Introduction

Program correction

- A reactive system is correct if:
 - it computes the right outputs (functionality)
 - it reacts fast enough (real-time)

- Synchronous approach addresses mainly the 1st problem (functionality) while guarantying that the 2nd will be solvable

Goal of this course

- Brief state of the art in timing analysis, according two topics:
 - hardware analysis (overview, deserve a whole course !)
 - software analysis (feasibility)

- Then focus on the particular case of Synchronous Programs, trying to exploit their specificities
Timing analysis

• The whole reaction of the program must respect the real-time constraint
 i.e. must be faster than any significant modification of the environment

• A reaction includes not only computation but also:
 ↩ inputs acquisition and outputs transfer,
 ↩ depends on physical and electronic devices (sensors, actuators, buses ...)
 ↩ The full problem is called: *Worst Case Reaction Time estimation* (WCRT)

• Moreover, computation may not be sequential:
 ↩ multi thread implementation, on single or multi core
 ↩ The general problem is referred as *Schedulability Analysis*

• However, there is (mandatory) basic problem:
 ↩ Estimate the Worst Case Execution Time (WCET) of a (piece of) purely
 sequential code, running on a particular hardware architecture

Execution Time Distribution

- Dynamic methods (test) give realistic, feasible exec. times, but are not *safe*
- Static methods (WCET analysis) give guaranteed upper bound to exec. time, but
 necessarily *over estimated*
Main sources of over-approximation

- Hardware:
 - precise modeling of hardware state is impossible in practice
 - abstractions (simplifications) are necessary
 - these abstractions MUST be pessimistic, in order to get a safe upper bound
- But also Software:
 - Some execution of the code are infeasible, because of the program semantics
 (and/or also some assumptions we have on the inputs)
 - Considering infeasible executions may lead to a false WCET

WCET estimation: overview

The timing analysis problem

- given a binary code,
- and a (more or less) precise model of the hardware (processor, memory)
- found an upper bound of its execution time (given in cpu cycles)

The “right” structure to start with: Control Flow Graphs (CFG)

- Identify Basic Blocks (BB):
 - purely sequential piece of code
- Represent the control flow with transitions connecting the BB
Example of Control Flow Graph

```
foo:
    str fp, [sp, #-4]!
    add fp, sp, #0
    ... 
    cmp r3, #0
    beq .L2
    mov r3, #0
    str r3, [fp, #-4]
    b .L3
    ldr r3, [fp, #-20]
    ldr r3, [r3, #0]
    str r3, [fp, #-4]
    mov r3, #0
    str r3, [fp, #-12]
    bne .L9
    ldr r3, [fp, #-24]
    mov r2, r3, lsr #31
    cmp r2, r3
    ... 
    ... 
    ldr r3, [fp, #-4]
    mov r0, r3
    add sp, fp, #0
    b .L3
    ldmd sp!, fp
    bx lr
```

Problems to solve:
- Assign (local) WCET to each BB ...
- ... and penalties to transitions (jump vs sequence)
- Find loop bounds (B8 to B4 !)
- Find the Worst Case execution path

WCET estimation: overview

Classical WCET tool organization

Micro-architecture analysis

- Control Flow Graph (CFG) construction
 - Basic Blocks of sequential instructions (one entry, one exit)
 - Connected by edges (control flow)
- Assign a local WCET to each BB/edge
 - Instruction specification
 - Hardware state (pipeline)
 - Flow history (caches) etc.
 - N.B. given in cpu cycles

Classical WCET tool organization
Value analysis

- i.e. Data-Flow Analysis
- focus on program semantics:
 which execution paths are feasible?
- Must at least provide loop bounds
- In general performed at source level (C):
 \(\text{↩} \) May take into account user informations
 (e.g. input ranges, input exclusions etc.)
 \(\text{↩} \) Raise a transfer problem between C and bin
 (traceability)
 \(\text{↩} \) Strongly depends on the compilation

Path analysis

- Search Worst Execution Path (WEP) in the CFG
 according to:
 \(\text{↩} \) Local weights provided by \(\mu\)-archi analysis
 \(\text{↩} \) Flow facts provided by Value analysis
- Algorithms: graph traversal possible...
- Most widely used:
 Implicit Path Enumeration Technique (IPET)
 \(\text{↩} \) Encode the WP as an optimization problem:
 an Integer Linear Program (IPL)
In the following ...

