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What is an Embedded System?

Minimal definition
A computer system dedicated to a particular function

e system: mix of software/middleware/hardware

e particular function: not really/fully programmable, does 1 thing
Related/similar notions
More or less “synonyms” emphasize particular characteristic(s):

e Reactive systems: perform “everlasting” interaction with the environment

e Real-Time systems: must react “instantaneously” with respect of a particular
environment

e Cyber-physical: emphasize the difference between the system (digital, discrete
time) and its environment (physical, continuous time)

e ... and historically, strongly related to control engineering systems.
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Computer Systems in Everyday-Life Objects

e Trains, subways, cars ...
e Avionics and space

e Consumer electronics (phones, digital cam- "
eras, ...)

e Smart cards

e Household appliances

e Telecom equipments

e Computer Assisted Surgery

e Smart buildings and Energy
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Characteristics
Various problems/difficulties ...

e Real time: system must be fast enough to react to prhysics
e Criticity: safety-critical and/or business critical

e Limited resources: memory, processor, energy, space

... whose importance depends on the particular domain. What are the main

problems for these domains ?

e Embedded control (train, cars, planes, power plants) ?
e Consumer Electronics ?

o Sensor Networks ?

Let’'s focus on embedded control ...
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Detailed Example: Embedded Control

e In trains, cars, aircraft, space objects ...

e and also power plants, elevators etc.

Characteristics

The environment is mainly physical, with more or less human intervention

Submitted to strong real-time constraints (often called: hard-real time)

They are safety-critical systems

The computer system is the implementation of a control engineering solution

The computer system is reactive
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A (tiny) example: heater control

The environment
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Real-Time Programming Problems

e Write code that is sufficiently fast (not always possible to “try a faster machine”)

e Be able to tell how fast your program is, in advance (Worst-Case-Execution-Time
static evaluation)

e |t’'s not always possible to write single-loop code, because of the intrinsic
parallelism of a reactive system.

e.g., multiple sensor-computing-actuator lines, like temperature and pressure
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Safety Problems

e Criticity: faults may be irreparable (lives, environment), or just very expensive

(e.g., launcher, Ariane 5 flight 501 1996)

e HW failures:

— HW Fault-tolerance: a whole domain, mainly based on redundancy (e.g.,
several sensors + voter, several processors running the same code)
necessary since HW may break down.

e SW “failures”:

— a SW does not “break down”, it is buggy

< (run-time) SW Fault-tolerance ?

e.g, several codes developed independently from the same specification...

— (off-line) classical methods to track bugs: programming methodology;

intensive testing; when possible: formal verification
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Safety and certification

e Critical ES are submitted to Design norms, defined by certification authorities.
e Example in civil avionics: DO178B

< a bundle of definitions and rules

— classify risks form “none” to “catastrophic”

— recommends/imposes design/validation methods depending on the level

— basically: an aircraft whose ES is not DO178B certified is not allowed to fly
e Other examples:

— Railways: IEC 62279

— Automotive: ISO 26262 (concerns safety in general, including SW)
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Centralized or Distributed Systems?

e Fact: centralized systems are far simpler than distributed ones

e However, distribution is required:
— HW fault-tolerance
> topology of sensors/actuator lines (several dozens in an aircraft)
—» sometimes, for efficiency purpose.

e Other fact: distributed real-time programming is very hard
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Designing Embedded System

Main Difficulties for the Design of Embedded Systems

e Real-time parallel and distributed programming (choice of a programming

language?)

Relation with control engineering
Intricate dependency between HW, application SW, and OS or middleware

Certification authorities

Several degrees of dynamicity (from simple reconfigurations to mobile code...)
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Industrial Practice

e “Hand-craft”: use general purpose tools and languages (Java/C/assembly...)

e Domain Specific Languages: real-time features (multi-tasks, timers, synchro),
specific device operation (sensor/actuator libraries)

e Model-based design: more radical, continuity between high level design (control

engineering problem) and implementation
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Example: Simulink

e Originally: design/simulation tool for

[Sarvior g ~loix
e cat v

control engineers

e Allows to simulate conjointly:
< a continuous-time model of the

environment

< adiscrete-time solution of the con-

troller
e Implementing the controller:

< classically manual encoding (Simulink = specification language)
< more and more: automat-ic/ized code generation (Simulink = programming
language)
e Widely used in automotive, transportation, and all domains where control engineering
culture is strong.
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Example: Scade
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e Programming language/environment:
— Software engineering features (modularity, libraries)
< Automatic code generation:
KCG compiler is DO178B qualified
in particular, eliminates the need of low-level code testing
— Thanks to formal semantics, high-level validation possible (and sufficient cf. qualif.):
automated testing, formal verification
e Widely used (imposed) for high-critical systems (avionics, helicopters, power plants)
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Summary

Important points/problems

e General purpose vs dedicated languages

e Validity/correctness: functional (no bugs), extra-functional (time)
This course

e Focus on functionality
e How to design/validate safe ES:
< programming languages (features? styles?)
< code generation
< functional validation (formal methods?)
— timing validation (Worst Case Exec time ?)

e Based on the so-called “Synchronous approach”
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