
Synchronous Programming

of Reactive Systems

Pascal Raymond
Verimag-CNRS

MOSIG - Embedded Systems

Reactive Systems

Overview

• Permanent reaction to an environment that cannot wait

6= transformational (e.g. compiler)

• Real-time constraint

6= interactive (e.g. IHM, browser etc)

The environment is (partly) the physical world

Examples

• Control/command in industry, embedded systems in transportation

• Very critical (power-plants, airplanes), or less (mobile phones).

Reactive Systems 1/16



General Scheme

(hard+soft+OS)

sensors

actuators

Reactive System

operator

other R.S.

• Environment: interface with physics, human operator, other reactive systems ...

• The “program”: a particular software and a particular OS running on a particular

hardware

Lots of problems!

⇒ Let’s focus on functionality

Reactive Systems 2/16

Behavior of a reactive system

Environment reaction

System reactionInputs Outputs

• “Software” inputs/outputs (Boolean, integer or floating values)

• Execution = sequence of reactions

• Real-time = E and S are alternating among time

time
E3E2E1E0

S0 S1 S2 S3

Behavior of a reactive system 3/16



Functionality

Determinism

• A given input sequence always produce the same output sequence

• As a consequence:

Si is fully determined by the sequence E1, E2, ..., Ei

• ∀i Si = φ(E1, E2, ..., Ei)

Additional constraint: bounded memory

• ∃M0, g Si = f(Mi, Ei) Mi+1 = g(Mi, Ei)

Functionality 4/16

Implementation of a reactive system

First, identify:

• the inputs E and outputs S

• the necessary memory M , with its initial value M0

Then define:

• The output function Si = f(Mi, Ei)

• The transition function Mi+1 = g(Mi, Ei)

At last: implement all that using some programming language (e.g. C, assembly)

Implementation of a reactive system 5/16



Simple implementation (event-driven)

System(E, S)

memory M

M := M0

loop

wait(E)

S = f(M, E)

M = g(M, E)

write(S)

end loop

f
S

E M

g

What about real-time?

execution time < reaction time of the environment

Implementation of a reactive system 6/16

Even simpler implementation (sampling)

System(E, S)

memory M

M := M0

each period do

read(E)

S = f(M, E)

M = g(M, E)

write(S)

end

Real-time?

execution time < period

and ad hoc period for a known environment

Implementation of a reactive system 7/16



Complex Reactive System

• Lots of inputs, outputs, memories

• Output/transition functions are intractable

• Classical solution: hierarchical and parallel decomposition

environment

S3

S2S1S1a
S1b

Expected behavior: each sub-system locally behaves as a real-time system

Complex Reactive System 8/16

Logical concurrency

• Concurrency may be mandatory (distributed system),

• or just logical: the actual architecture is centralized

Implementation with concurrent processes

Logical concurrency becomes physical concurrency:

• One process for each sub-system

• Scheduling/communication at execution time

↪→ System calls (real-time OS)

↪→ Language statements (multi-tasks languages)

⇒ Problem: what is the global behavior?

Complex Reactive System 9/16



Problems related to the multi-task approach

dynamic scheduling is unpredictable:

• The communication order (even with priorities or rendezvous) is unpredictable

⇒ hard to guarantee determinism

• Execution time is unpredictable⇒ hard to guarantee real-time

Complex Reactive System 10/16

Synchronous approach

Conciliate:

• modular and concurrent design

• determinism and real-time

E M

f

g

S

Compiler

E S

Synchronous approach 11/16



Synchronous hypothesis

Ideally (design level)

• Non blocking, instantaneous communication (synchronous broadcast)

• Instantaneous reaction

• Composition is free: 0 + 0 = 0 (idealized modularity)

• Leads to a notion of discrete, logical time (inputs sequence)

Synchronous hypothesis 12/16

Concretely (execution level)

Atomic reactions are simple (no unbounded loops, bounded memory):⇒ there

exists an upper bound to the reaction time

⇒ which can be evaluated for a given architecture

timeδ3δ2δ1δ0

∆0 ∆1 ∆2

• let δmax be an upper bound of all δi (for a given hardware),

• let ∆min be a lower bound of all ∆i (for a given environment),

• Synchronous hypothesis is valid if δmax < ∆min

Synchronous hypothesis 13/16



Is it really new?

Classical in synchronous circuits

• Sequential (i.e. clocked) circuits, with gates and latches

• Communicating Mealy machines (synchronous automata)

Classical in control engineering

(data-flow formalisms)

• differential or finite difference equations

• block-diagrams, analog networks

Less classical in software

Is it really new? 14/16

Synchronous languages

Same principles

• Synchrony (discrete time)

• Logical concurrency

• Compilation to simple sequential code (static scheduling)

Different styles

• Declarative, data-flow:

↪→ textual (Lustre, Signal), or graphical (Scade/Syldex)

• Imperative, sequential:

↪→ textual (Esterel), or graphical (SynchCharts)

Synchronous languages 15/16



Industrial use

Main domains (and companies) that are using synchronous languages/tools:

Avionics, Space, Defense

• Airbus, BAE, EADS, Lockheed, Rolls-Royce, Embraer ...

Railway

• Alstom Trans., Ansaldo STS, AREVA TA, RATP, Siemens Mob., Thales RSS ...

Nuclear power plants

• AREVA NP, Rolls-Royce CN ...

Misc. critical industry

• BMW, Schindler Elevators, Mitsubishi, Subaru, Toyota ...

Industrial use 16/16