- Introduction to micro-architecture analysis:
 - why it becomes technically hard ...
 - notion of (un)predictable architecture
 - example of μ-archi analysis: memory cache

- Quick overview of loop-bounds analysis:
 - why it is theoretically complex (halting problem)
 - classical (necessarily naive) solutions

- Path analysis:
 - The Implicit Path Enumeration Technique
 - notion of infeasible paths and relation with data-flow analysis

- Finally: WCET for (synchronous) programs

Micro-Architecture Analysis

Goal

- find an upper bound to the execution time of a Basic Block
 (purely sequential piece of binary code)
- idem for a transition

Analysing the binary instructions, the good old time...

- until the 80’s, processors where (mostly) time predictable, e.g. MC68000:
 - instruction (according to the user manual):
 \[\text{WCET}(\text{ADD} \cdot L \#5, D0) = 10 \text{ cpu cycles} \]
 - sequence:
 \[\text{WCET}(\text{instr1} ; \text{instr2}) = \text{WCET}(\text{instr1}) + \text{WCET}(\text{instr2}) \]
 - branching penalty, e.g. bne 0x00EF42:
 - taken: +4 penalty
 - not taken: −2 penalty
 - finally: not “exact” (e.g. instruction fetch pipeline), but fairly precise ...
Analysing the binary instructions, nowadays

- Nowadays: the “additive” principle is false even for very “simple” architecture:
 - complex (micro)-instruction pipeline (3/4 instructions in parallel)
 - branch prediction in pipeline: big penalty when the “guess” is wrong!
 - memory caches: \texttt{LOAD/STORE} may be 10 times faster if the address is in cache (hit) or not (miss)
 - even more complicated with several cache layers!

- Exec Time depends on the precise state of the architecture
 - WCET(\texttt{HWS}, instr1 ; instr2) = WCET(\texttt{HWS}, instr1) + WCET(\texttt{HWS’}, instr2)
 - where \texttt{HWS’} = Post(\texttt{HWS}, instr1)

- In practice:
 - The number of actual \texttt{HWS} is untractable
 - Need to abstract (simplify) ... while keeping safe (over-approximation)

Micro-Architecture Analysis

Analysing the binary instructions, nowadays (cntd)

- “monotonicity principle”
 - \(AHS = \text{abstract} = \text{set of (concrete) } \texttt{HWS} \)
 - WCET(\texttt{AHS}, instr1 ; instr2) \(\leq \) WCET(\texttt{AHS}, instr1) + WCET(\texttt{AHS’}, instr2)
 - where \texttt{AHS’} \(\supseteq \bigcup \text{Post(\texttt{HWS}, instr1)} \text{s.t. \texttt{HWS} } \in \texttt{AHS} \)

- A BIG problem: timing anomalies
 - there exist machines s.t. \texttt{MONOTONICITY DOES NOT HOLD}
 - i.e. local WCET does not lead to global WCET
 - Example: speculation anomaly \texttt{read x; if cond then B else C(x)}

```text
  cache hit
  read x
  eval cond
  prefetch B
  pred. miss
  B canceled

  cache miss
  read x
  eval cond
  C

  C
```

- and plenty of anomalies as soon as \texttt{multi threading and concurrency} is involved!
Analysing the binary instructions, nowadays (cntd)

- Classification of architectures:
 - Timing Compositional
 * No timing anomalies, e.g. ARM7
 - Compositional with bounded effects
 * Timing anomalies limited (i.e. anomalies do not cross branches)
 * e.g. (probably) TriCore
 - Non-compositional
 * Timing anomalies with observed domino effect (i.e. anomalies cross branches)
 * e.g. PPC 755

Modern archi vs (hard) Real-time

- Most of advanced features improve average execution time but make worst case highly unpredictable

