Synchronous programming exercises

Pascal Raymond Verimag-CNRS

MOSIG - PDES - Embedded Systems

Programming Environment _____

Within Ensimag

The tools are available on the EnsiPc machines running Linux (e.g. room E100).

To setup your environment, copy these lines in your .bashrc file:

export LUSTRE_INSTALL=/user/5/raymond/lustre
source \$LUSTRE_INSTALL/setenv.sh

Personal install

- Search for "lustre v4 distrib" on the web,
- Download and untar a distribution adapted to your machine (if possible, prefer the linux64 distribution)

- from "all lights off", turn left (TL) sets side lights,
- from "side lights", turn left switches off the side lights and sets low lights,
- from low or high lights, pulling the lever (LH) switches between low and high,
- turning right in low/high state returns to side lights,
- turning right in side state returns to "all lights off".

Controller

Write, test, simulate the controller:

To go further:

- add a "fog lamp" functionality, controlled by a check button, and effective only in low lights mode
- add a "long range lamp" functionality, controlled by a check button, and effective only in high lights mode

```
Car lights controller ____
```

_ 4/15

The reverse pendulum _____

A typical example involving numerical computing and "signal processing method".

Mathematical model

- Tangential and radial acceleration $\vec{\gamma} = \vec{\gamma_r} + \vec{\gamma_t}$ with: $\gamma_t = x'' \cdot \cos(\theta) - y'' \cdot \sin(\theta)$
- Projection on tangent: $\gamma_t = g.\sin(\theta)$
- And (basic geometry):

$$x' = x'_0 + l.\sin(\theta).\theta'$$

$$x'' = x''_o - l.\sin(\theta).{\theta'}^2 + l.\cos(\theta).\theta''$$

$$y' = y'_0 - l.\sin(\theta).\theta'$$

$$y'' = y''_0 - l.\cos(\theta).{\theta'}^2 - l.\sin(\theta).\theta''$$

The reverse pendulum ____

______6/15

Mathematical model (contd)

- Substitution ... $g.\sin(\theta) = x_o''.\cos(\theta) y_0''.\sin(\theta) + l.\theta''$
- And finally:

$$\theta'' = ((y_0'' + g)/l) \cdot \sin(\theta) - (x_0''/l) \cdot \cos(\theta)$$

Programming a numerical library
For a given (constant) sampling period of T seconds, write:
• a discrete derivative node: node D(x:real) returns (dx:real) hints: the discrete derivative if the slope
• a discrete integrator node: node I (dx:real) returns (x:real) hints: the integral is the surface area between the curve and the axis, it can be approximated by accumulation small rectangles (or trapezes) areas.
 a delayed discrete integrator node: node ID(dx:real) returns (x:real) such that x does not depend instantaneously on dx ?
The reverse pendulum 8/15
 Programming the pendulum equation
Program <i>directly</i> the equation with a node that:
 takes as input the acceleration of the basis point d2x0, d2y0
 computes the current angle theta
<pre>node pend(d2x0,d2y0:real) returns (teta:real);</pre>

Programming a game based on the pendulum

The player tries to stand in balance a stick on the palm of is hand:

- the inputs are the coordinates of the basis of the stick (x_0, y_0) ,
- the outputs are the coordinates of the top of the stick(x, y)

node game(x0,y0:real) returns (x,y: real)

Running the program ...

- Using luciole is not convenient for this example.
- We provide an ad-hoc main graphical program written in tcl/tk.
- Download the necessary files here:

http://www-verimag.imag.fr/~raymond/edu/mosig/pendulum.tgz

Warning !

- The program file must be called **game.ec**,
- Use lus2ec my_program.lus game to create it (or see the given Makefile),
- the sampling period in the lustre program (e.g. 0.02 s) must be coherent with the one of the tcl/tk program (given in ms, e.g. 20)
- The length of the pendulum should be 4.0.

The reverse pendulum ____

_____ 10/15

Remarks

- the shorter is the period, the smoother is the simulation,
- ... but the execution method used here (interpreter + unix pipes) is rather inefficient, and don't support high rates (50 Hz, i.e. 20 ms is reasonable).

Adding a frictional damping force

The simulation is quite unrealistic, cause the pendulum cannot loose kinetic energy.

- Think about a way for introducing some frictional damping force in the equation.
- hints: a simple approximation consist in introducing a damping force proportionnal to the angular velocity, the Newton's Equation becomes:

 $g.\sin(\theta) - x_0''.\cos(\theta) + y_0''.\sin(\theta) - l.\theta'' - a.\theta' = 0$

• Try with different values of *a*.

```
The reverse pendulum ____
```

```
______12/15
```

Programming with Esterel _____

Mouse click detector

- two "clicks" separated with less than 5 basic-clock ticks are considered has a "double click", otherwise it is a simple click.
- copy the code in a file **mouse.strl**

```
module mouse:
input click;
output single, double;
loop
  await click;
  abort
    await 5 tick; emit single
  when click
  do emit double end
end.
```

 Running the Esterel program An Esterel program can be simulated using luciole: call the script esterel2dro mouse.strl mouse builds a dynamic library mouse.dro, in a format recognizable by luciole run luciole and load mouse.dro to start the simulation. Visualizing the Esterel program semantics The automaton of an Esterel program can be explored using atg: call the script esterel2 mouse.strl mouse compiles the program into an automaton mouse.atg,
 An Esterel program can be simulated using luciole: call the script esterel2dro mouse.strl mouse builds a dynamic library mouse.dro, in a format recognizable by luciole run luciole and load mouse.dro to start the simulation. Visualizing the Esterel program semantics The automaton of an Esterel program can be explored using atg: call the script esterel2 mouse.strl mouse compiles the program into an automaton mouse.atg,
 call the script esterel2dro mouse.strl mouse builds a dynamic library mouse.dro, in a format recognizable by luciole run luciole and load mouse.dro to start the simulation. Visualizing the Esterel program semantics The automaton of an Esterel program can be explored using atg: call the script esterel2 mouse.strl mouse compiles the program into an automaton mouse.atg,
 run luciole and load mouse.dro to start the simulation. Visualizing the Esterel program semantics The automaton of an Esterel program can be explored using atg: call the script esterel2 mouse.strl mouse compiles the program into an automaton mouse.atg,
 Visualizing the Esterel program semantics The automaton of an Esterel program can be explored using atg: call the script esterel2 mouse.strl mouse compiles the program into an automaton mouse.atg,
 The automaton of an Esterel program can be explored using atg: call the script esterel2 mouse.strl mouse compiles the program into an automaton mouse.atg,
 call the script esterel2 mouse.strl mouse compiles the program into an automaton mouse.atg,
 run atg mouse.atg, then press 'x' to start the exploration.
Programming with Esterel 14/15
To go further
 Write and simulate the examples seen in the course.
 Write an Esterel version of the car lights controller
Write an Esterel version of the car lights controllerhints:
 Write an Esterel version of the car lights controller hints: → the sustain X statement is a (convenient) shortcut for loop emit X; pause end
 Write an Esterel version of the car lights controller hints: → the sustain X statement is a (convenient) shortcut for loop emit X; pause end → more generally, see the slides on Esterel to find a list of Esterel statements.
 Write an Esterel version of the car lights controller hints: → the sustain X statement is a (convenient) shortcut for loop emit X; pause end → more generally, see the slides on Esterel to find a list of Esterel statements.
 Write an Esterel version of the car lights controller hints: → the sustain X statement is a (convenient) shortcut for loop emit X; pause end → more generally, see the slides on Esterel to find a list of Esterel statements.