
Embedded Systems:

From High-Confidence Design

to Safe Execution

Lecture 2

Implementation of Synchronous Data-Flow

Programs

Pascal Raymond
Verimag-CNRS

http://www-verimag.imag.fr/ raymond/

Summary

1. Towards safe embedded implementations . 2

2. From data-flow to sequential code . 13

3. Real-time implementation . 44

1. Towards safe embedded implementations

Embedded systems at work . 3

Functional correctness . 6

Summary 2

Embedded systems at work

Embedded systems...

� or reactive / real-time / control engineering /... systems

� Almost synonyms:

I each term insists on a one characteristic

I systems we are considering are all that

� The big picture:

Computing System

Environment

Output Peripherals

(Actuators, motors, display ...)

Input Peripherals
(Sensors, control board ...)

(Physics, operators,)
(other systems...)

Towards safe embedded implementations/Embedded systems at work 3/58

Implementation layers

� Hardware

� Firmware/OS

I manage/access to peripherals

I manage execution (tasks, real-time clocks)

� Software (application program, controller program)

I perform a particular ’job’

Implementation safety

� functional: ”computes the right outputs” (mainly a software problem)

� real-time: ”computes fast enough” (involves ALL layers)

Towards safe embedded implementations/Embedded systems at work 4/58

Observable behavior over time (virtually)

O0

I1

O1

I2

O2 O3

time
I3I0

� sequence of Inputs/Outputs reactions

� system receives It and reacts by producing Ot, and so on...

Is the system safe ?

Towards safe embedded implementations/Embedded systems at work 5/58

Functional correctness

O0

I1

O1

I2

O2 O3

time
I3I0

� Functionality: outputs Ot are the ”right” ones

I mainly a software problem

I depends on a particular application

I at least, fundamental and generic property: determinism

∗ a given sequence I0...It must always produce the same sequence O0...Ot

� Note: synchronous languages (Scade/Lustre) are designed to guaranty by

construction this property

Towards safe embedded implementations/Functional correctness 6/58

Real-time correctness

O0

I1

O1

I2

O2 O3

time
I3I0

δ0 δ2δ1 δ3

� Real-time: the response delay δt is short enough

I not universal: depends on the controlled environment

I expected response deadlines range form 10ms to 50ms for physical world

(transportation, energy)

I from 100ms to several seconds for less critical systems (elevators, crane, weather

station)

I at least: the worst case response time (WCRT) must be known

Towards safe embedded implementations/Functional correctness 7/58

Focus on functionality

� Determinism:

I output Ot is determined by previous inputs,

I i.e. it exists (conceptually) some a (mathematical) function Φ:

Ot = Φ(I0, · · · , It−1, It)

� Necessary memory MUST be bounded

I otherwise existence of (finite) WCRET cannot be guaranteed

I it exist a (finite) set of variables, M, with a given initial value M0,

I it exists a function F and a function G s.t.

Ot = F (Mt, It) (output function)

Mt+1 = G(Mt, It) (transition, or state function)

Towards safe embedded implementations/Functional correctness 8/58

Implementation principle

� concretely/in practice:

� F and G (the semantics) are implemented/computed jointly by a transition procedure

(often called step procedure).

I M

F
O

G

I Ostep
(F&G)

M

(more concretely)(conceptually)

� reactive behavior is implemented by calling the step procedure within a infinite loop.

� What about (infinite) main loop ?

Towards safe embedded implementations/Functional correctness 9/58

Typical loop implementation: event-driven

init();

while(1){

wait_inputs();

compute_step();

emit_outputs();

}

� reaction triggered by some input event

� wait_inputs()and emit_outputs()are machine and OS dependent

� just a principle, concrete implementation depends on machine/OS

Towards safe embedded implementations/Functional correctness 10/58

Typical implementation: time-driven (i.e. periodic)

init();

while(1){

wait_period();

sample_inputs();

compute_step();

emit_outputs();

}

� reaction triggered by a periodic clock

� this is the choice for (almost) all critical embedded systems

� in this course: focus on this choice

� just a principle: may differ depending on machine/OS

Towards safe embedded implementations/Functional correctness 11/58

Goal of in this course

� Sequential code generation

I What synchronous languages compilers do (and do not do)