- Hard-real time domains try to use only Timing Compositional architecture (perhaps with bounded effects)
 n.b. It is often possible to disable unpredictable features (e.g. branch prediction)

- However, analysing features like pipeline and memory caches is mandatory to get realistic (not too pessimistic) estimation.
Principle of a simple, one-layer cache

- Memory divided in pieces called lines: \(\Theta = \text{line number} + \text{offset} \)
- Processor need to access \@ = line \(l_{\Theta} \) + offset:
 - \(l_{\Theta} \) is in the cache: HIT, costs few cycles
 - \(l_{\Theta} \) is NOT in the cache: MISS, a cache entry is chosen, its content replaced by (the whole) \(l_i \), costs tens to hundreds cycles

Cache and WCET analysis

- HIT costs much less than MISS
- Supposing MISS all the time is safe but far too pessimistic
- For any memory access in the program:
 - if one can prove that it is necessarily a HIT, count a HIT
 - otherwise count a MISS (even if it may be a HIT: over-approximation)
- is it possible to predict HIT/MISS?
Predictability of caches

- Characteristics of a simple cache:
 - **Fully Associative caches**: any line of the memory can be stored in any line of the cache
 - **Least Recently Used replacement policy**: in case of miss, the evicted line is the least recently accessed one
- With these properties, the cache behavior is highly predictable:
 - Suppose that the cache has 4 lines,
 - and that the program has just accessed 4 different memory lines \(a\), then \(b\), then \(c\), then \(d\),
 - then whatever is the initial state of the cache, we know that:
 - the cache contains \(a,b,c,d\),
 - the LRU line, that will be replaced in case of miss, is \(a\) (and then \(b\), \(c\) etc).

Concrete State of a LRU cache

- A state is a function \(C : C \rightarrow L \cup \emptyset\)
 - \(C = 1 \cdots k\) is the set of cache line indices
 - \(L = 1 \cdots n\) is the set of memory line indices
 - \(\emptyset\) denotes an empty cache line (very initial state only)
- Age of cache line:
 - cache lines are sorted from most recently used (1) to least recently used (\(k\))
 - in case of \(MISS\), lines are shifted:

1	2	3	4
a	b	c	d

 access \(e\) ⇒

1	2	3	4
e	a	b	c

 i.e. in case of \(HIT\), order is updated:

1	2	3	4
a	b	c	d

 access \(c\) ⇒

1	2	3	4
c	a	b	d

- Notation: \(C' = up(C, a)\) (the update of cache \(C\) after access \(a\))
- n.b. “behavioural” modeling, in real hardware lines don’t move but are re-numbered!
Uncertainty in cache analysis

• when analysing a piece of code:
 → the starting state is (in general) not precisely known
 → even if it is known, the code may result in several possible states
 → example (with a 4-lines cache):

```c
if (access(a)) {
    access(b); // HIT or MISS?
    access(c);
} else {
    access(b);
    access(a); // HIT or MISS?
    access(c);
}
access(d);
access(e);
access(a); // HIT or MISS?
```

• beginning, cache is

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

• end of “then” branch, cache is

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>a</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

• end of “else” branch, cache is

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
<td>?</td>
</tr>
</tbody>
</table>

• last `access(a)` may be a HIT or a MISS...
 → safe approximation: count a MISS

• how to represent uncertainty?

Micro-archi analysis: memory cache example

Abstract State of a LRU cache

• What a (safe) abstraction must satisfy:
 → abstract state = a set of concrete state ($\mathcal{A} = \{C\}$)
 → abstract union, when merging abstract states:
 $\mathcal{A} \cup \mathcal{A}' = \{C\} \cup \{C'\}$
 → abstract update:
 $\mathcal{A}' = \text{Aup}(\mathcal{A}, a) \Rightarrow \mathcal{A}' \supseteq \bigcup_{\mathcal{C} \in \mathcal{A}} \text{up}(\mathcal{A}, a)$
 → HIT-preserving:
 access(a) is HIT in \mathcal{A} \(\Rightarrow\) $\forall \mathcal{C} \in \mathcal{A}$ access(a) is HIT in \mathcal{C}
Abstract State of a LRU cache (cntd)

