
Synchronous programming exercises

Pascal Raymond
Verimag-CNRS

MOSIG - PDES - Embedded Systems

Programming Environment

Within Ensimag

The tools are available on the EnsiPc machines running Linux (e.g. room E100).

To setup your environment, copy these lines in your .bashrc file:

export LUSTRE_INSTALL=/user/5/raymond/lustre

source $LUSTRE_INSTALL/setenv.sh

Personal install

• Search for ”lustre v4 distrib” on the web,

• Download and untar a distribution adapted to your machine

(if possible, prefer the linux64 distribution)

Programming Environment 1/15

First steps with Lustre

Rising edge node

Write a node detecting the rising edges of its Boolean input. The profile should be:

node edge(x:bool) returns (e:bool);

Simulation

Use the graphical simulator for testing the program:

luciole tp.lus edge

Or simply luciole then browse.

• try the ”clock” options (auto-step vs compose, real-time clock)

• try the associated ”tools” (sim2chro)

Write and simulate other nodes

For instance the ones presented in the course (switch, counter,

stopwatch etc).

First steps with Lustre 2/15

Car lights controller

TR

TL
LH

lever steering wheel

behaviour

• from ”all lights off”, turn left (TL) sets side lights,

• from ”side lights”, turn left switches off the side lights and sets low lights,

• from low or high lights, pulling the lever (LH) switches between low and high,

• turning right in low/high state returns to side lights,

• turning right in side state returns to ”all lights off”.

Car lights controller 3/15

Controller

Write, test, simulate the controller:

To go further:

• add a ”fog lamp” functionality, controlled by a check button, and effective only in

low lights mode

• add a ”long range lamp” functionality, controlled by a check button, and effective

only in high lights mode

Car lights controller 4/15

The reverse pendulum

A typical example involving numerical computing and ”signal processing method”.

Principle

x

y
θ

x0, y0

~f

l

m.~g
• Forces:

m.~g (weight), ~f (reaction)

• Geometry:

x = x0 + l sin(θ),

y = y0 + l cos(θ)

Newton’s equations: m~g + ~f = m.~γ

The reverse pendulum 5/15

Mathematical model

• Tangential and radial acceleration ~γ = ~γr + ~γt

with: γt = x′′. cos(θ)− y′′. sin(θ)

• Projection on tangent: γt = g. sin(θ)

• And (basic geometry):

x′ = x′0 + l. sin(θ).θ′

x′′ = x′′o − l. sin(θ).θ′
2
+ l. cos(θ).θ′′

y′ = y′0 − l. sin(θ).θ′

y′′ = y′′0 − l. cos(θ).θ′
2 − l. sin(θ).θ′′

The reverse pendulum 6/15

Mathematical model (contd)

• Substitution ... g. sin(θ) = x′′o . cos(θ)− y′′0 . sin(θ) + l.θ′′

• And finally:

θ′′ = ((y′′0 + g)/l). sin(θ)− (x′′0/l). cos(θ)

The reverse pendulum 7/15

Programming a numerical library

For a given (constant) sampling period of T seconds, write:

• a discrete derivative node: node D(x:real) returns (dx:real)

hints: the discrete derivative if the slope

• a discrete integrator node: node I(dx:real) returns (x:real)

hints: the integral is the surface area between the curve and the axis, it can be

approximated by accumulation small rectangles (or trapezes) areas.

• a delayed discrete integrator node: node ID(dx:real) returns

(x:real)

such that x does not depend instantaneously on dx ?

The reverse pendulum 8/15

Programming the pendulum equation

Program directly the equation with a node that:

• takes as input the acceleration of the basis point d2x0,d2y0

• computes the current angle theta

node pend(d2x0,d2y0:real) returns (teta:real);

Programming a game based on the pendulum

The player tries to stand in balance a stick on the palm of is hand:

• the inputs are the coordinates of the basis of the stick (x0, y0),

• the outputs are the coordinates of the top of the stick(x, y)

node game(x0,y0:real) returns (x,y: real)

The reverse pendulum 9/15

Running the program ...

• Using luciole is not convenient for this example.

• We provide an ad-hoc main graphical program written in tcl/tk.

• Download the necessary files here:

http://www-verimag.imag.fr/˜raymond/edu/mosig/pendulum.tgz

Warning !

• The program file must be called game.ec,

• Use lus2ec my program.lus game to create it (or see the given

Makefile),

• the sampling period in the lustre program (e.g. 0.02 s) must be coherent with

the one of the tcl/tk program (given in ms, e.g. 20)

• The length of the pendulum should be 4.0.

The reverse pendulum 10/15

Remarks

• the shorter is the period, the smoother is the simulation,

• ... but the execution method used here (interpreter + unix pipes) is rather

inefficient, and don’t support high rates (50 Hz, i.e. 20 ms is reasonable).

The reverse pendulum 11/15

Adding a frictional damping force

The simulation is quite unrealistic, cause the pendulum cannot loose kinetic energy.

• Think about a way for introducing some frictional damping force in the equation.

• hints: a simple approximation consist in introducing a damping force

proportionnal to the angular velocity, the Newton’s Equation becomes:

g. sin(θ)− x′′0. cos(θ) + y′′0 . sin(θ)− l.θ′′ − a.θ′ = 0

• Try with different values of a.

The reverse pendulum 12/15

Programming with Esterel

Mouse click detector

• two ”clicks” separated with less than 5 basic-clock ticks are considered has a

”double click”, otherwise it is a simple click.

• copy the code in a file mouse.strl

module mouse:

input click;

output single, double;

loop

await click;

abort

await 5 tick; emit single

when click

do emit double end

end.

Programming with Esterel 13/15

Running the Esterel program

An Esterel program can be simulated using luciole:

• call the script esterel2dro mouse.strl mouse

builds a dynamic library mouse.dro, in a format recognizable by luciole

• run luciole and load mouse.dro to start the simulation.

Visualizing the Esterel program semantics

The automaton of an Esterel program can be explored using atg:

• call the script esterel2 mouse.strl mouse

compiles the program into an automaton mouse.atg,

• run atg mouse.atg, then press ’x’ to start the exploration.

Programming with Esterel 14/15

To go further

• Write and simulate the examples seen in the course.

• Write an Esterel version of the car lights controller

• hints:

↪→ the sustain X statement is a (convenient) shortcut for loop emit

X; pause end

↪→ more generally, see the slides on Esterel to find a list of Esterel statements.

Programming with Esterel 15/15