� Implementation of the main loop

I with or without OS support

I single task or multi-task

Towards safe embedded implementations/Functional correctness 12/58

2. From data-flow to sequential code

The (only) goal of synchronous compiler . 14

Compilation of synchronous programs . 15

Modular compilation problem . 17

Compilation of Lustre . 21

Compilation into automaton . 29

C-code interface . 38

Summary 13

The (only) goal of synchronous compiler

� Synchronous languages compilers (SLC) are platform-agnostic:

I do not target a particular hardware/firmware/OS

I be as generic as possible

I in particular do not generate binary (assembly) code:

∗ all SLC generate C code

∗ pragmatic: C is the de facto universal language for low-level programming,

available for all platforms.

I Only generate the functional code (init and step):

∗ the loop code is too dependent on a particular hardware/OS

From data-flow to sequential code/The (only) goal of synchronous compiler 14/58

Compilation of synchronous programs

General problem

Transform a (hierarchic) parallel program into a (simple) sequential program.

compiler

I O

I M

f

g

O

From data-flow to sequential code/Compilation of synchronous programs 15/58

Whole implementation of a reactive program P

var I, O, M;

M := m0; proc P step() ...;

foreach step do

read(I);

P step(); // combines: O := f(M, I); M := g(M, I);

write(O);

end foreach

Job of the compiler

� Find the memory M and its initial value m0

� Build the core of the loop (the P step procedure)

� As far as possible, generate efficient code

From data-flow to sequential code/Compilation of synchronous programs 16/58

Modular compilation problem

The ”obvious” way of compiling

A Lustre node→ a step procedure.

G step();
S := X + Y;

var A, X, Y, S;

proc F step() begin X := ... end

proc G step() begin Y := ... end

proc P step()

begin

F step();

end

Compilation

+

X
F

P

A

G
Y

S

From data-flow to sequential code/Modular compilation problem 17/58

Problem

What about feed-back loops ?

F

*

-
not when inlined !⇒
X = A * (2 - A)

2

B Y

A X

P

+

combinationnal loop ?

� The program ”is” correct (in a ”parallel” world),

� but no F step procedure can work!

From data-flow to sequential code/Modular compilation problem 18/58

Solution(s)

� Lustre (academic): expansion (i.e. inlining) of node calls

I Strictly compliant with the principle of substitution.

I Forbids modular compilation.

� Scade: feedback loops (without pre) are forbidden.

I Reject correct parallel programs.

I Allow modular compilation.

I Reasonable choice in a industrial framework.

� Compilation into ordered blocks aka Modular Static Scheduling

I Intermediate solution

I Split the step into a minimal set of (sequential) blocks,

I Only expand this simplified structure.

From data-flow to sequential code/Modular compilation problem 19/58

An example of Modular Static Scheduling

P2

x

a y

b

P1

two step procedures

+ their dependency constraintdependency analysis

Block P2 Block P1

a

j

x y

get b

h

f

set

2 blocks that can be statically scheduled

y

f

h

b

j

a

D

x

source program

(D = delay = pre)

� Interesting theoretical result.

� Not (yet ?) used in industry.

From data-flow to sequential code/Modular compilation problem 20/58

Compilation of Lustre

Example : a filtered counter

� count rising edges of X (F),

� reset with a delay (R).

node CptF(X,reset: bool) returns (cpt: int);

var F, R : bool;

let

cpt = if R then 0

else if F then pre cpt + 1

else pre cpt;

R = true -> pre reset;

F = X -> (X and not pre X);

tel

From data-flow to sequential code/Compilation of Lustre 21/58

Simple loop compilation

Intuitively, do what is necessary to make definitions equivalent to assignments, i.e.:

� translate classical operators (trivial),

� replace pre’s and ->’s with memory constructs,

� sequentialize according to data-dependencies (i.e. static scheduling).

