
Worst Case Execution Time Estimation

Pascal Raymond

Verimag-CNRS

MOSIG - Embedded Systems

Introduction

Program correction

• A reactive system is correct if:

↪→ it computes the right outputs (functionality)

↪→ it reacts fast enough (real-time)

• Synchronous approach addresses mainly the 1st problem (functionality)

while guarantying that the 2nd will be solvable

Goal of this course

• Brief state of the art in timing analysis, according two topics:

↪→ hardware analysis (overview, deserve a whole course !)

↪→ software analysis (feasibility)

• Then focus on the particular case of Synchronous Programs,

trying to exploit their specificities

Introduction 1/47

Timing analysis

• The whole reaction of the program must respect the real-time constraint

i.e. must be faster than any significant modification of the environment

• A reaction includes not only computation but also:

↪→ inputs acquisition and outputs transfer,

↪→ depends on physical and electronic devices (sensors, actuators, buses ...)

↪→ The full problem is called: Worst Case Reaction Time estimation (WCRT)

• Moreover, computation may not be sequential:

↪→ multi thread implementation, on single or multi core

↪→ The general problem is referred as Schedulability Analysis

• However, there is (mandatory) basic problem:

↪→ Estimate the Worst Case Execution Time (WCET) of a (piece of) purely

sequential code, running on a particular hardware architecture

Introduction 2/47

Execution Time Distribution

All executions

Tested executions

Execution time

W
or

st
es

tim
ate

d tim
e

over-approximation

Rea
l w

or
st

tim
e

W
or

st
mea

su
re

d tim
e

N
um

be
ro

fe
xe

cu
tio

ns

• Dynamic methods (test) give realistic, feasible exec. times , but are not safe

• Static methods (WCET analysis) give guaranteed upper bound to exec. time, but

necessarily over estimated

Introduction 3/47

Main sources of over-approximation

• Hardware:

↪→ precise modeling of hardware state is impossible in practice

↪→ abstractions (simplifications) are necessary

↪→ these abstractions MUST be pessimistic, in order to get a safe upper bound

• But also Software:

↪→ Some execution of the code are infeasible, because of the program semantics

(and/or also some assumptions we have on the inputs)

↪→ Considering infeasible executions may lead to a false WCET

Introduction 4/47

WCET estimation: overview

The timing analysis problem

• given a binary code,

• and a (more or less) precise model of the hardware (processor, memory)

• found an upper bound of its execution time (given in cpu cycles)

The “right” structure to start with: Control Flow Graphs (CFG)

• Identify Basic Blocks (BB):

↪→ purely sequential piece of code

• Represent the control flow with transitions connecting the BB

WCET estimation: overview 5/47

Example of Control Flow Graph

foo:
str fp, [sp, #-4]!

add fp, sp, #0

...

cmp r3, #0

beq .L2

mov r3, #0

str r3, [fp, #-4]

b .L3
.L2:

ldr r3, [fp, #-20]

ldr r3, [r3, #0]

str r3, [fp, #-4]
.L3:

mov r3, #0

str r3, [fp, #-12]

bne .L9
ldr r3, [fp, #-24]

mov r2, r3, lsr #31

cmp r2, r3

...

...

...
ldr r3, [fp, #-4]

mov r0, r3

add sp, fp, #0

b .L3
.L9:

ldmfd sp!, fp

bx lr

B2 B3

B4

B5

B8

B9

entry blockB1

B6 B7

exit block

Problems to solve:

• Assign (local) WCET to each BB ...

• ... and penalties to transitions (jump vs sequence)

• Find loop bounds (B8 to B4 !)

• Find the Worst Case execution path

WCET estimation: overview 6/47

Classical WCET tool organization

transfer

annot.

annot.

compilation

µ-archi
analysis

binary

C

Worst Path Search
(e.g. IPET/ILP)

CFG construction

an
aly

sisValu
e

Micro-architecture analysis

• Control Flow Graph (CFG) construction

↪→ Basic Blocks of sequential instructions

(one entry, one exit)

↪→ Connected by edges (contol flow)

• Assign a local WCET to each BB/edge

requires model of the processor/hardware

↪→ instruction specification

↪→ hardware state (pipeline)

↪→ flow history (caches) etc.

