
MOSIG PDES - Embedded Systems - Written Exam January 26, 2015

Embedded Systems
Florence Maraninchi, Pascal Raymond
Duration : 3h All documents allowed

The two parts are independent. Please answer on 2 separate sheets.
Informal explanations in plain english will be appreciated a lot, and it is compulsory to justify all answers.
The number of points associated with each question is only an indication and might be changed slightly.

Part I - Exercice 1 - BDDs and Symbolic Model-Checking (6 points)

I.1: Implementing if-then-else with BDDs

Reminder: let V be a set of Boolean variables, totally ordered by the relation �. The BDDs over
V , together with their range function rg from BDD to V ∪ {∞}, are defined inductively by the rules:
— the leaf 1 is a BDD with rg(1) =∞, which denotes the always-true function,
— the leaf 0 is a BDD with rg(0) =∞, which denotes the always-false function,

— the binary node f = AA��
f1f0

x

, where x ≺ rg(f0) and x ≺ rg(f1), is a BDD with rg(f) = x, which

denotes the function x · f1 + x̄ · f0.
As we saw in the course, the classical Boolean operations (e.g. not, and, or) can be inductively
defined on BDDs. The goal of this exercise is to define the “if-then-else” operation, i.e. a function
with 3 BDDs arguments, ite(c, f, g), that computes the BDD of the function: “if c then f else g”.

Is it possible to define ite in terms of existing operations:
ite(c, f, g) = or(and(c, f),and(not(c), g))

but we want here to define a more efficient implementation, that exploits the properties of “if-then-
else” to reach the result as quickly as possible. Here is for instance a terminal rule that obviously
speeds-up the computation:
— ite(c, f, f) = f

However, it is sometimes a good idea to re-use existing operations, for instance:
— ite(c, f, 0) = and(c, f)

. Question 1 (2 points) :
Propose a set of terminal rules for the ite operation. This set must:
be sufficient to ensure the termination of the algorithm,
cover all the cases that can speed-up the computation.

The goal is now to define the recursive rules for ite. First of all, we have to check and prove, that,
just like for the binary operators, such a recursive descent is correct.

. Question 2 (1 point) :
Prove that the ite operation distributes on the Shannon decomposition, that is, if the 3 arguments
are binary nodes labeled with the same variable x:

ite

 AA��
c1c0

x

, AA��
f1f0

x

, AA��
g1g0

x
 =

Q
Q

�
�

ite(c1, f1, g1)ite(c0, f0, g0)

x

2014-2015 page: 1/6

MOSIG PDES - Embedded Systems - Written Exam January 26, 2015

It remains now to define the general recursive case, that is, the case where all the variables are not
necessarily the same.

Listing one by one the possible balance rules is not reasonable since there are plenty of possible
orderings for the variables x, y, z. To ease the definition, we assume the availability of the following
functions:

— min(x, y, · · ·) that returns the minimal variable in the list,
— two functions high : V ×BDD 7→ BDD and low : V ×BDD 7→ BDD, such that:

high

x, AA��
f1f0

x
 = f1 and high

x, AA��
f1f0

y
 = AA��

f1f0

y

if x 6= y,

low

x, AA��
f1f0

x
 = f0 and low

x, AA��
f1f0

y
 = AA��

f1f0

y

if x 6= y,

. Question 3 (1 point) :
Define the recursive rule(s) for the ite operation, in the general case where all arguments are binary
nodes:

ite

 AA��
c1c0

x

, AA��
f1f0

y

, AA��
g1g0

z

I.2: Symbolic computation of pre-condidition

We recall that a Boolean state machine is characterized (among other things) by:

— a set of state variable S,
— a set of free variables (inputs) V ,
— a vector of transition functions, one per state variables s ∈ S, such that gs : IB|S| × IB|V | defines

the next value of s according to the current values of the state and input variables.

We consider here the symbolic manipulation of state machines using:

— BDDs over the variables S for representing sets of states (i.e. functions in IB|S| → IB),
— BDDs over the variables S∪V for representing sets of transitions (i.e. functions in IB|S|×IB|V | →

IB); this is in particular the case of the transition functions.

For the sake of simplicity, we suppose that the transition functions are stored in an array indexed by
the state variables: for all s ∈ S, G[s] is the BDD of the transition function gs.

The pre-condition (also called the reverse image) of a set of states X is, by definition, the set of
transitions (pairs in S × V) that lead to some state in X.