From data-flow to sequential code/Compilation of Lustre 22/58

Identify the memory

� Introduce a explicit variable for each pre:

pcpt = pre cpt;

preset = pre reset;

pX = pre X;

� Introduce a special memory

init = true -> false;

and replace each:

x -> y

with

if init then x else y

From data-flow to sequential code/Compilation of Lustre 23/58

New version of the Lustre program

cpt = if R then 0

else if F then pcpt + 1

else pcpt;

R = if init then true else preset;

F = if init then X else (X and not pX);

pcpt = pre cpt;

preset = pre reset;

pX = pre X;

init = true -> false;

From data-flow to sequential code/Compilation of Lustre 24/58

Sequentialization

Must take into account:

� Instantaneous dependences between values,

I an (partial) order MUST exist (no combinational loop),

example: R before cpt and F before cpt

I chose a compatible complete order (schedule),

example R, then F then cpt.

� Memorisations

I Must be done at the end of the step, in any order.

From data-flow to sequential code/Compilation of Lustre 25/58

Simple loop implementation (C-like code)

� Arithmetic and logic are translated ”asit”

(ex. and becomes &&, if..then..else becomes ..?..:..)

� pre’s are replaced with memories

� ->’s are replaced with init?...:...

� Inputs/outputs are stores in global variables (for instance)

From data-flow to sequential code/Compilation of Lustre 26/58

Simple loop implementation (C-like code)

int cpt; bool X, reset; /* I/O global vars */

int pcpt; bool pX, preset; /* non initialized memories */

bool init = true; /* the only necessary initialization */

void CptFiltre_step() {

bool R, F;/* local vars */

R = init ? true : preset;

F = init ? X : (X && ! pX);

cpt = R ? 0 : F ? pcpt + 1 : pcpt;

pcpt = cpt; pX = X; preset = reset;

init = false;

}

From data-flow to sequential code/Compilation of Lustre 27/58

Optimizations

� Control structure: ? becomes if

� Factorize conditions

� Eliminate useless local vars

if (init) {

cpt = 0;

init = false;

} else {

F = (X && ! pX);

cpt = preset ? 0 : F ? (pcpt+1) : pcpt;

}

pcpt = cpt; pX = X; preset = reset;

From data-flow to sequential code/Compilation of Lustre 28/58

Compilation into automaton

Idea

The following reactive automaton:

N := 0 N := N + 1
off

on
¬on ¬off

is exactly equivalent to a Lustre program:

node Chrono(on, off : bool) returns (N : int);

var R : bool;

let

R = false -> pre(if R then not off else on);

N = if R then (pre N + 1) else 0;

tel

Problem: how to build the automaton from the Lustre code ?

From data-flow to sequential code/Compilation into automaton 29/58

Goal

� Automatically build an automaton equivalent to a Lustre program

How ?

� Idea: an (explicit) state⇔ a valuation of the memory

� N.B. finite number of states⇒ finite memory (e.g Boolean)

Example of CptF

� S1 = initial state = “init true, all other undefined”

� simplifed code : cpt = 0

� integer memorization: still the same

� Boolean memorization: state transition

From data-flow to sequential code/Compilation into automaton 30/58

Transitions

� State S1 (initial):

init = false; pX = X; preset = reset;

Depending on the values of X and reset, 4 next states:

� X ∧ reset → S2 ≡ init ∧ pX ∧ preset

� X ∧ reset → S3 ≡ init ∧ pX ∧ preset

� X ∧ reset → S4 ≡ init ∧ pX ∧ preset

� X ∧ reset → S5 ≡ init ∧ pX ∧ preset

From data-flow to sequential code/Compilation into automaton 31/58

S2 S5S4S3

S1 X ∧ reset

X ∧ reset X ∧ reset

X ∧ reset
cpt = 0

??? ?

� Code of the other states:

I S2→ cpt = 0

I S3→ cpt = pcpt

I S4→ cpt = 0

I S5→ F = X, cpt = X? (pcpt + 1) : pcpt

� Transitions of the other states:

I same than S1 (only depend on inputs)

From data-flow to sequential code/Compilation into automaton 32/58

Finally ...

S1

S2

S4 S5

S3
cpt = 0;

cpt = 0;

cpt = pcpt;

cpt = X ?
(pcpt + 1)
: pcpt;

cpt = 0;

⇒ problem: size!