↪→ N.B. given in cpu cycles

Classical WCET tool organization 7/47

Classical WCET tool organization

transfer

annot.

annot.

compilation

µ-archi
analysis

binary

C

Worst Path Search
(e.g. IPET/ILP)

CFG construction

an
aly

sisValu
e

Value analysis

• i.e. Data-Flow Analysis

• focus on program semantics:

which execution paths are feasible ?

• Must at least provide loop bounds

• In general performed at source level (C):

↪→ May take into account user informations

(e.g. input ranges, input exclusions etc.)

↪→ Raise a transfer problem between C and bin

(traceability)

↪→ Strongly depends on the compilation

Classical WCET tool organization 8/47

Classical WCET tool organization

transfer

annot.

annot.

compilation

µ-archi
analysis

binary

C

Worst Path Search
(e.g. IPET/ILP)

CFG construction

an
aly

sisValu
e

Path analysis

• Search Worst Execution Path (WEP) in the CFG

according to:

↪→ Local weights provided by µ-archi analysis

↪→ Flow facts provided by Value analysis

• Algorithms: graph traversal possible...

• Most widely used:

Implicit Path Enumeration Technique (IPET)

↪→ Encode the WP as an optimization problem:

an Integer Linear Program (IPL)

Classical WCET tool organization 9/47

In the following ...

• Introduction to micro-architecture analysis:

↪→ why it becomes technically hard ...

↪→ notion of (un)predictable architecture

↪→ example of µ-archi analysis: memory cache

• Quick overview of loop-bounds analysis:

↪→ why it is theoretically complex (halting problem)

↪→ classical (necessarily naive) solutions

• Path analysis:

↪→ The Implicit Path Enumeration Technique

↪→ notion of infeasible paths and relation with data-flow analysis

• Finally: WCET for (synchronous) programs

Classical WCET tool organization 10/47

Micro-Architecture Analysis

Goal

• find an upper bound to the execution time of a Basic Block

(purely sequential piece of binary code)

• idem for a transition

Analysing the binary instructions, the good old time...

• until the 80’s, processors where (mostly) time predictable, e.g. MC68000:

↪→ instruction (according to the user manual):

WCET(ADD.L #5,D0) = 10 cpu cycles

↪→ sequence:

WCET(instr1 ; instr2) = WCET(instr1) + WCET(instr2)

↪→ branching penalty, e.g. bne 0x00EF42:

taken: +4 penalty not taken: −2 penalty

↪→ finally: not “exact” (e.g. instruction fetch pipeline), but fairly precise ...

Micro-Architecture Analysis 11/47

Analysing the binary instructions, nowadays

• Nowadays: the “additive” principle is false even for very “simple” architecture:

↪→ complex (micro)-instruction pipeline (3/4 instructions in parallel)

↪→ branch prediction in pipeline: big penalty when the “guess” is wrong!

↪→ memory caches: LOAD/STORE may be 10 times faster if the address is in

cache (hit) or not (miss)

↪→ even more complicated with several cache layers !

• Exec Time depends on the precise state of the architecture

↪→ WCET(HWS, instr1 ; instr2) = WCET(HWS, instr1) + WCET(HWS’, instr2)

↪→ where HWS’ = Post(HWS, instr1)

• In practice:

↪→ The number of actual HWS is untractable

↪→ Need to abstract (simplify) ... while keeping safe (over-approximation)

Micro-Architecture Analysis 12/47

Analysing the binary instructions, nowadays (cntd)

• “monotonicity principle”

↪→ AHS = abstract = set of (concrete) HWS

↪→ WCET(AHS, instr1 ; instr2)≤WCET(AHS, instr1) + WCET(AHS’, instr2)

↪→ where AHS’⊇ ⋃
Post(HWS, instr1) s.t.HWS ∈ AHS

• A BIG problem: timing anomalies

↪→ there exist machines s.t. MONOTONICITY DOEST NOT HOLD

∗ i.e. local WCET does not lead to global WCET

∗ Example: speculation anomaly read x; if cond then B else C(x)

cache hit

cache miss

read x
eval cond

B canceled

read x
eval cond

pred. miss

C

C
prefetch B

↪→ and plenty of anomalies as soon as multi threading and concurrency is involved !

