
GSM Network

Carte à puce et Java Card

ATAC 2011-2012
Jean-Louis Lanet

Jean-louis.lanet@unilim.fr

Outline
• GSM Security consideration

• GSM Architecture

• GSM Security Function

– Authentication

– Encryption

• GSM Standard GSM 11.11

– Basic definition

– Security features

– Commands

SIM standardization group 1998

• Billions of Calls,

• Millions of Subscribers,

• Thousands of different types of telephones,

• Hundreds of countries,

• Dozens of Manufacturers,

…and only one Card… the SIM

GSM Security Concerns

• Operators
– Bills right people

– Avoid fraud

– Protect Services

• Customers
– Privacy

– Anonymity

• Make a system at least secure as PSTN

GSM Security Goals

• Confidentiality and Anonymity on the radio path

• Strong client authentication to protect the operator

against the billing fraud

• Prevention of operators from compromising of

each others’ security

– Inadvertently

– Competition pressure

GSM Security Design Requirements

• The security mechanism

– MUST NOT

• Add significant overhead on call set up

• Increase bandwidth of the channel

• Increase error rate

• Add expensive complexity to the system

– MUST

• Cost effective scheme

– Define security procedures

• Generation and distribution of keys

• Exchange information between operators

• Confidentiality of algorithms

GSM Security Features

• Key management is independent of equipment
– Subscribers can change handsets without compromising security

• Subscriber identity protection
– Not easy to identify the user of the system intercepting a user data

• Detection of compromised equipment
– Detection mechanism whether a mobile device was compromised

or not

• Subscriber authentication
– The operator knows for billing purposes who is using the system

• Signaling and user data protection
– Signaling and data channels are protected over the radio path

GSM Mobile Station

• Mobile Station

– Mobile Equipment (ME)

• Physical mobile device

• Identifiers

– IMEI – International Mobile Equipment Identity

– Subscriber Identity Module (SIM)

• Smart Card containing keys, identifiers and algorithms

• Identifiers

– Ki – Subscriber Authentication Key

– IMSI – International Mobile Subscriber Identity

– TMSI – Temporary Mobile Subscriber Identity

– MSISDN – Mobile Station International Service Digital Network

– PIN – Personal Identity Number protecting a SIM

– LAI – location area identity

GSM Architecture
Mobile Stations Base Station

Subsystem

Exchange

System

Network

Management

Subscriber and terminal

equipment databases

BSC MSC
VLR

HLR

EIR

AUC

OMC
BTS

BTS

BTS
MSC

Subscriber Identity Protection

• TMSI – Temporary Mobile Subscriber Identity
– Goals

• TMSI is used instead of IMSI as an a temporary subscriber identifier

• TMSI prevents an eavesdropper from identifying of subscriber

– Usage

• TMSI is assigned when IMSI is transmitted to AuC on the first phone
switch on

• Every time a location update (new MSC) occurs the networks assigns
a new TMSI

• TMSI is used by the MS to report to the network or during a call
initialization

• Network uses TMSI to communicate with MS

• On MS switch off TMSI is stored on SIM card to be reused next time

– The Visitor Location Register (VLR) performs assignment,
administration and update of the TMSI

TIMSI-IMSI
MSC/VLR

Location_Updating_Request (TMSIold)

TMSI_Reallocation_Command (TMSInew)

Stored in the

dedicated EF

TMSI_Reallocation_Complete

De allocation

of TMSIold

Assignment

of TMSInew

Key Management Scheme

• Ki – Subscriber Authentication Key
– Shared 128 bit key used for authentication of subscriber by the

operator

– Key Storage

• Subscriber’s SIM (owned by operator, i.e. trusted)

• Operator’s Home Locator Register (HLR) of the subscriber’s home
network

• SIM can be used with different equipment

Detection of Compromised Equipment

• International Mobile Equipment Identifier (IMEI)
– Identifier allowing to identify mobiles

– IMEI is independent of SIM

– Used to identify stolen or compromised equipment

• Equipment Identity Register (EIR)
– Black list – stolen or non-type mobiles

– White list - valid mobiles

– Gray list – local tracking mobiles

• Central Equipment Identity Register (CEIR)
– Approved mobile type (type approval authorities)

– Consolidated black list (posted by operators)

Authentication

• Authentication Goals

– Subscriber (SIM holder) authentication

– Protection of the network against unauthorized use

– Create a session key

• Authentication Scheme

– Subscriber identification: IMSI or TMSI

– Challenge-Response authentication of the subscriber by the
operator

– Unilateral Authentication

• Counterfeit network,

• Eavesdrop on call using a suitable piece of equipment !

