classical solution:
— let i1, 12, etc. be the numerical local variables
i.e. appearing in the loop condition and the loop body
< search for a linear combination) _ av;; 1 k that decrease at each iteration of the loop
e Works well for simple for and while loops

Loop bounds Analysis 26/47
Examples of simple decreasing sequences
e basic for (or equivalent while)
inti; for(i=0; i<n; i++) { foo ();
int i =0; while (i <n) { foo(); i++;
— decreasing sequence n — 1,
<~ maxvalue=n — 1,
< min value 0,
— decreasing step = 1,
< thus bound = (max — min)/step =n — 1
e Warning: the min decreasing step must be taken into account:
int i=n;
while(i>0){if (...) {i-=4;) else {i-=2;
< bound = (n —1)/2
Loop bounds Analysis 27/47

Conclusion: loop (and value) analysis in general

e Involves/uses all the techniques of static program analysis, in particular abstract interpretation
e Deserves a whole course !
e Note: these techniques are also used in micro-architecture analysis (cf. cache analysis)

Loop bounds Analysis 28/47

Path Analysis: the Implicit Path Enumeration Technique
Integer Linear Programming
e LP (Linear Programming) is a branch of Operational Research field

e Input:
< a set of linear constraints over rational variables, i.e. AX < B

< a linear objective function to maximize (or minimize), i.e. MAX f(X)

e Output:

< an optimal valuation ¥/, such that A7 < B and f (%) is maximal (resp. minimal)
e State of the art (family of) algorithm: the simplex

e |LP is similar, but variables are integers
> Theoretically strictly more complex

<~ However works well in many cases

Path Analysis: the Implicit Path Enumeration Technique 29/47

ILP encoding on an example

e ii-archi analysis has assigned weights
e.g. w, = 26, w, = 72 etc.

e data-flow analysis has found loop bounds
'h’ taken at most 7 = 10 times

e |LP encoding:
< Structural constraints

a+d=1
g=a+d
g+k=p+h

<~ Semantic constraints
h<n=10

— Objective function: MAX(} .o w,T)

Optimalforra=g=p=1,h=b=c=k=10,d=e= f =0
with: 26 +7 + 7+ 10 (5 + 72 + 68 + 5) = 1540

Path Analysis: the Implicit Path Enumeration Technique 30/47

Interest of ILP

e |t handles “naturally” the problem of loops ...

e however, a “simple” graph-based traversal algorithm can do the same !
A simple graph-based algo

e Trivial for well-nested loops (MAX/PLUS),

e | ess trivial otherwise, but possible.

e Well-nested program: prg ::=e | prg;prg | prg + prg | (prg)”

e Algo:

W(e) = we

Wi(p1;p2) = W(p1) + W(p2)

W(p1+p2) = MAX(W(p1), W(p2))
")

WE") = nxWp)

Path Analysis: the Implicit Path Enumeration Technique 31/47

Adding extra constraints

e |LP becomes (really) useful when extra constraints can be added,

that reflect known properties on feasible paths

e Example (C-code for simplicity):

it (init) { /xa:26%/ } e branch b cannot be taken more than /2 times:
else { /xd:15%/ }
I%Q:7 %/ < easytoexpressinILP:b < n/2,ie.b <5
for (i=0;i<n;i++){
[xh:5 %/ e if b is taken, c cannot be taken
if (i<n/i2){
I* b:72x/ — less obvious, but: b + ¢ < n,ie. b+ c < 10
cond = false;
}else { e ILP system + extra constraint reach optimal solution for:
/xe:50 %/
} —~a=g=p=1,d=0,h=k =10,
if (cond){
/*c:68 %/ b:CZGZf:5
} else {
I% 232 %/ > 26+ 7+7+10% (5+5) + 5% (72+ 50 + 68 4 32) = 1250
}*k:S*l < enhancement (from 1540): 19%
}
[xp:7 */
Path Analysis: the Implicit Path Enumeration Technique 32/47

Infeasibility properties: many problems...

e May or may not enhance the WCET estimate

< does they concern “heavy” or “light” paths ?
e How to find them ?
e [s it possible and how to express them in ILP ?
Find infeasible path
e Hard problem, c.f. program analysis (NP-hard/even undecidable)
e Target (as far as possible) “heavy” paths

e Restrict to some patterns, e.g. pairwise condition exclusion

Path Analysis: the Implicit Path Enumeration Technique 33/47

Express infeasibility in ILP (examples)

if (init) {
/% a x/

} else {

/% d x/
}

for (i=0;i<n;i++){
it (Y[i]) {
cond = not init
and Z[i];
/% b *x/
} else {
cond = true;
/% e %/
}
/% ... x/
if (cond){
/* ¢ */

} else {

/% f */

}

}

e at each iteration, if e is taken, f cannot be taken:
< similar to the previous example: e + f < n

e More subtle: if a is taken, then at each iteration, if b is taken,
then c cannot be taken
< less obvious, but: n - a + b + ¢ < 2n, works