Micro-Architecture Analysis 13/47

Analysing the binary instructions, nowadays (cntd)

• Classification of architectures:

↪→ from. Wilhelm et al., Memory Hierarchies, Pipelines and Buses for Future

Architectures in Time-critical Embedded Systems, IEEE TCAD, Jul. 2009

↪→ Timing Compositional

∗ No timing anomalies, e.g. ARM7

↪→ Compositional with bounded effects

∗ Timing anomalies limited (i.e anomalies do not cross branches)

∗ e.g. (probably) TriCore

↪→ Non-compositional

∗ Timing anomalies with observed domino effect (i.e anomalies cross branches)

∗ e.g. PPC 755

Micro-Architecture Analysis 14/47

Modern archi vs (hard) Real-time

• Most of advanced features improve average execution time

but make worst case highly unpredictable

• Hard-real time domains try to use only Timing Compositional architecture (perhaps

with bounded effects)

n.b. It is often possible to disable unpredictable features (e.g. branch prediction)

• However, analysing features like pipeline and memory caches is mandatory to get

realistic (not too pessimistic) estimation.

Micro-Architecture Analysis 15/47

Micro-archi analysis: memory cache example

Principle of a simple, one-layer cache

l@

l@

a cache entry is chosen, its content replaced by (the whole) li,
costs tens to hundreds cycles

↪→ l@ is NOT in the cache: MISS,
↪→ l@ is in the cache: HIT, costs few cycles

@
Processing unit

• Processor need to acces @ = line l@ + offset:

c1
c2

ck

Cache

• Cache contains a fixed number of copies of memory lines

line

Memory

l1
l2

ln
• Memory divided in pieces called lines: @ = line number + offset

Micro-archi analysis: memory cache example 16/47

Cache and WCET analysis

• HIT costs much less than MISS

• Supposing MISS all the time is safe but far too pessimistic

• For any memory access in the program:

↪→ if one can prove that it is necessarily a HIT, count a HIT

↪→ otherwise count a MISS (even if it may be a HIT: over-approximation)

• is it possible to predict HIT/MISS ?

Micro-archi analysis: memory cache example 17/47

Predictability of caches

• Characteristics of a simple cache:

↪→ Fully Associative caches: any line of the memory can be stored in any line of the cache

↪→ Least Recently Used replacement policy: in case of miss, the evicted line is the least

recently accessed one

• With these properties, the cache behavior is highly predictable:

↪→ Suppose that the cache has 4 lines,

↪→ and that the program has just accessed 4 different memory lines a, then b, then c, then d,

then whatever is the initial state of the cache, we know that:

∗ the cache contains a,b,c,d,

∗ the LRU line, that will be replaced in case of miss, is a (and then b, c etc).

Micro-archi analysis: memory cache example 18/47

Concrete State of a LRU cache

• A state is a function C : C → L ∪ ∅
↪→ C = 1 · · · k is the set of cache line indices

↪→ L = 1 · · ·n is the set of memory line indices

↪→ ∅ denotes an empty cache line (very initial state only)

• Age of cache line:

↪→ cache lines are sorted from most recently used (1) to least recently used (k)

↪→ in case of MISS, lines are shifted:

1 2 3 4

a b c d
access e⇒

1 2 3 4

e a b c

↪→ i.e. in case of HIT, order is updated:

1 2 3 4

a b c d
access c⇒

1 2 3 4

c a b d

• Notation: C′ = up(C, a) (the update of cache C after access a)

• n.b. “behavioural” modeling, in real hardware lines don’t move but are re-numbered !