Authentication and Encryption
Scheme

A3

Mobile Station Radio Link GSM Operator

A8

A5

A3

A8

A5

Ki Ki

Challenge RAND

Kc Kc

mi Encrypted Data mi

SIM

Signed response (SRES)
SRES SRES

Fn

Fn

Authentication: are SRES

values equal ?

Authentication

• AuC – Authentication Center

– Provides parameters for authentication and encryption functions
(RAND, SRES, Kc)

• HLR – Home Location Register

– Provides MSC (Mobile Switching Center) with triples (RAND,
SRES, Kc)

– Handles MS location

• VLR – Visitor Location Register

– Stores generated triples by the HLR when a subscriber is not in his
home network

– One operator doesn’t have access to subscriber keys of the another
operator.

Triplet Generation

Map_Send_Authentication_info (IMSI)

Locally stored

BS/MSC/VLR

Ki

Generate from 1 to n

RAND

HLR/AuC

Map_Send_Authentication_info

(SRES, RAND, Kc)1
n

Triple Generation

Map_Send_Authentication_info (IMSI)

Locally stored

BS/MSC/VLR

Ki

Generate from 1 to n

RAND

HLR/AuC

Map_Send_Authentication_info

(SRES, RAND, Kc)1
n

Ki never moves outside the SIM or the AuC

In case of roaming the triple is sent to the foreign network not the Key

A3 – MS Authentication Algorithm

• Goal
– Generation of SRES response to MSC’s random

challenge RAND

A3

RAND (128 bit)

Ki (128 bit)

SRES (32 bit)

A8 – Voice Privacy Key Generation
Algorithm

• Goal
– Generation of session key Kc

• A8 specification was never made public

A8

RAND (128 bit)

Ki (128 bit)

KC (64 bit)

Logical Implementation of A3 and A8

• Both A3 and A8 algorithms are implemented on the SIM
– Operator can decide, which algorithm to use.

– Algorithms implementation is independent of hardware
manufacturers and network operators.

Logical Implementation of A3 and A8

• COMP128 is used for both A3 and A8 in most GSM
networks.
– COMP128 is a keyed hash function

COMP128

RAND (128 bit)

Ki (128 bit)

128 bit output
SRES 32 bit and Kc 64 bit

A5 – Encryption Algorithm

– A5 is a stream cipher
• Implemented very efficiently on hardware

• Design was never made public

• Leaked to Ross Anderson and Bruce Schneier

– Variants
• A5/1 – the strong version

• A5/2 – the weak version

• A5/3
– GSM Association Security Group and 3GPP design

– Based on Kasumi algorithm used in 3G mobile systems

Logical A5 Implementation

A5

Kc (64 bit) Fn (22 bit)

114 bit

XOR

Data (114 bit)

A5

Kc (64 bit) Fn (22 bit)

114 bit

XOR

Ciphertext (114 bit) Data (114 bit)

Mobile Station BTS

Real A5 output is 228 bits for both directions

A5 Encryption
Mobile Stations Base Station

Subsystem

Exchange

System

Network

Management

Subscriber and terminal

equipment databases

BSC MSC
VLR

HLR

EIR

AUC

OMC
BTS

BTS

BTS

A5 Encryption

Part II

Accessing the Sim application, the file system

GSM standards

GSM 11.11

GSM 11.14

For coherent Communication between

 SIM <=> MOBILE

 SIM <=> SUBSCRIBER

 SIM <=> NETWORK (OTA)

GSM 03.40

Typical SIM card organization

MF MF

DF DF DF EF EF EF EF

EF EF EF EF EF EF EF EF

Level 0

Level 1 EF
GSM Telecom

During personalization

IMSI and Ki and unblocking

Key are provided

by the operator
GSM operator directory

Telecom user directory

The files

• Root directory : 3F 00

• Two main directories : GSM (DFGSM, 7F20) and TELECOM
(DFTELECOM, 7F10).

• The identity is coded on two bytes, the first :

– - '3F': Master File;

– - '7F': 1st level Dedicated File;

– - '5F': 2nd level Dedicated File;

– - '2F': Elementary File under the Master File;

– - '6F': Elementary File under a 1st level Dedicated File;

– -'4F': Elementary File under 2nd level Dedicated File.

• After ATR (Answer To Reset), the master file (MF) is implicitly
selected

GSM directory
• The file EFIMSI (6F07) includes the IMSI.

• The file EFLOCI (6F7E) includes the parameters : TMSI, LAI.

• EFLP (Language preference)

• EFKc (Ciphering key Kc) includes the Kc and the sequence number of the key.

• EFSST (SIM service table) lists the available services in the SIM.