- Classical abstraction, “max age”: $A : C \rightarrow L \cup \infty$

 $\hookrightarrow A(a) = j$ means

 “in all concrete state, line a is present and its age (position) is $\leq j$”

 $\hookrightarrow A(a) = \infty$ means

 “in all concrete state, line a is NOT present”

- a is HIT in A $\Rightarrow A(a) \neq \infty$

- merge:

 $A = A_1 \cup A_2 \iff \forall a \in C \ A(a) = \text{MAX}(A_1(a), A_2(a))$

- Abstract update $A' = \text{Aup}(A, a) \iff$

 $\hookrightarrow A'(a) = 1$

 $\hookrightarrow \forall b \neq a \ A'(b) =$ if $A(b) < k$ then $A(b) + 1$ else ∞

Back to the example

- Notation: $A = \{ x/ A(x) = 1 \} \{ x/ A(x) = 2 \} \{ x/ A(x) = 3 \} \{ x/ A(x) = 4 \}$

- $\{ x/ A(x) = \infty \}$ are not represented
Cache analysis and loops

Note: convergence is trivial, monotonicity in finite lattice

• In case of loop, merge initial, re-run...
• Re-merge, re-run ...
• Re-merge, fix-point: stop

Micro-archi analysis: memory cache example

Loop bounds Analysis

Goal

• find an upper bound for the number of times each back-edge in the CFG can be taken

• strongly related to the HALTING problem, and thus undecidable (in general)

The classical Collatz problem

```c
void collatz(int n){
    assert(n > 0);
    while (n != 1) {
        if (n & 1)
            n = 3 * n + 1;
        else
            n = n / 2;
    }
}
```

• It is widely believed that this program halts for any n

• But nobody knows how to prove it (for now, and probably for a long time ...)
The general approach: termination analysis

- Handles any kind of "loops" (recursion, for, while ...)
- Tries to find a decreasing measure of the loop
- Hardly (fully) automatic

Loop bounds in Real-time applications

- Pragmatic approach: the program is supposed to be real-time, thus the loops must be bounded by some simple decreasing measure.
- A classical solution:
 - let \(i_1, i_2, \ldots \) be the numerical local variables
 - i.e. appearing in the loop condition and the loop body
 - search for a linear combination \(\sum \alpha_k i_k \) that decrease at each iteration of the loop
- Works well for simple for and while loops

Examples of simple decreasing sequences

- basic for (or equivalent while)
 - \(\text{int } i; \text{ for}(i = 0; i < n; i++) \{ \text{foo}(); \} \)
 - \(\text{int } i = 0; \text{ while } (i < n) \{ \text{foo}(); i++; \} \)
 - decreasing sequence \(n - i \),
 - max value = \(n - 1 \),
 - min value 0,
 - decreasing step = 1,
 - thus bound = \((\max - \min)/\text{step} = n - 1 \)
- Warning: the min decreasing step must be taken into account:
 - \(\text{int } i = n; \)
 - \(\text{while}(i > 0) \{ \text{if } \ldots \{ i -= 4; \} \text{ else } \{ i -= 2; \} \} \)
 - bound = \((n - 1)/2 \)
Conclusion: loop (and value) analysis in general

- Involves/uses all the techniques of static program analysis, in particular abstract interpretation
- Deserves a whole course!
- Note: these techniques are also used in micro-architecture analysis (cf. cache analysis)

Path Analysis: the Implicit Path Enumeration Technique

Integer Linear Programming

- **LP** (Linear Programming) is a branch of Operational Research field

 - **Input:**
 - \(\rightarrow\) a set of linear constraints over rational variables, i.e. \(AX \leq B\)
 - \(\rightarrow\) a linear objective function to maximize (or minimize), i.e. \(\text{MAX } f(X)\)

 - **Output:**
 - \(\leftrightarrow\) an optimal valuation \(\vec{v}\), such that \(A\vec{v} \leq B\) and \(f(\vec{v})\) is maximal (resp. minimal)