Micro-archi analysis: memory cache example 19/47

Uncertainty in cache analysis

• when analysing a piece of code:

↪→ the starting state is (in general) not precisely known

↪→ even if it is known, the code may result in several possible states

↪→ example (with a 4-lines cache):

i f (access (a)) {
access (b) ;
access (c) ;

} else {
access (b) ;
access{a};
access (c) ;

}
access (d) ;
access (e) ;
access (a) ; / / HIT or MISS ?

• beginning, cache is
1 2 3 4

? ? ? ?

• end of “then” branch, cache is
1 2 3 4

c b a ?

• end of “else” branch, cache is
1 2 3 4

c a b ?

• last access(a) may be a HIT or a MISS...

↪→ safe approximation: count a MISS

• how to represent uncertainty ?

Micro-archi analysis: memory cache example 20/47

Abstract State of a LRU cache

• What a (safe) abstraction must satisfy:

↪→ abstract state = a set of concrete state (A = {C})
↪→ abstract union, when merging abstract states:

A ∪A′ = {C} ∪ {C′}
↪→ abstract update:

A′ = Aup(A, a) ⇒ A′ ⊇ ⋃
C∈A up(A, a)

↪→ HIT-preserving:

access(a) is HIT inA ⇒ ∀C ∈ A access(a) is HIT in C

Micro-archi analysis: memory cache example 21/47

Abstract State of a LRU cache (cntd)

• Classical abstraction, “max age”: A : C → L ∪∞
↪→ A(a) = j means

“in all concrete state, line a is present and its age (position) is≤ j”

↪→ A(a) =∞ means

“in all concrete state, line a is NOT present”

↪→ a is HIT inA ⇒ A(a) 6=∞
↪→ merge:

A = A1 ∪ A2 ⇔ ∀a ∈ C A(a) = MAX(A1(a),A2(a))

• Abstract updateA′ = Aup(A, a) ⇔
↪→ A′(a) = 1

↪→ ∀b 6= a A′(b) = if A(b) < k then A(b) + 1 else∞

Micro-archi analysis: memory cache example 22/47

Back to the example

• Notation: A = {x/A(x) = 1} {x/A(x) = 2} {x/A(x) = 3} {x/A(x) = 4}
• {x/A(x) =∞} are not represented

d c a,b

e d c

a e d c

c a,b MERGE

a

ab

a b

c a b

a

ab

c b a

a

b b

c

a

c

e

d

a

Micro-archi analysis: memory cache example 23/47

Cache analysis and loops

a a

b a

c a bc b a

b a

c a,b

a

Note: convergence is trivial, monotonicity in finite latice

• Re-merge, fix-point: stop

• Re-merge, re-run ...

• In case of loop, merge initial, re-run...
a

b b

c

a

c

d

d

a

a
a

Micro-archi analysis: memory cache example 24/47

Loop bounds Analysis

Goal

• find an upper bound for the umber of time each back-edge in the CFG can be taken

• strongly related to the HALTING problem, and thus undecidable (in general)

The classical Collatz problem

void co l la t z (i n t n){
assert (n > 0) ;
while (n != 1) {

i f (n & 1)
n = 3 ∗ n + 1;

else
n = n / 2;

}
}

• It is widely believed that this program halts for any n

• But nobody knows how to prove it (for now, and

probably for a long time ...)

Loop bounds Analysis 25/47

The general approach: termination analysis

• Handles any kind of “loops” (recursion, for, while ...)

• Tries to find a decreasing measure of the loop

• Hardly (fully) automatic

Loop bounds in Real-time applications

• Pragmatic approach: the program is supposed to be real-time, thus the loops must be

bounded by some simple decreasing measure.