From data-flow to sequential code/Compilation into automaton 33/58

Remarks on the size

� n memories⇔ (worst case) 2n states, 22n transitions

⇒ Combinatorial explosion

But not always:

� Unreachable states

I Example : (pre X, pre(X or Y))⇒ “only” 3 states

I Counter-example : CPtF !

� State equivalence

I Example CPtF : S1, S2 et S4 “are doing the same thing”

⇒ Importance of producing a minimal automaton

From data-flow to sequential code/Compilation into automaton 34/58

Minimal automaton of CptF

M3

M2

M1

reset

reset
reset

X ∧ reset
X ∧ reset

X ∧ reset

X ∧ reset
X ∧ reset

cpt = 0;

cpt = pcpt;

cpt = X ?
(pcpt + 1)
: pcpt;

X ∧ reset

From data-flow to sequential code/Compilation into automaton 35/58

Implementation en C

With a switch (for instance):

typedef enum {M1, M2, M3} TState;

TState state = M1;

void CptFiltre_step(){

switch (state) {

case M1: cpt = 0; break;

case M2: cpt = pcpt; break;

case M3: cpt = X? (pcpt + 1):pcpt; break;

}

pcpt = cpt;

if (reset) state = M1;

else if (X) state = M2;

else state = M3;

}

From data-flow to sequential code/Compilation into automaton 36/58

Simple loop or automaton ?

� Automaton

I Optimal in computation time

I Possibly huge size

� Simple loop

I Slightly slower

I Linear size

⇒ Only reasonable solution in industry

� Interest of Automata

I Not satisfactory for code generation, but ...

I Precious for reasoning about programs, i.e. for validation/verification

From data-flow to sequential code/Compilation into automaton 37/58

C-code interface

� The compiler must provide a standard API for the sequential code, with precise

convention for:

I the name of the generated procedures

I the way internal memory is allocated and accessed

I the way input/output parameters are given/retrieved

� Plenty of solutions and variants, depend on the compiler and its options

From data-flow to sequential code/C-code interface 38/58

Example: Scade-kcg generated header

Scade profile:

node FOO(Ga: bool; Bu: int) returns (Zo: int; Meu: real); kcg

generates foo.c and the corresponding header file foo.h:

#include "kcg_types.h"

//==== context type ===========

typedef struct {

//---- outputs -------------

kcg_int Zo;

kcg_real Meu;

//----- locals ---------------

...

} outC_FOO;

//=== node initialization and cycle

extern void FOO(kcg_bool Ga, kcg_int Bu, outC_FOO *outC);

extern void reset_FOO(outC_FOO *outC);

From data-flow to sequential code/C-code interface 39/58

Example: Scade-kcg conventions (cntd)

� Outputs and local memory are stored in a single structured type (the context)

Allocation of the structure is up to the user (in glogal memory, head, stack)

� to initialize the context, a reset procedure is provided, that takes as input a pointer to

the context,

� the step procedure:

I takes the list of input parameters (by value),

I a pointer on the context,

I and returns nothing

� after a step call, the user can retrieve the outputs values stored in the context

� N.b. the compiler does not fix the implementation of basic types:

user has to define them in kcg types.h

� Very similar solution adopted for other Lustre-like compilers (Lustre V6, octogon,

velus)

From data-flow to sequential code/C-code interface 40/58

Example: Lustre/lus2c conventions

#include "FOO_ext.h"

//-- Context type (abstract)

struct FOO_ctx;

//-- Context allocation

extern struct FOO_ctx* FOO_new_ctx(void* client_data);

//-- Input procedures:

// provided, must be called before each ’step’

extern void FOO_I_Ga(struct FOO_ctx* ctx, _boolean);

extern void FOO_I_Bu(struct FOO_ctx* ctx, _integer);

//-- Output procedures:

// not provided, must be defined by the user

//void FOO_O_Zo(void* cdata, _integer);

//void FOO_O_Meu(void* cdata, _real);

//-- Reset procedure

extern void FOO_reset(struct FOO_ctx* ctx);

//-- Step procedure

extern void FOO_step(struct FOO_ctx* ctx);

From data-flow to sequential code/C-code interface 41/58

Example: Lustre/lus2c conventions (cntd)

� Clearly inspired by OO (Object Oriented) domain

I The code is an (incomplete) class:

∗ new, step and reset ”methods”

∗ inputs methods

∗ ”virtual/undefined” output methods

I The user must complete/derive its own class:

∗ add (if needed) its own data/variables (client-data mechanism)

∗ define the output method

I Very general and versatile...