- **State of the art (family of) algorithm:** the *simplex*

- **ILP** is similar, but variables are integers
 - \(\rightarrow\) Theoretically strictly more complex
 - \(\rightarrow\) However works well in many cases
ILP encoding on an example

- μ-archi analysis has assigned weights
e.g. $w_a = 26$, $w_b = 72$ etc.
- data-flow analysis has found loop bounds
 'h' taken at most $n = 10$ times
- ILP encoding:
 \leftrightarrow Structural constraints
 $a + d = 1$
 $g = a + d$
 $g + k = p + h$
 $h = e + b$
 $e + b = f + c$
 $f + c = k$
 $p = 1$
 \leftrightarrow Semantic constraints
 $h \leq n = 10$
 \leftrightarrow Objective function: $\text{MAX}(\sum_{x \in E} w_x x)$

Optimal for: $a = g = p = 1$, $h = b = c = k = 10$, $d = e = f = 0$
with: $26 + 7 + 7 + 10 \times (5 + 72 + 68 + 5) = 1540$

Interest of ILP

- It handles “naturally” the problem of loops ...
- however, a “simple” graph-based traversal algorithm can do the same!

A simple graph-based algo

- Trivial for well-nested loops (MAX/PLUS),
- Less trivial otherwise, but possible.
- Well-nested program: prg ::= e | prg ; prg | prg + prg | (prg)n
- Algo:

 \[
 \begin{align*}
 W(e) &= w_e \\
 W(p_1; p_2) &= W(p_1) + W(p_2) \\
 W(p_1 + p_2) &= \text{MAX}(W(p_1), W(p_2)) \\
 W(p^n) &= n \times W(p)
 \end{align*}
 \]
Adding extra constraints

- ILP becomes (really) useful when *extra constraints* can be added, that reflect *known properties* on feasible paths

- Example (C-code for simplicity):

```c
if (init) {
    /* a:26 */
    /* g:7 */
    for (i=0; i<n; i++) {
        /* h:5 */
        if (i < n/2) {
            /* b:72 */
            cond = false;
        } else {
            /* e:50 */
        }
    }
    if (cond) {
        /* c:68 */
    } else {
        /* f:32 */
    }
    /* k:5 */
} /* p:7 */
```

- branch b cannot be taken more than $n/2$ times:
 - easy to express in ILP: $b \leq n/2$, i.e. $b \leq 5$

- if b is taken, c cannot be taken
 - less obvious, but: $b + c \leq n$, i.e. $b + c \leq 10$

- ILP system + extra constraint reach optimal solution for:
 - $a = g = p = 1$, $d = 0$, $h = k = 10$,
 $b = c = e = f = 5$
 - $26 + 7 + 7 + 10 \times (5 + 5) + 5 \times (72 + 50 + 68 + 32) = 1250$
 - enhancement (from 1540): 19%

Infeasibility properties: many problems...

- May or may not enhance the WCET estimate
 - does they concern “heavy” or “light” paths ?

- How to find them ?

- Is it possible and how to express them in ILP ?

Find infeasible path

- Hard problem, c.f. program analysis (NP-hard/even undecidable)

- Target (as far as possible) “heavy” paths

- Restrict to some patterns, e.g. pairwise condition exclusion
Express infeasibility in ILP (examples)

if (init) {
 /* a */
 cond = false;
}
else {
 /* d */
 cond = true;
}

for (i=0; i<n; i++) {
 if (Y[i]) {
 /* b */
 cond = false;
 }
 else {
 /* c */
 cond = X[i];
 }
}

• at each iteration, if \(e \) is taken, \(f \) cannot be taken:
 \[e + f \leq n \]

• More subtle: if \(a \) is taken, then at each iteration, if \(b \) is taken,
then \(c \) cannot be taken
 \[n \cdot a + b + c \leq 2n, \text{ works} \]
 \[a + b \leq n + 1 \]

