Embedded Systems:

Characteristics and Constraints

Pascal Raymond
Verimag-CNRS

MOSIG - Embedded Systems

What is an Embedded System?

Minimal definition
A computer system dedicated to a particular function

e system: mix of software/middleware/hardware

e particular function: not really/fully programmable, does 1 thing
Related/similar notions
More or less “synonyms” emphasize particular characteristic(s):

e Reactive systems: perform “everlasting” interaction with the environment

e Real-Time systems: must react “instantaneously” with respect of a particular
environment

e Cyber-physical: emphasize the difference between the system (digital, discrete
time) and its environment (physical, continuous time)

e ... and historically, strongly related to control engineering systems.

What is an Embedded System? 1/14




Computer Systems in Everyday-Life Objects

e Trains, subways, cars ...
e Avionics and space

e Consumer electronics (phones, digital cam- "
eras, ...)

e Smart cards

e Household appliances

e Telecom equipments

e Computer Assisted Surgery

e Smart buildings and Energy

What is an Embedded System? 2/14

Characteristics
Various problems/difficulties ...

e Real time: system must be fast enough to react to prhysics
e Criticity: safety-critical and/or business critical

e Limited resources: memory, processor, energy, space

... whose importance depends on the particular domain. What are the main

problems for these domains ?

e Embedded control (train, cars, planes, power plants) ?
e Consumer Electronics ?

o Sensor Networks ?

Let’'s focus on embedded control ...

What is an Embedded System? 3/14




Detailed Example: Embedded Control

e In trains, cars, aircraft, space objects ...

e and also power plants, elevators etc.

Characteristics

The environment is mainly physical, with more or less human intervention

Submitted to strong real-time constraints (often called: hard-real time)

They are safety-critical systems

The computer system is the implementation of a control engineering solution

The computer system is reactive

Detailed Example: Embedded Control 4/14

A (tiny) example: heater control

The environment

= | Heater

Reactive ON, OFF
— System
Temperature

Actuator

— =

initializations
while (true) { e Real-time: time to execute the code from (1)
-—— point (1) to (2) must be short enough

et inputs . . .
d P e Reactive: output to the environment influ-
from the sensors

compute outputs ence future inputs

and update memory e Ciriticity/Safety: badly controlled outputs may

write outputs have dramatic consequences e.g., this a

on the actuators

~ point (2) (small) part of a nuclear power-plant con-

} troller

Detailed Example: Embedded Control 5/14




Real-Time Programming Problems

e Write code that is sufficiently fast (not always possible to “try a faster machine”)

e Be able to tell how fast your program is, in advance (Worst-Case-Execution-Time
static evaluation)

e |t’'s not always possible to write single-loop code, because of the intrinsic
parallelism of a reactive system.

e.g., multiple sensor-computing-actuator lines, like temperature and pressure

Detailed Example: Embedded Control 6/14

Safety Problems

e Criticity: faults may be irreparable (lives, environment), or just very expensive

(e.g., launcher, Ariane 5 flight 501 1996)

e HW failures:

— HW Fault-tolerance: a whole domain, mainly based on redundancy (e.g.,
several sensors + voter, several processors running the same code)
necessary since HW may break down.

e SW “failures”:

— a SW does not “break down”, it is buggy

< (run-time) SW Fault-tolerance ?

e.g, several codes developed independently from the same specification...

— (off-line) classical methods to track bugs: programming methodology;

intensive testing; when possible: formal verification

Detailed Example: Embedded Control 7/14




Safety and certification

e Critical ES are submitted to Design norms, defined by certification authorities.
e Example in civil avionics: DO178B

< a bundle of definitions and rules

— classify risks form “none” to “catastrophic”

— recommends/imposes design/validation methods depending on the level

— basically: an aircraft whose ES is not DO178B certified is not allowed to fly
e Other examples:

— Railways: IEC 62279

— Automotive: ISO 26262 (concerns safety in general, including SW)

Detailed Example: Embedded Control 8/14

Centralized or Distributed Systems?

e Fact: centralized systems are far simpler than distributed ones

e However, distribution is required:
— HW fault-tolerance
> topology of sensors/actuator lines (several dozens in an aircraft)
—» sometimes, for efficiency purpose.

e Other fact: distributed real-time programming is very hard

Detailed Example: Embedded Control 9/14




Designing Embedded System

Main Difficulties for the Design of Embedded Systems

e Real-time parallel and distributed programming (choice of a programming

language?)

Relation with control engineering
Intricate dependency between HW, application SW, and OS or middleware

Certification authorities

Several degrees of dynamicity (from simple reconfigurations to mobile code...)

Designing Embedded System 10/14

Industrial Practice

e “Hand-craft”: use general purpose tools and languages (Java/C/assembly...)

e Domain Specific Languages: real-time features (multi-tasks, timers, synchro),
specific device operation (sensor/actuator libraries)

e Model-based design: more radical, continuity between high level design (control

engineering problem) and implementation

Designing Embedded System 11/14




Example: Simulink

e Originally: design/simulation tool for

[Sarvior g ~loix
e cat v

control engineers

e Allows to simulate conjointly:
< a continuous-time model of the

environment

< adiscrete-time solution of the con-

troller
e Implementing the controller:

< classically manual encoding (Simulink = specification language)
< more and more: automat-ic/ized code generation (Simulink = programming
language)
e Widely used in automotive, transportation, and all domains where control engineering
culture is strong.

Designing Embedded System 12/14

Example: Scade

ol.vsw - SCADE Suke - [PL/ea_FI_i] = E)
Lot Eromet Grudek Lok frows reew e =l x|
a9 - ) Ly I A B o EEa
= -

B ] j e Close to control engineering concepts
T
Lo C 0 (block-diagram)
"'_I_‘ L— e Formal language, deterministic speci-
" T E fication
] _j:‘

For Heip, e FL =

e Programming language/environment:
— Software engineering features (modularity, libraries)
< Automatic code generation:
KCG compiler is DO178B qualified
in particular, eliminates the need of low-level code testing
— Thanks to formal semantics, high-level validation possible (and sufficient cf. qualif.):
automated testing, formal verification
e Widely used (imposed) for high-critical systems (avionics, helicopters, power plants)

Designing Embedded System 13/14




Summary

Important points/problems

e General purpose vs dedicated languages

e Validity/correctness: functional (no bugs), extra-functional (time)
This course

e Focus on functionality
e How to design/validate safe ES:
< programming languages (features? styles?)
< code generation
< functional validation (formal methods?)
— timing validation (Worst Case Exec time ?)

e Based on the so-called “Synchronous approach”

Summary 14/14