� Simplified conventions

I Works when a single node instance is needed

I No need for ”new” and the client-data mechanism (heap-free)

I A single context is statically allocated (and hidden to the user)

I Sufficient for this course

I Concretly -ctx-static option

From data-flow to sequential code/C-code interface 42/58

Example: lus2c with static context conventions

#include "FOO_ext.h"

//-- Input procedures:

// provided, must be called before each ’step’

extern void FOO_I_Ga(_boolean);

extern void FOO_I_Bu(_integer);

//-- Output procedures:

// not provided, must be defined by the user

//void FOO_O_Zo(_integer);

//void FOO_O_Meu(_real);

//-- Reset procedure

extern void FOO_reset();

//-- Step procedure

extern void FOO_step();

From data-flow to sequential code/C-code interface 43/58

3. Real-time implementation

Implementation platform . 45

Example platform: Arduino+BatCar . 46

Using a Real-Time OS . 52

Multi-tasking . 54

Summary 44

Implementation platform

How to run a (periodic) RT application ?

� strongly depends on platform, not universal...

� ...however, embedded systems platform provides similar features

The right questions when discovering a platform

� How to access the peripherals (read inputs, write outputs) ?

� How to achieve periodicity (i.e. real-time support) ?

� How to compile/upload/run my application ?

Real-time implementation/Implementation platform 45/58

Example platform: Arduino+BatCar

Arduino

� formally: a micro-controller

� tiny, simple, (cheap!), designed for teaching purpose

� representative, not so different from more industrial boards (e.g. Freescale NXP)

� processor is a 16bits Atmel/AVR

� provides generic input/output ports

� each port must be programmed depending on the actual peripheral

� programming language is C++

� Arduino firmware consists of a generic reactive program:

I basically a sequence of initializations, followed by an infinite loop

I with 2 ’hooks’ (functions that must be provided by the user):

∗ setup() where to put user initializations

∗ loop() the core of the infinite loop

Real-time implementation/Example platform: Arduino+BatCar 46/58

BatCar

� Arduino + a set of peripherals

� Inputs:

I a button (called k1, Boolean)

I 2 light sensors (left and right, Boolean)

� Outputs:

I 2 motors (left and right, integer)

I a buzzer (Boolean)

I 3 leds (red, yellow, green, Boolean)
� Interface between peripherals and Arduino ports is a little bit technical

we use an (existing) API with straightforward features, e.g.:
BatCar.init_button();

BatCar.set_motor_left(int);

etc.

Real-time implementation/Example platform: Arduino+BatCar 47/58

The Lustre part

� Suppose we have developped a BatCar controller in Lustre, whose profile is:
node control(

k1: bool; sensor_left, sensor_right: bool

) returns (

motor_left, motor_right: int;

red_light, yellow_light, green_light: bool;

buzzer: bool

);

� Lustre compiler generates a code defining:
void control_reset();

void control_step();

void control_I_k1(bool);

void control_I_sensor_left(bool);

void control_I_sensor_left(bool);

� and expecting the definition of output functions, e.g.
void control_O_motor_left(int);

void control_O_red_light(bool);

etc.
Real-time implementation/Example platform: Arduino+BatCar 48/58

Programming the reactive glue

� Output functions calls the BatCar API, e.g.
void control_O_motor_left(int v){

BatCar.set_right_speed(v);

}

void control_O_buzzer(bool v){

BatCar.set_buzzer(v);

}

etc.
� Arduino’s user setup must contain BatCar and Lustre init

void setup(){

BatCar.init_button();

BatCar.init_line_sensors();

BatCar.init_motors();

BatCar.init_buzzer();

control_reset();

}

Real-time implementation/Example platform: Arduino+BatCar 49/58

Programming the reactive glue (cntd)