Path Analysis: the Implicit Path Enumeration Technique 34/47

Express infeasibility in ILP (examples)

for (i=0; i<n; i++) {
 if (X[i]) {
 /* a */
 }
 else {
 /* d */
 cond = false;
 }

 for (j=0; j<m; j++) {
 if (cond)
 /* b */
 else
 /* c */
 }
}

• conflict across iteration: if \(b \) is taken, \(a \) cannot be taken in
the next loop
 \[a + b \leq n + 1 \]

Path Analysis: the Implicit Path Enumeration Technique 35/47
Complementarity

- Synchronous approach guarantees that programs are intrinsically real-time
 - execution time is bounded by construction,
 for any particular implementation on any particular architecture
- WCET estimation checks that the program implementation is actually real-time
 - tries to compute accurate and precise bound for the actual implementation
 - checks whether this bound is small enough to fulfill the real-time requirements

Synchronous program vs micro-architecture analysis

Micro-architecture analysis simple (and hopefully precise):

- no recursion, no dynamic allocation:
 - no heap, no (or very simple) stack...
 - makes memory access analysis simple (e.g. cache analysis)
- no (or very simple) loops, simple control structure (nested if-then-else):
 - makes control analysis simple (e.g. pipeline, branch prediction)

Synchronous program vs data analysis

- The simplest is the code, the simplest (and precise) is the analysis
- Features that make data (semantics) analysis difficult are absent:
 - no aliasing (pointers)
 - no complex loops (while)

Go further?

- A synchronous program has a global “infinite” behavior:
 - Explicit at the high-level (Lustre, Esterel)
 - Hard to (re)-discover at the step procedure level (C, binary)
 - Is it possible to exploit global properties of S.P. to enhance WCET estimation ?
 - Indeed: it strongly depends on the compilation scheme:
 * high-level properties may or may not have influence on the generated code!
- Let see a typical example ...
Synchronous Program Example: compilation

```c
#include<...>

struct modes_ctx{
  void modes_step{
    ...
  }
}

if (L15){
  ...
} else {
  ...
}

write_outputs();   ...

b 8a48
```

```assembly
8a3c:
  ldr r3, ...
  ...
  cmp r3, #0
  beq 8a3c
  mov r3, #1
  ...
8a48:
  ...
```

- Binary code
 - via arm-elf-gcc
 - WCET estimation should be done here
 for `modes_step`
 i.e. a step of main infinite loop

Example (cntd): WCET estimation

- Works at binary level
- Control Flow Graph (CFG) reconstruction
 - Basic Blocks + edges (small part here)
- µ-archi analysis
 - local costs, $c_{i,j}$, in cpu cycles
- Data-flow analysis
 - loop bounds + others (not here)
- Implicit Path Enumeration Technique (IPET)
 - Integer Linear Programming encoding
 - one counter variable per edge ($e_{i,j}$)
 (n.b. here, $e_{i,j} = 0$ or 1)
 - Structural Constraints: $\Sigma e_{i,j} = \Sigma e_{j,k}$
 (and indeed: entry = exit = 1)
 - Semantics Constraints
 - loop bounds (not here), others ?
 - Objective: $\text{MAX} \Sigma C_{i,j} \times e_{i,j}$
- Call an ILP Solver (here LPSolve)
 - get 496 + the left-most path

WCET and synchronous programming ________________________________ 38/47
• Typical embedded application: several sub-modules running (logically) in parallel

• Programming pattern: computation modes
 ← Implemented with the notion of “clock-enabled” (e.g. when/current in Lustre)

• Compiler correct ⇒ codes of the modes must be exclusive
 ← Interesting property for enhancing WCET

• Intra-module exclusions: between A0, A1, A2, and between B0 and B1
 ← may or may not be “obvious” on the generated code (i.e. structural)

• Inter-module exclusions: not in mode A0 implies mode B1
 ← no chance to be obvious on the generated code

• In all cases, relatively “complex” properties:
 ← infinite loop invariants, unlikely to be discovered by analysing C or bin code
Exploiting high-level properties

Several problems:

- How to relate HL properties and binary code? (traceability)
- How to express properties in the (classical) IPET/ILP method?
- How to automatically find the “interesting” properties?

