
MOSIG DEMIPS - Embedded Systems - Written Exam January 22, 2014

Embedded Systems
Duration : 3h All documents allowed

The two parts are independent. Please answer on 2 separate sheets.
Informal explanations in plain english will be appreciated a lot, and it is compulsory to justify all answers.
The number of points associated with each question is only an indication and might be changed slightly.

Part I- Synchronous Programming and Model-Checking (11 points)

I.1: Observers and Boolean flows.

In control engineering, it is often convenient to specify that a Boolean flow represents an “event”.
Intuitively, an event is something that occurs form time to time, but never lasts more than one
instant. For instance, the sequence 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, · · · is (the beginning of) an event, while
0, 0, 1, 1, 0, 1, 1, 1, · · · is not.

. Question 1 (2 points) :
Write a Lustre observer, whose header is:

node is_event(x: bool) returns (ok: bool);

such that ok is infinitely true if and only if the input flow x is an event. Please explain and comment
precisely your solution.

A useful property/assumption when reasoning about events is that two events are alternating over
time. This is for instance the case when two signals are supposed to represent respectively the be-
ginning and the end of some treatment. The following timing diagram gives a example of alternating
events:

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28

28

29

29

start

stop

. Question 2 (3 points) :
Write a Lustre observer, whose header is:

node are_alternating(start, stop: bool) returns (ok: bool);

such that the output ok is infinitely true if and only if the input flows start and stop are events
that alternate over time. Please explain and comment precisely your solution.

I.2: Model-checking: Symbolic Reachable States computation.

We consider in this exercise deterministic finite state systems, given as Boolean automata. We do
not consider here the verification of a particular property, but only focus on the computation of the
reachable states of the system. Moreover, in order to simplify, we suppose that we have no hypothesis
(assumption). A system is then characterized by:

• a set S of state variables; we note q ∈ Q = B|S| a value of the state variables (i.e. a state);
• a set V of free variables (inputs); we note v ∈ 2|V | a value of the inputs;
• an initial state q0 ∈ Q; we also note Init = {q0};
• a transition function T : B|S| × B|V | → B|S|, which associate with each state q and each input

value v the corresponding next state; instead of writing q′ = T (q, v) we will use the more “visual”
notation q

v−→q′;

2013-2014 page: 1/4

MOSIG DEMIPS - Embedded Systems - Written Exam January 22, 2014

We recall the definition of the Post(X) function, which computes the set of states that can be reached
in one transition form a state in X:

Post(X) = {q′ ∈ Q | ∃q ∈ X,∃v ∈ V q
v−→q′}

. Question 3 (2 points) :
Prove that the Post function distributes over set union:

∀X,Y ⊆ Q Post(X ∪ Y) = Post(X) ∪ Post(Y)

Is it the same for intersection (Post(X ∩ Y) = Post(X)∩Post(Y)) ? the complement (Post(¬X) =
Post(Q \X)) ? Illustrate your answer with a counter example, if needed.

We saw in the course that the computation of the reachable states consists in computing a sequence
of nested sets:

A0 = Init, An+1 = An ∪ Post(An)

until we find the first k such that Ak+1 = Ak.

. Question 4 (2 points) :
To obtain the same result, in the same number of iterations k, is it necessary to compute at each
step the Post of the whole set of states reached so far? If no, give the set with smallest cardinality,
Bn, whose Post is really necessary at each step n (reminder: cardinality = number of elements).

When sets are encoded with BDDs, the size of the encoding is not directly related to the cardi-
nality. Remember, for instance, that the always-true BDD (size = 1) encodes the whole state space
(cardinality = 2|S|). To avoid any mistake, the size of the BDD encoding X is called the symbolic size
of X, and is noted #X. The cardinality is noted as usual |X|.
The complexity of Post(X) is exponential in the symbolic size of X, In particular, even if X ′ ⊆ X, and
thus, |X ′| ≤ |X|, the cost of Post(X ′) can be exponentially greater than the cost of Post(X). In order
to optimize the Post, it is then impossible to rely on classical set operations (intersection, union).
There exist operators, specific to the BDD representation, and whose goal is to reduce the size ac-
cording to the notion of care-set. An example of such an operator is the restrict operator, noted ↓.
We do not give here the precise definition, but just the properties of interest. Let Z = X ↓ Y :

• X is the main argument, Y is called the care set;
• inside the care set Y , the result Z and the argument X strictly match:
∀q ∈ Y (q ∈ Z)⇔ (q ∈ X),
outside the care set, there is no particular relation between X and Z;
• they are many sets satisfying the constraint above; it is possible to prove that any set Z such

that (X ∩ Y) ⊆ Z ⊆ (X ∪ ¬Y) is a “candidate result”. For instance X itself is a candidate, but
also X ∩Y , which is the solution with minimal cardinality, and X ∪¬Y wich is the solution with
maximal cardinality;
• the goal of the restrict operator is to find a candidate whose symbolic size is as small as possible;

the result is in general not optimal but we have some guarantee on its quality: it is at least “not
worst” than the 3 obvious solutions:
#Z ≤ #X, #Z ≤ #(X ∩ Y), and #Z ≤ #(X ∪ ¬Y).