• A classical solution:

↪→ let i1, i2, etc. be the numerical local variables

i.e. appearing in the loop condition and the loop body

↪→ search for a linear combination
∑
αkik that decrease at each iteration of the loop

• Works well for simple for and while loops

Loop bounds Analysis 26/47

Examples of simple decreasing sequences

• basic for (or equivalent while)

int i; for(i = 0; i < n; i++){ foo (); }

int i = 0; while (i < n) { foo(); i++;}

↪→ decreasing sequence n− i,
↪→ max value = n− 1,

↪→ min value 0,

↪→ decreasing step = 1,

↪→ thus bound = (max−min)/step = n− 1

• Warning: the min decreasing step must be taken into account:

int i = n;

while(i > 0){ if (...) {i -= 4;} else {i -= 2;} }

↪→ bound = (n− 1)/2

Loop bounds Analysis 27/47

Conclusion: loop (and value) analysis in general

• Involves/uses all the techniques of static program analysis, in particular abstract interpretation

• Deserves a whole course !

• Note: these techniques are also used in micro-architecture analysis (cf. cache analysis)

Loop bounds Analysis 28/47

Path Analysis: the Implicit Path Enumeration Technique

Integer Linear Programming

• LP (Linear Programming) is a branch of Operational Research field

• Input:

↪→ a set of linear constraints over rational variables, i.e. AX ≤ B
↪→ a linear objective function to maximize (or minimize), i.e. MAX f(X)

• Output:

↪→ an optimal valuation ~v, such that A~v ≤ B and f(~v) is maximal (resp. minimal)

• State of the art (family of) algorithm: the simplex

• ILP is similar, but variables are integers

↪→ Theoretically strictly more complex

↪→ However works well in many cases

Path Analysis: the Implicit Path Enumeration Technique 29/47

ILP encoding on an example

Optimal for: a = g = p = 1, h = b = c = k = 10, d = e = f = 0
with: 26 + 7 + 7 + 10 ∗ (5 + 72 + 68 + 5) = 1540

↪→ Objective function: MAX(
∑

x∈E wxx)

↪→ Semantic constraints
h ≤ n = 10

↪→ Structural constraints
a+ d = 1

g + k = p+ h
g = a+ d

e+ b = f + c
h = e+ b

f + c = k
p = 1

• ILP encoding:

• data-flow analysis has found loop bounds

≤ n

’h’ taken at most n = 10 times

5
50 72

6832

5 7

7

15 26e.g. wa = 26, wb = 72 etc.

χ

d a

g

h

k
be

cf

ε

p

• µ-archi analysis has assigned weights

Path Analysis: the Implicit Path Enumeration Technique 30/47

Interest of ILP

• It handles “naturally” the problem of loops ...

• however, a “simple” graph-based traversal algorithm can do the same !

A simple graph-based algo

• Trivial for well-nested loops (MAX/PLUS),

• Less trivial otherwise, but possible.

• Well-nested program: prg ::= e | prg ; prg | prg + prg | (prg)n

• Algo:

W(e) = we

W(p1; p2) = W(p1) +W(p2)

W(p1 + p2) = MAX(W(p1),W(p2))

W(pn) = n ∗W(p)

Path Analysis: the Implicit Path Enumeration Technique 31/47

Adding extra constraints

• ILP becomes (really) useful when extra constraints can be added,

that reflect known properties on feasible paths

• Example (C-code for simplicity):

i f (i n i t) { /∗a:26∗ / }
else { /∗d:15∗ / }
/∗g:7 ∗ /
for (i =0; i<n ; i ++){

/∗h:5 ∗ /
i f (i < n / 2) {

/∗ b:72∗ /
cond = fa lse ;
} else {

/∗e:50∗ /
}
i f (cond){

/∗c:68∗ /
} else {

/∗ f :32∗ /
}
/∗k:5 ∗ /

}
/∗p:7 ∗ /

• branch b cannot be taken more than n/2 times:

↪→ easy to express in ILP: b ≤ n/2, i.e. b ≤ 5

• if b is taken, c cannot be taken

↪→ less obvious, but: b+ c ≤ n, i.e. b+ c ≤ 10

• ILP system + extra constraint reach optimal solution for:

↪→ a = g = p = 1, d = 0, h = k = 10,

b = c = e = f = 5

↪→ 26+7+7+10 ∗ (5+5)+5 ∗ (72+50+68+32) = 1250

↪→ enhancement (from 1540): 19%

Path Analysis: the Implicit Path Enumeration Technique 32/47

Infeasibility properties: many problems...