Traceability

- problem: relate branches in bin CFG to branches in C-CFG, and then predicates (variables) at the HL level
- between HL and C: not a problem (compiler annotations)
- between C and bin: more difficult (simple heuristic: rely on debugging info)
 - No optimization (-O0)
 - Optimization (-O2)

 CFG’s strictly match
 - Optimization (-O2)
 - CFG relatively obfuscated but debug info still works
HL Properties vs ILP constraints

- Traceability has been achieved
 - Some binary edges are associated to HL variables
 - N.B. Same HL variable may control several bin edges (not here)
- Feasibility of binary paths?
 - e.g. e_{7,8} & e_{29,30} & e_{57,59}
- Feasibility as HL predicate:
 \(\Phi = (idle \land high \land \lnot degr) \)
- Ask some HL verification tool:
 Is \(\lnot \Phi \) an invariant of the HL program?
 (here: Lesar = Lustre model-checker)
 - Not proven, some path may be feasible...
 - Proven. Infeasibility as ILP constraint:
 \[e_{7,8} + e_{29,30} + e_{57,59} < 3 \]

Putting it all together: an iterative algorithm

- Call IPET/ILP solver
 - Find worst case path (496 cycles)
- Is this path infeasible?
 - Call model-checker to prove:
 \(\lnot (idle \land low \land high \land nom \land degr) \)
 - Result is “TRUE PROPERTY”, thus infeasible
 - Add the corresponding ILP constraint:
 \[e_{7,8} + e_{21,22} + e_{29,30} + e_{50,51} + e_{58,59} \leq 4 \]
- Call IPET/ILP solver
 - Find worst case path (455 cycles)
 - Check infeasibility, ... YES, and so on
- Eventually reach the WORST (feasible) path:
 - reached for \(idle \land nom \) (258 cycles)
- Likely to VERY inefficient: converge VERY slowly
 - 16 iterations for this simple example ...
An alternative top-down algorithm

- Identify in the HL code the variables that are likely to influence the WCET
 - Simple heuristics: those that are associated to bin edges,
 - Here clearly: idle, low, high, nom, degr
- Try to find a priori, exclusive relations between these variables
 - Warning: there are a combinatorial number of such relations!
 - Heuristics: limit the search to pairwise relations,
 - e.g. is \(\neg(idle \land low) = (\neg idle \lor \neg low) \) an invariant ?
 - e.g. is \(\neg(idle \land \neg low) = (\neg idle \lor low) \) an invariant ?
 - etc. there are \(2 \times \binom{5}{2} = 20 \) such potential relations to check
 - seems a lot, but polynomial: quadratic: \(\binom{n}{2} = \frac{n(n-1)}{2} \)

An alternative top-down algorithm (cnt’d)

- Example: checks the \(2 \times \binom{5}{2} = 20 \) pairwise disjunctive relations
- six of them are proved invariant:
 - \(\neg idle \lor \neg low \) and \(\neg idle \lor \neg high \) and \(\neg low \lor \neg high \) and
 - \(\neg nom \lor \neg degr \) and \(\neg low \lor \neg nom \) and \(\neg high \lor \neg nom \)
- that are translated into 6 ILP constraints (N.B. it can be more in general):
 - \(e_{7,8} + e_{21,22} \leq 1 \) and \(e_{7,8} + e_{29,30} \leq 1 \) and \(e_{21,22} + e_{29,30} \leq 1 \) and
 - \(e_{49,50} + e_{57,58} \leq 1 \) and \(e_{21,22} + e_{49,50} \leq 1 \) and \(e_{29,30} + e_{49,50} \leq 1 \)
- Call IPET/ILP solver once: get the optimal solution (258 cycles)
- Remarks:
 - Checking relations is costly: heuristics ! (choice of variables, restriction to pairwise)
 - The obtained solution is not guaranteed to be optimal:
 - a path can be infeasible because of more than 2 variables
- However: this algo is empirically (and relatively) efficient