. Question 5 (2 points) :
Explain how the restrict operator can be used to optimize the computation of the reachable states.

2013-2014 page: 2/4

MOSIG DEMIPS - Embedded Systems - Written Exam January 22, 2014

Part II - Timing and the HW/SW Interface (10 points)

In this part, for all the questions below, we consider a piece of hardware, called HW, which offers
several operations opis, and a piece of sequential software, called SW, that uses them. HW has a set
of instructions for use, given as an automaton (because not all sequences of operations are allowed).
Moreover, we will consider two cases: (i) the operations of HW do not take time, and the calls from
SW are synchronous; (ii) the operations do take time, the calls from SW are asynchronous, based on
the information “finished” from HW to SW. Finally, we will look at WCET for some examples of SW
using HW, based on the timing of the opis.

II.1: Specification of HWu (untimed operations): We consider a version HWu of HW, in which
the operations do not take time. HWu has three operations op1, op2, op3. op1 is used as a kind of
initialization, to put HWu in a clean state; it should be used befiore anything else can be done; it can
be used at any time to re-initialize HWu to a clean state. After initialization (or re-initialization), the
operations op2 and op3 can be used, alternating, starting with op2.

. Question 6 (1 point) :
Give a Mealy machine MHWu to describe the constraints on the use of operations as explained above.
The opis are the inputs. Explain how you specify incorrect uses.

Now we consider an example SW, named SW1 (see figure 1).

. Question 7 (1 point) :
Does SW1 make a correct use of HWu (as specified above)? If the answer is no, propose a simple
modification of SW1 such that the answer becomes yes.

. Question 8 (1 point) :
Give a Mealy machine MSW1 representing SW1, such that the synchronous product of machines MHWu
(from question 6) and MSW1 represents the synchronous calls from SW1 to HWu. How do you detect
incorrect uses of HWu by SW1?

// SW1

b := false ;

op1;

while true loop

if b then op2 ;

else op3 ;

b := not b ;

end loop

// SW2

b := false ;

op1; wait(f);

while true loop

if b then op2 ;

else op3 ;

wait (f) ;

b := not b ;

end loop

Figure 1: Example software, SW1 and SW2

II.2: Specification of HWt (timed operations): We now consider another version HWt of HW,
in which the operations do take time. The constraints on the use of operations are the same as in
paragraph II.1 above. Additionally, we know that op1 take 5 units of time, op2 takes 2, and op3 takes
4. When an operation is finished, HWt provides the information f (for “finished”) to the software (in
real life, it can be an interrupt, typically).

2013-2014 page: 3/4

MOSIG DEMIPS - Embedded Systems - Written Exam January 22, 2014

We also consider example software, named SW2 (see figure 1) making use of HWt. We assume an
operation wait(f) representing the fact that the software is blocked at this point until the information
f arrives.

. Question 9 (1.5 points) :
— Give a Mealy machine MHWt to describe the constraints and the timing of operations of HWt (as
explained above). Explain what are the inputs and outputs, and how you represent time.
— Give a Mealy machine MSW2 representing SW2, such that the synchronous product of machines
MHWt and MSW2 represents the asynchronous calls from SW2 to HWt. How do you specify and detect
incorrect uses of HWt by SW2?

. Question 10 (1.5 points) :
Same question as the previous one, but with the timed automata of Uppaal: Give a timed automaton
to represent HWt, and another one to represent SW2, such that their composition represents the
asynchronous calls from SW2 to HWt. Justify your answers.

II.3: We now look at WCET computation. We focus on the timing of operations (op1 take 5 units of
time, op2 takes 2, and op3 takes 4), and we neglect everything else (like the timing of the operations
on the Boolean variables).

. Question 11 (2 points) :
— What’s the WCET of SW3 (Figure 2)? Explain carefully how you compute it. Do you get a
precise evaluation of the WCET?
— Same questions for SW4.

// SW3

b := true ;

op1; wait(f);

for i in (1..4) loop

if b then op2 ;

else op3 ;

wait (f) ;

b := not b ;

end loop

// SW4

op1; wait(f);

for i in (1..4) loop

get (b) // read a value from keyboard

if b then op2 ;

else op3 ;

wait (f) ;

end loop

Figure 2: Example software, SW3 and SW4

Finally, we look at versions of HW for which the timing of operations depends on the state. Consider
a version HWs of HW for which: op1 always take 5 units of time, op2 always takes 2, and for op3 it
depends: the first occurrence takes 3 units of time, the second one takes 5, the third one takes 3 units
again, the fourth takes 5, etc.

. Question 12 (2 points) :
— What’s the WCET of SW3 (Figure 2), for this new HWs? Explain carefully how you compute
it. Do you get a precise evaluation of the WCET?
— Same questions for SW4 (Figure 2).

2013-2014 page: 4/4