— suppose a is NOT taken, then a = 0 and the constraint
becomes:

b + ¢ < 2n which is trivially satisfied

— suppose a is taken,then a = 1 and the constraint
becomes:

b 4+ ¢ < n which express the exclusion

Path Analysis: the Implicit Path Enumeration Technique 34/47
Express infeasibility in ILP (examples)
for(i=0;i < nji++){ e conflict between a and b: each time a is taken ...
if (X[i . . .
' ,(*L:J) { b is forbidden all along the forthcoming “m”-loop
cond = false; .
} > how to express in ILP ?
for(j=0;j < m; j++){ m+xa+b<nsxm
if (cond){
/xbx*/
}
}
}
cond = read(); e conflict across iteration: if b is taken, a cannot be taken in
for(i=0;i < nji++){
it (cond) { the next loop
/*a*x/ .
} — how to express in ILP ?
if (Y[i]) { a+b<n+1
[*xbx/
cond = false;
} else {
cond = X[i];
}
}
Path Analysis: the Implicit Path Enumeration Technique 35/47

WCET and synchronous programming

Complementarity

e Synchronous approach guarantees that programs are intrinsically real-time
<> execution time is bounded by construction,
for any particular implementation on any particular architecture
e WCET estimation checks that the program implementation is actually real-time
— tries to compute accurate and precise bound for the actual implementation

< checks whether this bound is small enough to fulfill the real-time requirements
Synchronous program vs micro-architecture analysis
Micro-architecture analysis simple (and hopefully precise):

e no recursion, no dynamic allocation:
< no heap, no (or very simple) stack...

<~ makes memory access analysis simple (e.g. cache analysis)

e no (or very simple) loops, simple control structure (nested if-then-else):

< makes control analysis simple (e.g. pipeline, branch prediction)

WCET and synchronous programming 36/47

Synchronous program vs data analysis
e The simplest is the code, the simplest (and precise) is the analysis

e Features that make data (semantics) analysis difficult are absent:
< no aliasing (pointers)
< no complex loops (while)
Go further?
e A synchronous program has a global “infinite” behavior:
— Explicit at the high-level (Lustre, Esterel)
< Hard to (re)-discover at the step procedure level (C, binary)
— Is it possible to exploit global properties of S.P. to enhance WCET estimation ?
< Indeed: it strongly depends on the compilation scheme:

* high-level properties may or may not have influence on the generated code!

e Let see a typical example ...

WCET and synchronous programming 37/47

Synchronous Program Example: compilation
HLto C
/N

modes
Al

[.
L _ _

-

|]

T8 || T

e Binary code
< via arm-elf-gcc

#include<...>
struct modes_ctx{

}
void modes_step{

if (w8) ¢

C code

, (step) [/

<~ WCET estimation should be done here

for modes_step

i.e. a step of main infinite loop

WCET and synchronous programming

I

#include<...> C to bi n e
#include "modes.h" mo:i:ﬁ;tzpi G 50
S ot g 2dd £p, sp, #4'
while (1) {
wait_period(); cmp r3, #0
read_inputs(); beq 8a3c
modes_step () ; mov r3, #1
" C code bin code
o 8a48:
(main) [/ /
modes_step:
stmdb sp!, {fp, 1lr}
add fp, sp, #4
cmp r3, #0
beq 8a3c
mov r3, #1
b 8a48
8a3c:
1dr r3, [pc,#1568]
8a48:

Example (cntd): WCET estimation

e Works at binary level

e Control Flow Graph (CFG) reconstruction
< Basic Blocks + edges (small part here)

e -archi analysis

< local costs, ¢;,j, in cpu cycles

e Data-flow analysis

< loop bounds + others (not here)

e Implicit Path Enumeration Technique (IPET)

Integer Linear Programming encoding

< one counter variable per edge (€;, ;)

(n.b. here, e; ;j =0o0r1)

< Structural Constraints: Xe; ; = Xe;

(and indeed: entry = exit = 1)

— Semantics Constraints

loop bounds (not here), others ?
— Objective: MAX Xc; j X e;,;
e Call an ILP Solver (here LPSolve)

— get 496 + the left-most path

WCET and synchronous programming

worst case path

38/47

Example (cntd): High Level properties (that may help estimation)

(modes)

data

!
outB
—_—t low I data degr - outA
onoff data > Al > Quea K
— Bl | L~ B1
!