– Service n°1 : CHV1 disable function

– Service n°2 : Abbreviated Dialling Numbers (ADN)

– Service n°3 : Fixed Dialling Numbers (FDN)

– Service n°4 : Short Message Storage (SMS)

– etc.

• EFACM (Accumulated call meter) is the total number of unit used for the current call and

all the previous.

• EFMSISDN (MSISDN) includes the phone number of the subscriber MSISDN.

Telcom Directory

• EFADN (6F3A) include the short diary,

• EFFDN (6F3B) the contact list,

• EFSMS (6F3C) the received and sent SMS,

• etc.

• These files are accessible in read and write mode and are protected

with the Pin code.

File selection

• Only one file is selected at a time,

• The MF is always selectable and is implicitly selected after
a reset

• FID are not unique => restriction in selection
MF

DF DF

EF EF

EF EF EF EF

MF

DF DF

EF EF

EF EF EF EF

EF File structures

• Four data structure
– Binary (transparent) files (data accessible through an address)

– Sequential record fixed size or variable size

– Cyclic buffer

• Transparent file
– No internal structure

– Accessed for reading or writing in bytes or blocks with an offset
value

– Often used with a small amount of data,

– Commands READ BINARY, WRITE BINARY and UPDATE
BINARY

EF File structures

• Linear fixed file structure

– Linking fixed length records,

– The smallest unit is a record,

– Commands: READ RECORD, WRITE RECORD and UPDATE
RECORD, e.g. phone book

– From 1..254

• Linear variable file structure

– Same commands,

– Need additional info concerning the length of each records,

– Optimise the memory usage e.g. the phone book…

EF File structures

• Cyclic file structure
– Based on the linear fixed file structure,

– The EF contains a pointer on the last written record numbered 1,
the previous 2, etc…

– Can be accessed by addressing the first, the last, the next or
previous record.

File Access Conditions

• Security is based on file access privileges,

• Access information coded in the header, defined when a
file is created and usually cannot be changed later.

• For MF and DF

– no information stored for data access (read and write)

– But for creation and deletion of files.

• The PINs are stored in separate elementary files, EFCHV1
and EFCHV2 for example

File attributes

• Five kinds of EF files
• Always (ALW): Access of the file can be performed without

any restriction.

– Card holder verification 1 (CHV1): Access can only be
possible when a valid CHV1 value is presented

– Card holder verification 2 (CHV2): Access can only be
possible when a valid CHV2 value is presented

– Administrative (ADM): Allocation of these levels and the
respective requirements for their fulfilment are the responsibility
of the appropriate administrative authority

– Never (NEV): Access of the file is forbidden

The APDU commands

GSM commands CLA = A0

• Data access commands
– Select (header), select a EF or MF, with a getResponse the status

of the file

– Status, sent by the terminal to a proactive SIM

– ReadBinary, UpdateBinary read or update the current file

– Seek, next record in the current file

– Increase, add a record in a cyclic file

• Security related commands
– Verify, Change, Disable, Enable, Unblock a CHV

– Invalidate, Rehabilitate a file

– Run GSM Algorithm run the A3 algorithm

The SELECT command

• A0 A4 00 00 02 XX XX (XX XX : FID of the EF of DF to

be selected).

• The response of the selection request shall include:

– size of the unused memory,

– name of the DF file

– kind of DF (MF or not)

– PIN code request

– number of included DF

Example

• How to read the IMSI ?
– File is EFIMSI (6F07) of the GSM directory,

– Any idea ?

Example

• How to read the IMSI ?
– File is EFIMSI (6F07) of the GSM directory,

– Select the Master File (3F00)

– Select DFGSM (7F20)

– Select EFIMSI (6F07)

– Read 9 bytes with READ BINARY

Example

• How to read the IMSI ?

– File is EFIMSI (6F07) of the GSM directory,

– Select the Master File (3F00)

==> A0 A4 0000 02 3F00

 <== 9F22

– Select DFGSM (7F20)

– Select EFIMSI (6F07)

– Read 9 bytes with READ BINARY

Example

• How to read the IMSI ?

– File is EFIMSI (6F07) of the GSM directory,

– Select the Master File (3F00)

– Select DFGSM (7F20)

==> A0 A4 0000 02 7F20

 <== 9F22

– Select EFIMSI (6F07)

– Read 9 bytes with READ BINARY

Example

• How to read the IMSI ?