The goal is here to implement the pre-condition as an operation from BDDs over S to BDDs over
S ∪ V .

. Question 4 (1 point) :
Prove that (or explain as precisely as possible why) Precond(1) = 1
i.e. the precondition of the whole state set is the whole transition set, or equivalently, any transition
is the pre-condition of some state.

. Question 5 (1 point) :
Propose a recursive implementation of Precond(X) where the argument X is a BDD X over S,
and the result is a BDD over S ∪ V .

2014-2015 page: 2/6

MOSIG PDES - Embedded Systems - Written Exam January 26, 2015

Part I - Exercice 1 - WCET estimation and ILP technique (5 points)

const i n t sz = 20 ;

void foo (i n t A[sz]) {
i n t i , j ;
i n t B[sz] ;
/∗a∗/
f o r (i =0; i < sz ; i++){

/∗b∗/
i f (A[i] < 0) {

/∗ c∗/
B[i] = 0 ;

} e l s e {
/∗d∗/
B[i] = 2 ∗ A[i] ;

}
/∗ e∗/
f o r (j =0; j <= i ; j++){

/∗ f ∗/
}
/∗g∗/

}
/∗h∗/
f o r (i=sz −1; i >= 0 ; i −−){

/∗ i ∗/
i f (B[i] > 0){

/∗ j ∗/
} e l s e {

/∗k∗/
}
/∗ l ∗/

}
/∗m∗/

}

The figure above shows, on the right-hand side, the Control Flow Graph (CFG) of a program for
which we want to estimate the Worst Case Execution Time (WCET). This CFG has 9 basic blocks
and 13 edges, identified with the letters from a to m. A micro-architecture analysis tool has been
used to estimate the execution time of each basic block and each transition. In order to simplify, these
local weights have been distributed to some edges only: c costs 20, d costs 11, f costs 10, j costs 25
and k costs 18. We suppose that all other edges cost 0.

. Question 6 (1 point) :
Encode the Worst Path (WP) problem into a first Integer Linear Program, containing:
— the set of structural constraints imposed by the CFG,
— the objective function (global WCET) to maximize.

Without any further information, the WCET obtained from this first ILP is obviously infinite. In
order to bound the execution paths, it is necessary to analyse the semantics of the program.

The left-hand side of the figure represents the code of the program. In order to be readable, the
code is given in C rather than in assembly language. The correspondence between the C code and the
CFG is given in comments: for instance, edge a is the entry edge, just before the first loop statement;
c corresponds to the then branch of the first if statement, etc.

2014-2015 page: 3/6

MOSIG PDES - Embedded Systems - Written Exam January 26, 2015

. Question 7 (2 points) :
— By considering the code, find bounds for each loop in the program. Explain as precisely as
possible how you obtain these bounds.
— Give the corresponding integer constraints to add to the ILP problem.
— Give a first (finite) estimation of the WCET.

We can now try to enhance the WCET estimation by searching infeasible paths in the CFG, and
remove them from the WP search using suitable extra linear constraints.

. Question 8 (2 points) :
Does it exist execution paths that are (provably) infeasible in this program ? (Justify precisely
your answer). If it is the case:
— Express these infeasibility with one (or more) numerical constraints,
— Are this/these constraint(s) leading to an enhanced estimation? and if this is the case, give a
new (enhanced) estimation of the WCET.

2014-2015 page: 4/6

MOSIG PDES - Embedded Systems - Written Exam January 26, 2015

Part II - Exercice 1 - Modeling Time (4 points)

In the course we studied a paper about the modeling of a MAC protocol in sensor networks. In the
software of a node, time is given by the hardware delivering “ticks” of a discrete clock. There is one
such “clock” for each node of the sensor network, and they cannot be considered to be synchronized.

In this exercice, we consider discrete-time synchronous models for this type of problem.

We consider two nodes N1 and N2 of the network. Each Ni has an internal hardware device that
delivers a sequence of ticks ti. We also consider a finer grain base clock with ticks t0. The base clock
is precise enough so that each t1 and each t2 is also a t0. Fig. 1 illustrates the idea, for two hardware
clocks that should tick each 4 ticks of the base clock, but have an imperfect behavior so that they tick
between 3 and 5 ticks of the base clock.

t2

t1 t1 t1 t1 t1

t2 t2 t2 t2

Base clock, each bar is a t0.

Figure 1: Base clock (t0) and example sequences of ticks t1 and t2 from hardware clocks.