• May or may not enhance the WCET estimate

↪→ does they concern “heavy” or “light” paths ?

• How to find them ?

• Is it possible and how to express them in ILP ?

Find infeasible path

• Hard problem, c.f. program analysis (NP-hard/even undecidable)

• Target (as far as possible) “heavy” paths

• Restrict to some patterns, e.g. pairwise condition exclusion

Path Analysis: the Implicit Path Enumeration Technique 33/47

Express infeasibility in ILP (examples)

i f (i n i t) {
/∗ a ∗ /

} else {
/∗ d ∗ /

}
for (i =0; i<n ; i ++){

i f (Y[i]) {
cond = not i n i t

and Z[i] ;
/∗ b ∗ /

} else {
cond = true ;

/∗ e ∗ /
}
/∗ . . . ∗ /
i f (cond){

/∗ c ∗ /
} else {

/∗ f ∗ /
}
}

• at each iteration, if e is taken, f cannot be taken:

↪→ similar to the previous example: e+ f ≤ n

• More subtle: if a is taken, then at each iteration, if b is taken,

then c cannot be taken

↪→ less obvious, but: n · a+ b+ c ≤ 2n, works

↪→ suppose a is NOT taken, then a = 0 and the constraint

becomes:

b+ c ≤ 2n which is trivially satisfied

↪→ suppose a is taken,then a = 1 and the constraint

becomes:

b+ c ≤ n which express the exclusion

Path Analysis: the Implicit Path Enumeration Technique 34/47

Express infeasibility in ILP (examples)

for (i =0; i < n ; i ++){
i f (X[i]) {

/∗a∗ /
cond = fa lse ;

}
for (j =0; j < m; j ++){

i f (cond){
/∗b∗ /

}
}
}

• conflict between a and b: each time a is taken ...

b is forbidden all along the forthcoming “m”-loop

↪→ how to express in ILP ?

m ∗ a+ b ≤ n ∗m

cond = read () ;
for (i =0; i < n ; i ++){

i f (cond) {
/∗a∗ /

}
i f (Y[i]) {

/∗b∗ /
cond = fa lse ;

} else {
cond = X[i] ;

}
}

• conflict across iteration: if b is taken, a cannot be taken in

the next loop

↪→ how to express in ILP ?

a+ b ≤ n+ 1

Path Analysis: the Implicit Path Enumeration Technique 35/47

WCET and synchronous programming

Complementarity

• Synchronous approach guarantees that programs are intrinsically real-time

↪→ execution time is bounded by construction,

for any particular implementation on any particular architecture

• WCET estimation checks that the program implementation is actually real-time

↪→ tries to compute accurate and precise bound for the actual implementation

↪→ checks whether this bound is small enough to fulfill the real-time requirements

Synchronous program vs micro-architecture analysis

Micro-architecture analysis simple (and hopefully precise):

• no recursion, no dynamic allocation:

↪→ no heap, no (or very simple) stack...

↪→ makes memory access analysis simple (e.g. cache analysis)

• no (or very simple) loops, simple control structure (nested if-then-else):

↪→ makes control analysis simple (e.g. pipeline, branch prediction)

WCET and synchronous programming 36/47

Synchronous program vs data analysis

• The simplest is the code, the simplest (and precise) is the analysis

• Features that make data (semantics) analysis difficult are absent:

↪→ no aliasing (pointers)

↪→ no complex loops (while)

Go further?

• A synchronous program has a global “infinite” behavior:

↪→ Explicit at the high-level (Lustre, Esterel)

↪→ Hard to (re)-discover at the step procedure level (C, binary)

↪→ Is it possible to exploit global properties of S.P. to enhance WCET estimation ?

↪→ Indeed: it strongly depends on the compilation scheme:

∗ high-level properties may or may not have influence on the generated code!