� Arduino’s user loop must contain input sampling and lustre step
void loop(){

control_I_k1(BatCar.button_pressed());

control_I_sensor_left(BatCar.line_sensor_left());

control_I_sensor_righ(BatCar.line_sensor_right());

control_step();

}

� Warning: not real-time periodic ! loops as far as possible

Basic RT support in Arduino

� Arduino provides a hardware clock, accessed via the functions:
unsigned long millis(); //current time in ms

void delay(unsigned long d); //spend d ms doing nothing

Real-time implementation/Example platform: Arduino+BatCar 50/58

Programming the reactive glue (cntd)

� Arduino’s user loop with RT periodic ’wrapper’
#define PERIOD 30

void loop(){

unsigned long t0 = millis();

control_I_k1(BatCar.button_pressed());

control_I_sensor_left(BatCar.line_sensor_left());

control_I_sensor_righ(BatCar.line_sensor_right());

control_step();

unsigned long t1 = millis();

delay(PERIOD-(t1-t0));

}

� N.B. RT achieved by polling (active waiting)

Real-time implementation/Example platform: Arduino+BatCar 51/58

Using a Real-Time OS

What for ?

� main characteristic: multi-tasking, preemptive scheduling

� with a precise notion of system clock (periodic)

� not (really) necessary for single task appli...

� ... however let see how it works

RTOS features

� Several RTOS, each with their own API

� Same principles (task creation, wait/sleep on real-time clock, start scheduling)

� Example: FreeRTOS

Real-time implementation/Using a Real-Time OS 52/58

FreeRTOS API

� Reference https://www.freertos.org/ + Kernel/API Reference

� Create a task (see xTaskCreate):

I to be done at initialization

I args are: code to execute (procedure), priority, user data etc.

� Start the scheduller (see vTaskStartScheduler)

I to be called when all tasks are created

I no argument, never returns

� Real-time support (see vTaskDelayUntil)

I to be called within the task code

I forces the task to ’sleep’ for a precisely timed delay

I N.b. time is counted in system ticks

I default: 1 system tick = 15 ms

� We’ll try it in the practical work

Real-time implementation/Using a Real-Time OS 53/58

Multi-tasking

Multi-tasking, safety and real-time

� Basically: (dynamic) multi-tasking is bad for safety and real-time

I hard to guarantee real-time (blocking, starving ...)

I hard to guarantee safety (non-determinism, priority inversion ...)

� But it may be interesting (even necessary) in (at least) one case:

I a (slow) task must compute less often than others

Real-time implementation/Multi-tasking 54/58

Non-preemptive multi-tasking

� Example: U must compute each 10ms, F each 40ms

� This can be done in synchronous languages (Scade/Lustre):

I U computes all the time, F computes 1 of 4 time

I can be programmed with basic language, or using ’clocks’ (out of scope)

ke

� At execution:

U U UU U U UFU F U F

10ms

time

40ms

I F computes less often, bu must compute ’fast’

I WCET = WCET(U) + WCET(F)

Real-time implementation/Multi-tasking 55/58

Preemptive multi-tasking required

� A task (F) must be executed ’less often’ than a task (U)

because it takes more time to execute

� Example:

I U executes each 10ms, with WCET(U) = 3ms

I F executes each 40ms, with WCET(U) = 15ms

UU UUU

10ms

40ms

F · · ·UU U U· · ·F · · ·· · ·FF · · · F · · · · · ·F · · · · · ·F
time

� Classical schedulability problem:

1× WCET (F) + 4× WCET (U) = 27 < 40ms

real-time is guaranted

Real-time implementation/Multi-tasking 56/58

Communication and determinism

� General communication case:
10

U

40

F

synchro ? synchro ?

� possible synchro:

I (none) = freshest value, may work but not deterministic (depends on priority and

actual computation time)

I logical delay = strictly past value on the corresponding clock (e.g. F to U: take the

value at the previous 40ms tick)

Real-time implementation/Multi-tasking 57/58

Deterministic scheme

� Mixed (deterministic) solution:

I Short task has priority (U = Urgent)

I Long task reads freshest value

I Short task reads delayed value

time

� A little bit technical/costly to implement (double-buffering)

� Freshest-value principle is often accepted (relaxed determinism)

Real-time implementation/Multi-tasking 58/58