– File is EFIMSI (6F07) of the GSM directory,

– Select the Master File (3F00)

– Select DFGSM (7F20)

– Select EFIMSI (6F07)

==> A0 A4 0000 02 6F07

 <== 9F0F

– Read 9 bytes with READ BINARY

Example

• How to read the IMSI ?
– File is EFIMSI (6F07) of the GSM directory,

– Select the Master File (3F00)

– Select DFGSM (7F20)

– Select EFIMSI (6F07)

 <== 9F0F

– 9FXX which mean success with XX bytes of response data, you can pull

the response with GET RESPONSE command ‘C0′,

==> A0 C0 0000 0F

 <== 00 00 00 09 6F 07 04 00 15 F5 15 01 02 00 00 9000

Example

• How to read the IMSI ?

– GET RESPONSE command ‘C0′,
0000 0009 6F07 04 00 15F515 01 02 0000 9000

| | | | | | | | | status

| | | | | | | | structure 00 = transparent

| | | | | | | length of data following

| | | | | | status

| | | | | access READ|UPDATE INCREASE|

| | | | | RFU|REHABILITATE|INVALIDATE

| | | |

| | | file type 04 = EF

| | file id

| size

RFU

Example

• How to read the IMSI ?
– File is EFIMSI (6F07) of the GSM directory,

– Select the Master File (3F00)

– Select DFGSM (7F20)

– Select EFIMSI (6F07)

– Read 9 bytes with READ BINARY

==> A0 B0 0000 09

 <== 08 29 80 02 12 34 54 90 03 9000

EFIMSI (IMSI)

Byte 1 length of IMSI

Byte 2-9 IMSI 8 bytes

Access Right

• When you’re granted to CHV1 you can read its value but
neither change it nor deactivate it.
– Access Conditions:

• READ CHV1

• UPDATE ADM

• INVALIDATE ADM

• REHABILITATE CHV1

– Access rights are coded as:

• READ|UPDATE

• INCREASE|RFU

• REHABILITATE|INVALIDATE

• knowing that '0' means always , '1' CHV1, 'F' never and '4'...'E' ADM.

• 15 F5 15

PIN code commands

• PIN code is coded on 8 bytes. The non significant bytes are coded with FF.

– my sim pin code is 0973, must be coded as 30 39 37 33 FF FF FF FF

• VERIFY CHV : verify the Pin

– A0 20 00 P2 08 PIN (P2=01 for CHV1 (user PIN code), = 02 for CHV2).

• DISABLE PIN disable PIN usage.

– A0 26 00 01 08 PIN

• ENABLE PIN enable PIN usage

– A0 28 00 01 08 PIN

• CHANGE CHV modify the value of the PIN code

– A0 24 00 01 10 previous_PIN new_PIN

• UNBLOCK CHV unblock a card that has its PIN code blocked (CHV1).

– A0 2C 00 01 10 PUK PIN.

Read a GSM File
Select (DF GSM)

SW1=9F, SW2=xx

GetResponse

[Nb EF files, access condition], SW1=90, SW2=00

Select (EF LOCI)

SW1=9F, SW2=xx

GetResponse

[Type of EF file, access condition], SW1=90, SW2=00

ReadBinary

[data], SW1=90, SW2=00

P1 & P2 provide the offset and the

number of data to read in the file

Part III

The SIM Toolkit framework

SIM Application Toolkit (SAT)

• Specified by the standard 3GPP TS 11.14,

• Additional framework that allows the SIM to interact with
the mobile

• Identified with the content of the EFSST

• Event programming application

• SMS used as an administrative mean (3GPP byte code
interpreter) for RPC by the network admin or third tiers
applications.

Architecture of the Java-SIM

 Applets

 Applets

Toolkit

 AppletsToolkit

 Applets

JCRE

File System

GSM

Applet

SIM Toolkit Framework

Toolkit

Registry

Toolkit

Handler

Toolkit

 Applets

 Applets

Loader

Applet

shareable interface

SIM Toolkit apps

• The SAT applications:

– can initiate actions (pro-active commands),

– can be externally triggered with events,

– can get the characteristics of the mobile (a mean for the ME to tell

the card what is able to do)

– Four new APDU commands are defined to manage SIM Toolkit

features

• Fetch,

• Terminal Response

• Envelope

• Terminal Profile

Pro active mode

• Only if the terminal supports this mode,

– Get the terminal profile during initialization,

– 20 bytes are sent back by the terminal

• each bit codes facilities (TRUE= supported)

• e.g. second byte, bit 8 Display Text is supported

• Command with the ME display :

– Display Text, Set up menu, Send DTMF, Play Tone, Language
Notification,…

• Commands with the keyboard/display

– Get Inkey, get Input,…

• With the Radio equipment of the terminal

– Set up, Send SMS, Send Sup. Services, Provide Local information,…

– Launch browser, Perform Card APDU

Pro Active Commands

To send a command

• Wait a poll request by the ME : command Status,
– each second the ME polls the card (can be modified with a

command),

• Wait for a regular command (e.g : Select File,..)
– Answer with a 91xx status word,

– The handset sends the SIM a FETCH command with an expended
data length of xx size,

– The handset parse it and execute the proactive command,

– Send a response to the Card : Terminal Response which depends
on the pro active command.