• Let see a typical example ...

WCET and synchronous programming 37/47

Synchronous Program Example: compilation

 }
 ...
 if (L15){
 ...
 } else {
 ...
 }

 write_outputs(); ...
 b 8a48
8a3c:
 ldr r3, [pc,#1568]

modes_step:

 stmdb sp!, {fp, lr}

 add fp, sp, #4

 ...

 cmp r3, #0

 beq 8a3c

 mov r3, #1

8a3c:

 b 8a48

 ...

 ldr r3, [pc,#1568]

 ...

8a48:

 ...

 ...

(step)

C code

(main)

C code bin code

}

#include<...>
struct modes_ctx{

void modes_step{

 ...

...
}

 if (L5){
 ...

#include<...>

...
#include "modes.h"

void main {
 while(1){
 wait_period();
 read_inputs();
 modes_step();

}

modes_step:
 stmdb sp!, {fp, lr}
 add fp, sp, #4
 ...
 cmp r3, #0
 beq 8a3c
 mov r3, #1

 ...
8a48:
 ...

 ...BA
modes

• Binary code

↪→ via arm-elf-gcc

↪→ WCET estimation should be done here

i.e. a step of main infinite loop
for modes step

HL to C C to bin

WCET and synchronous programming 38/47

Example (cntd): WCET estimation

worst case path

• Call an ILP Solver (here LPSolve)

↪→ get 496 + the left-most path

↪→ Objective: MAX Σci,j × ei,j

↪→ Semantics Constraints

loop bounds (not here), others ?

↪→ Structural Constraints: Σei,j = Σej,k

(and indeed: entry = exit = 1)

e30,31

e7,8

• Implicit Path Enumeration Technique (IPET)

Integer Linear Programming encoding

↪→ one counter variable per edge (ei,j)
(n.b. here, ei,j = 0 or 1)

• Data-flow analysis
↪→ loop bounds + others (not here)

64
7

7

7

7

7

10

10

10

10

10

83

128

123

48

• µ-archi analysis
↪→ local costs, ci,j , in cpu cycles

↪→ Basic Blocks + edges (small part here)
• Control Flow Graph (CFG) reconstruction

• Works at binary level

WCET and synchronous programming 39/47

Example (cntd): High Level properties (that may help estimation)

onoff
toggle

high
ctrl low

idle onoff
toggle

nom
degrctrl

toggle

onoff

data outB
outA

outB

A B
modes

idle

data outA
low

high

A0

A1

A2

data

nom

degr

B0

B1

• Typical embedded application: several sub-modules running (logically) in parallel

• Programming pattern: computation modes

↪→ Implemented with the notion of “clock-enabled” (e.g. when/current in Lustre)

• Compiler correct⇒ codes of the modes must be exclusive

↪→ Interesting property for enhancing WCET

WCET and synchronous programming 40/47

Example (cntd): High Level properties (that may help estimation)

onoff
toggle

high
ctrl low

idle onoff
toggle

nom
degrctrl

toggle

onoff

data outB
outA

outB

A B
modes

idle

data outA
low

high

A0

A1

A2

data

nom

degr

B0

B1

• Intra-module exclusions: between A0, A1, A2, and between B0 and B1

↪→ may or may not be “obvious” on the generated code (i.e. structural)

• Inter-module exclusions: not in mode A0 implies mode B1

↪→ no chance to be obvious on the generated code

• In all cases, relatively “complex” properties:

↪→ infinite loop invariants, unlikely to be discovered by analysing C or bin code

WCET and synchronous programming 41/47

Exploiting high-level properties

Several problems:

• How to relate HL properties and binary code ? (traceability)

• How to express properties in the (classical) IPET/ILP method ?

• How to automatically find the “interesting” properties ?