togglel high
—> g outB
= A2 —
onoff —& [idle ££f —] = nom
toggle —»| ctrl | low ono ctrl
99 - high I toggle — = degr
_ J
\ . J I)

e Typical embedded application: several sub-modules running (logically) in parallel

e Programming pattern: computation modes

— Implemented with the notion of “clock-enabled” (e.g. when/current in Lustre)

e Compiler correct = codes of the modes must be exclusive

< Interesting property for enhancing WCET

WCET and synchronous programming 40/47
Example (cntd): High Level properties (that may help estimation)
(modes)
(idle A V! nom K B\
2o ' ~[B0
data outB
| low I data _| degr —‘i:D‘ outA
data ‘]j_\ - outA ¥ —
onoff | Al } i Bl
togglel high
—> I outB
-3z e
_______ _ 1 F === -
£f£f — = idl
toggle | ctrl Ii‘i’;: || onett Tl et [500
o 2z ~)
e Intra-module exclusions: between A0, A1, A2, and between B0 and B1
< may or may not be “obvious” on the generated code (i.e. structural)
e [nter-module exclusions: not in mode A0 implies mode B1
< no chance to be obvious on the generated code
e In all cases, relatively “complex” properties:
< infinite loop invariants, unlikely to be discovered by analysing C or bin code
WCET and synchronous programming 41/47

Exploiting high-level properties

Several problems:

e How to relate HL properties and binary code ? (traceability)

e How to express properties in the (classical) IPET/ILP method ?

e How to automatically find the “interesting” properties ?

WCET and synchronous programming 42/47
Traceability
modes - HL Compil Code generation
A [ﬁ B (Lustre — C) C CFG /(QEC)\ bin CFG
N | ﬁfu - T
7 |

e problem: relate branches in bin CFG

to branches in C-CFG, and then
predicates (variables) at the HL level

e between HL and C: not a problem
(compiler annotations)
e between C and bin: more difficult
(simple heuristic: rely on debugging info)
< No optimization (-00)
CFG’s strictly match

< Optimization (—02)
CFG relatively obfuscated
but debug info still works

WCET and synchronous programming 43/47

HL Properties vs ILP constraints

e Traceability has been achieved

<> Some binary edges are associated to HL variables

< N.B. Same HL variable nay control several bin edges

(not here)

e Feasibility of binary paths ?
e.g. e7,s & e2930 & e57 59

e Feasibitity as HL predicate:
® = (idle A high A —degr)

e Ask some HL verification tool:
Is =P an invariant of the HL program ?
(here: Lesar = Lustre model-checker)
<> Not proven, some path may be feasible...
< Proven. Infeasibility as ILP constraint:

e7,8 + €29.30 + €57,50 < 3

WCET and synchronous programming

idle

BE 22 (A1)

high<—>B 2
€29,302

BE 30 (AZ)

nom «— BB 4

BE 50 (BO)

degr o = L IBBS

BE 58 (B1)

44/47

Putting it all together: an iterative algorithm

e Call IPET/ILP solver
< Find worst case path (496 cycles)

e |s this path infeasible ?
< Call model-checker to prove:
—(idle A low A high A nom A degr)

< Resultis “TRUE PROPERTY?”, thus infeasible

< Add the corresponding ILP constraint:

e7,s + €21,22 + €29,30 + €50,51 + €58,50 < 4
e Call IPET/ILP solver

< Find worst case path (455 cycles)
< Check infeasibility, ... YES, and so on

e Eventually reach the WORST (feasible) path:
< reached for idle /A nom (258 cycles)

e Likely to VERY inefficient: converge VERY slowly

< 16 iterations for this simple example ...

WCET and synchronous programming

idle

low

nom

degr

45/47

An alternative top-down algorithm

Identify in the HL code the variables that are likely to influence the WCET
< Simple heuristics: those that are associated to bin edges,

< Here clearly: idle, low, high, nom, degr

Try to find a priori, exclusive relations between these variables
< Warning: there are a combinatorial number of such relations!

> Heuristics: limit the search to pairwise relations,
* e.9. is —1(idle A 1ow) = (—idle V —low) an invariant ?
* e.9. is —1(idle A 7low) = (—idle V low) an invariant ?

% etc. there are 2 * C2 = 20 such potential relations to check

< seems a lot, but polynomial: quadratic: C? = n(n — 1) /2

WCET and synchronous programming 46/47

An alternative top-down algorithm (cnt'd)

Example: checks the 2 % 052 = 20 pairwise disjunctive relations

six of them are proved invariant:
—idle V —low and —idle V —high and —low V —high and

—nom V —degr and —low V —nom and —high V —nom

that are translated into 6 ILP constraints (N.B. it can be more in general):
ergte2120 <1 and erg+e2930 <1 and e2122+€2930 <1 and
€49.50 + €5758 <1 and e2122 +€4950 <1 and e2930 + €a950 < 1

Call IPET/ILP solver once: get the optimal solution (258 cycles)

Remarks:
< Checking relations is costly: heuristics ! (choice of variables, restriction to pairwise)
< The obtained solution is not guaranteed to be optimal:

a path can be infeasible because of more than 2 variables

However: this algo is empirically (and relatively) efficient

WCET and synchronous programming 47147

