
Embedded Systems:

Characteristics and Constraints

Pascal Raymond
Verimag-CNRS

MOSIG - Embedded Systems

What is an Embedded System?

Minimal definition

A computer system dedicated to a particular function

• system: mix of software/middleware/hardware

• particular function: not really/fully programmable, does 1 thing

Related/similar notions

More or less “synonyms” emphasize particular characteristic(s):

• Reactive systems: perform “everlasting” interaction with the environment

• Real-Time systems: must react “instantaneously” with respect of a particular

environment

• Cyber-physical: emphasize the difference between the system (digital, discrete

time) and its environment (physical, continuous time)

• ... and historically, strongly related to control engineering systems.

What is an Embedded System? 1/14



Computer Systems in Everyday-Life Objects

• Trains, subways, cars ...

• Avionics and space

• Consumer electronics (phones, digital cam-

eras, ...)

• Smart cards

• Household appliances

• Telecom equipments

• Computer Assisted Surgery

• Smart buildings and Energy

What is an Embedded System? 2/14

Characteristics

Various problems/difficulties ...

• Real time: system must be fast enough to react to prhysics

• Criticity: safety-critical and/or business critical

• Limited resources: memory, processor, energy, space

... whose importance depends on the particular domain. What are the main

problems for these domains ?

• Embedded control (train, cars, planes, power plants) ?

• Consumer Electronics ?

• Sensor Networks ?

Let’s focus on embedded control ...

What is an Embedded System? 3/14



Detailed Example: Embedded Control

• In trains, cars, aircraft, space objects ...

• and also power plants, elevators etc.

Characteristics

• The environment is mainly physical, with more or less human intervention

• Submitted to strong real-time constraints (often called: hard-real time)

• They are safety-critical systems

• The computer system is the implementation of a control engineering solution

• The computer system is reactive

Detailed Example: Embedded Control 4/14

A (tiny) example: heater control

The environment

Heater

ON, OFF

AIR

Reactive
System

Temperature

S
en

so
r

A
ct

ua
to

r

initializations

while (true) {
--- point (1)

get inputs

from the sensors

compute outputs

and update memory

write outputs

on the actuators

--- point (2)

}

• Real-time: time to execute the code from (1)

to (2) must be short enough

• Reactive: output to the environment influ-

ence future inputs

• Criticity/Safety: badly controlled outputs may

have dramatic consequences e.g., this a

(small) part of a nuclear power-plant con-

troller

Detailed Example: Embedded Control 5/14



Real-Time Programming Problems

• Write code that is sufficiently fast (not always possible to “try a faster machine”)

• Be able to tell how fast your program is, in advance (Worst-Case-Execution-Time

static evaluation)

• It’s not always possible to write single-loop code, because of the intrinsic

parallelism of a reactive system.

e.g., multiple sensor-computing-actuator lines, like temperature and pressure

Detailed Example: Embedded Control 6/14

Safety Problems

• Criticity: faults may be irreparable (lives, environment), or just very expensive

(e.g., launcher, Ariane 5 flight 501 1996)

• HW failures:

↪→ HW Fault-tolerance: a whole domain, mainly based on redundancy (e.g.,

several sensors + voter, several processors running the same code)

necessary since HW may break down.

• SW “failures”:

↪→ a SW does not “break down”, it is buggy

↪→ (run-time) SW Fault-tolerance ?

e.g, several codes developed independently from the same specification...

↪→ (off-line) classical methods to track bugs: programming methodology;

intensive testing; when possible: formal verification

Detailed Example: Embedded Control 7/14



Safety and certification

• Critical ES are submitted to Design norms, defined by certification authorities.

• Example in civil avionics: DO178B

↪→ a bundle of definitions and rules

↪→ classify risks form “none” to “catastrophic”

↪→ recommends/imposes design/validation methods depending on the level

↪→ basically: an aircraft whose ES is not DO178B certified is not allowed to fly

• Other examples:

↪→ Railways: IEC 62279

↪→ Automotive: ISO 26262 (concerns safety in general, including SW)

Detailed Example: Embedded Control 8/14

Centralized or Distributed Systems?

• Fact: centralized systems are far simpler than distributed ones

• However, distribution is required:

↪→ HW fault-tolerance

↪→ topology of sensors/actuator lines (several dozens in an aircraft)

↪→ sometimes, for efficiency purpose.

• Other fact: distributed real-time programming is very hard

Detailed Example: Embedded Control 9/14



Designing Embedded System

Main Difficulties for the Design of Embedded Systems

• Real-time parallel and distributed programming (choice of a programming

language?)

• Relation with control engineering

• Intricate dependency between HW, application SW, and OS or middleware

• Certification authorities

• Several degrees of dynamicity (from simple reconfigurations to mobile code...)

Designing Embedded System 10/14

Industrial Practice

• “Hand-craft”: use general purpose tools and languages (Java/C/assembly...)

• Domain Specific Languages: real-time features (multi-tasks, timers, synchro),

specific device operation (sensor/actuator libraries)

• Model-based design: more radical, continuity between high level design (control

engineering problem) and implementation

Designing Embedded System 11/14



Example: Simulink
• Originally: design/simulation tool for

control engineers

• Allows to simulate conjointly:

↪→ a continuous-time model of the

environment

↪→ a discrete-time solution of the con-

troller
• Implementing the controller:

↪→ classically manual encoding (Simulink = specification language)

↪→ more and more: automat-ic/ized code generation (Simulink = programming

language)

• Widely used in automotive, transportation, and all domains where control engineering

culture is strong.

Designing Embedded System 12/14

Example: Scade

• Close to control engineering concepts

(block-diagram)

• Formal language, deterministic speci-

fication

• Programming language/environment:

↪→ Software engineering features (modularity, libraries)

↪→ Automatic code generation:

KCG compiler is DO178B qualified

in particular, eliminates the need of low-level code testing

↪→ Thanks to formal semantics, high-level validation possible (and sufficient cf. qualif.):

automated testing, formal verification

• Widely used (imposed) for high-critical systems (avionics, helicopters, power plants)

Designing Embedded System 13/14



Summary

Important points/problems

• General purpose vs dedicated languages

• Validity/correctness: functional (no bugs), extra-functional (time)

This course

• Focus on functionality

• How to design/validate safe ES:

↪→ programming languages (features? styles?)

↪→ code generation

↪→ functional validation (formal methods?)

↪→ timing validation (Worst Case Exec time ?)

• Based on the so-called “Synchronous approach”

Summary 14/14