. Question 9 (1 point) :
— Draw a picture similar to that of Figure 1, illustrating the worst desynchronisation case between
t1 and t2.
— Give two Mealy machines M1 (resp. M2) with input t0 and output t1 (resp. t2); these machines
produce t1 and t2 from t0, in the worst case mentioned previously. Note: use the simple form for
Mealy machines, with no additional variables.

Frame 1 Frame 2 ...

Slots

0

k0 ticks

C − 1....

Figure 2: Frames and slots within frames

The protocol described in the paper is based on the notions of time frame and slot, as shown on
Figure 2. Each time frame contains C slots, and a slot has a duration of k0 ticks of the node.

. Question 10 (1 point) :
We decide that k0 = 10 and C = 5. Give a Mealy machine that computes the slot number in node
N1. You should use a variable sn1, initialized to 0, to represent the slot number.
What do you need to change to get the slot number in node 2?

. Question 11 (2 points) :
— Explain how to compose the Mealy machines of questions 9 and 10 to obtain a new machine G:
G has a single input t0, and computes the slot numbers in the two nodes.
— Using G, how could you express and verify the property: “if the hardware clocks are not syn-
chronized, the two nodes do not always agree on their slot number”?

2014-2015 page: 5/6

MOSIG PDES - Embedded Systems - Written Exam January 26, 2015

Part II - Exercice 2 - WCET with Simple Caches (6 points)

In the course we studied a paper on WCET and caches. We use the same notions here.

Let us consider a program, given as an interpreted automaton. An interpreted automaton is a tuple
(Q, q0 ∈ Q,V, T ⊆ Q×L(V), Q) where Q is the finite set of states (or control points), q0 is the initial
state, V is a finite set of integer variables manipulated by the program, and T is the set of transitions.
A transition (q, `, q′) from q to q′ is labeled by ` ∈ L(V), which can be: either an assignement to a
variable in V (e.g., x:= x+1 or x:= y+z), or a test on variables in V (e.g., x < y or x > 42). We will
denote by V(`) the set of variables that appear in a label `. For instance V(x := y+z) = { x, y, z }.
The architecture on which the program is executed has a main memory (an array of m blocks, indexed
from 1 to m). Each variable is installed somewhere in the main memory, once and for all. We note
b(x) the index of the block in which x resides.

The architecture on which the program is executed also has a LRU cache, which is an array of n
blocks, indexed from 1 to n. The cache is initially empty. At any moment during the execution, a
concrete state of the cache is a function c from [1..n] to [1..m] ∪ {I}. c(k) = h means that the block
k of the cache currently contains the block h of the memory. c(k) = I means the block k of the cache
is currently empty. The set of all concrete cache states is noted C. Each access to a variable x of the
program updates the concrete state of the cache. The update function is noted U : C × V −→ C, and
an update is noted: U(c, x) = c′. Together, C and U constitute the definition of an automaton where
each transition is labeled by a variable in V .

. Question 12 (1 point) :
Consider a program state q ∈ Q, and a cache state c ∈ C. Explain how you compute the new
state c′ of the cache obtained when the program takes a transition (q, `, q′). If you need to make
additional hypotheses, justify them carefully.

We now build an automaton A that represents the behavior of the program together with the cache.
It is a kind of synchronous product between: (i) the interpreted automaton of the program; (ii) the
cache automaton defined by C and U .

. Question 13 (2 points) :
— What is the set of states S of A? What is the initial state s0 in A?
— Describe the transitions of A. Indication: From a state s ∈ S, consider each possible move of
the program, and the moves it provokes in the cache (this was question 12); together these moves
lead to a new state s′ ∈ S; define s′ precisely.

We now look at the WCET problem. We consider programs without loops, and we decide to count
only the time taken by the memory accesses, ignoring all other instructions. One access to x costs t
if the variable is in the cache, and T if it is not in the cache (there are no timing anomalies).

As an example, we consider the program: if (x == 0) { y=1; } else { z=1; } ; y=2; z=3;

We assume that the three variables reside in 3 different blocks of the main memory, and that the cache
has n = 3 blocks, initially empty.

. Question 14 (2 points) :
— What is the exact execution time of this program (counting only memory accesses)?
— Draw the interpreted automaton of the example program
— Draw the product A of this program with the cache
— Explain how to use A to compute the WCET of the program.

. Question 15 (1 point) :
In general, compare the results you can get by using A, and the results described in the paper we
studied (precision, cost of the algorithm).

2014-2015 page: 6/6