WCET and synchronous programming 42/47

Traceability

but debug info still works

↪→ Optimization (-O2)
CFG relatively obfuscated

↪→ No optimization (-O0)
CFG’s strictly match

• between C and bin: more difficult
(simple heuristic: rely on debugging info)

(compiler annotations)
• between HL and C: not a problem

predicates (variables) at the HL level
to branches in C-CFG, and then
• problem: relate branches in bin CFG

Code generation
(gcc)

BA
modes

bin CFG

HL Compil
(Lustre→ C) C CFG

low

high

nom

idle

degr

WCET and synchronous programming 43/47

HL Properties vs ILP constraints

idle

low

high

nom

degr

↪→ Proven. Infeasibility as ILP constraint:

e7,8 + e29,30 + e57,59 < 3

↪→ Not proven, some path may be feasible...

• Ask some HL verification tool:
Is ¬Φ an invariant of the HL program ?
(here: Lesar = Lustre model-checker)

• Feasibitity as HL predicate:
Φ = (idle ∧ high ∧ ¬degr)

e7,8

e29,30

e57,59

• Feasibility of binary paths ?
e.g. e7,8 & e29,30 & e57,59

• Traceability has been achieved

↪→ Some binary edges are associated to HL variables

↪→ N.B. Same HL variable nay control several bin edges
(not here)

WCET and synchronous programming 44/47

Putting it all together: an iterative algorithm

idle

low

high

nom

degr

↪→ 16 iterations for this simple example ...

• Likely to VERY inefficient: converge VERY slowly

↪→ reached for idle ∧ nom (258 cycles)
• Eventually reach the WORST (feasible) path:

↪→ Check infeasibility, ... YES, and so on
↪→ Find worst case path (455 cycles)

• Call IPET/ILP solver

↪→ Result is “TRUE PROPERTY”, thus infeasible
↪→ Add the corresponding ILP constraint:
e7,8 + e21,22 + e29,30 + e50,51 + e58,59 ≤ 4

↪→ Call model-checker to prove:
¬(idle ∧ low ∧ high ∧ nom ∧ degr)

↪→ Find worst case path (496 cycles)

• Is this path infeasible ?

• Call IPET/ILP solver

64

83

123

48

7

7

7

7

7

10

10

10

128

10

10

WCET and synchronous programming 45/47

An alternative top-down algorithm

• Identify in the HL code the variables that are likely to influence the WCET

↪→ Simple heuristics: those that are associated to bin edges,

↪→ Here clearly: idle, low, high, nom, degr

• Try to find a priori, exclusive relations between these variables

↪→ Warning: there are a combinatorial number of such relations!

↪→ Heuristics: limit the search to pairwise relations,

∗ e.g. is ¬(idle ∧ low) = (¬idle ∨ ¬low) an invariant ?

∗ e.g. is ¬(idle ∧ ¬low) = (¬idle ∨ low) an invariant ?

∗ etc. there are 2 ∗ C2
5 = 20 such potential relations to check

↪→ seems a lot, but polynomial: quadratic: C2
n = n(n− 1)/2

WCET and synchronous programming 46/47

An alternative top-down algorithm (cnt’d)

• Example: checks the 2 ∗ C2
5 = 20 pairwise disjunctive relations

• six of them are proved invariant:

¬idle ∨ ¬low and ¬idle ∨ ¬high and ¬low ∨ ¬high and

¬nom ∨ ¬degr and ¬low ∨ ¬nom and ¬high ∨ ¬nom

• that are translated into 6 ILP constraints (N.B. it can be more in general):

e7,8 + e21,22 ≤ 1 and e7,8 + e29,30 ≤ 1 and e21,22 + e29,30 ≤ 1 and

e49,50 + e57,58 ≤ 1 and e21,22 + e49,50 ≤ 1 and e29,30 + e49,50 ≤ 1

• Call IPET/ILP solver once: get the optimal solution (258 cycles)

• Remarks:

↪→ Checking relations is costly: heuristics ! (choice of variables, restriction to pairwise)

↪→ The obtained solution is not guaranteed to be optimal:

a path can be infeasible because of more than 2 variables

• However: this algo is empirically (and relatively) efficient

WCET and synchronous programming 47/47