Pro active command

Select (DF GSM)

SW1=91, SW2=xx

FETCH

[Display text], SW1=90, SW2=00

Terminal Response

SW1=90, SW2=00, or command request

Pro active command

Status

SW1=90, SW2=00

Status

SW1=91, SW2=xx

Fetch

…

[Display text], SW1=90, SW2=00

Terminal Response

SW1=90, SW2=00, or command request

Structure of proactive command

• SIM gives the handset a sequence of Tag length Value
(TLV),
– The tag is always 1 byte and the length 1 byte (00..7F) or 2 bytes

(81 + 80..FF),

– Tags are well defined and can depend on the context,

• Tag ME to SIM : 0xD1, 0xD2, 0xD3 & 0xD4

• SIM to ME : 0xD0

– A TLV can include other TLV and becomes a compound TLV,

– Example :

• Play music on our phone,

• Expect a command or a status,

• Send a request 91 23,

• Wait for a Fetch,

• Send the correct PLAY TONE command…

Structure of proactive command

• SIM gives the handset a sequence of Tag length Value
(TLV),
– The tag is always 1 byte and the length 1 byte (00..7F) or 2 bytes

(81 + 80..FF),

– Tags are well defined and can depend on the context,

– A TLV can include other TLV and becomes a compound TLV,

– Example :

• Play music on our phone,

• Expect a command or a status,

• Send a request 91 23,

• Wait for a Fetch,

• Send the correct PLAY TONE command…

Start with ?

Play Tone

• The SIM toolkit

application can request the

application to play a short

tone

– Busy, CallWaiting,

Congestion, Dial, Dropped,

Error, GeneralBeep,

NegativeBeep,

PositiveBeep, RadioAck,

Ringing

1 0xD0 Tag Proactive command

2 0x15 Length 21 bytes

3 0x01 Tag : command detail

4 0x03 Length

5 0x01 Identifier

6 0x20 Play Tone

7 0x00 Qualifier

8 0x02 Device identity

9 0x02 Length

10 0x81 Source (uicc)

11 0x82 Destination (me)

12 0x05 Alpha identifier

13 0x03 Length

14 0x42 Ascii value ‘S’

15 0x4F Ascii value ‘O’

16 0x4F Ascii value ‘O’

17 0x0E Tone Value

18 0x01 Length

19 0x01 Play the dial tone

20 0x04 Duration

21 0x02 Length

22 0x01 Unit in second

23 0x05 Number of unit

ME response

• After the handset blast the

dial tone (#1) for 5

seconds, it sends a status

response,

– Terminal response APDU,

0x80 0x14 0x00 0x00 0x00

0x0C data

– The byte 12 is equivalent to

a 90 00 from the ME

1 0x01 Command detail

2 0x03 Length

3 0x01 Identifier

4 0x20 Play Tone

5 0x00 Qualifier

6 0x02 Device identity

7 0x02 Length

8 0x82 Source (me)

9 0x81 Destination (uicc)

10 0x03 Result

11 0x01 Length

12 0x00 Success

Event command

• The SIM can register for events
– Can use the pro active command Setup Event list,

– SMS-PP, Menu Selection, MT Call, Location Status, Browser
Termination,…

– The handset uses the Envelope APDU to send a description of the
event to the card,

– Structured with TLV as proactive commands,

– Events can be routed by the handset from a service provider server.

Java Card SIM Applet

• The difference between Java Card Applet and Toolkit the latter does
not handle APDU directly

• The API provides two packages:

– The sim.access package, which allows applets to access the GSM files

– The sim.toolkit provides methods to register to events, generate pro active
commands,

– The interface ToolkitConstants, encapsulates constants related to the
Toolkit applets.

– The ToolkitInterface must be implemented by a toolkit applet so that it can

be triggered by the toolkit handler according to the registration

information.

import sim.toolkit.*;

import sim.access.*;

public class MyToolkitApplet extends Applet implements

ToolkitInterface, ToolkitConstants;

Toolkit
Applet 1 Applet 2

Toolkit
Applet 3 Applet n

Proactive
Command handler

Command handler

GSM Framework Files

Toolkit Framework

Applet
install/uninstall

Security

Applet
triggering

Applet security
manager

Activation

Proactive
commands

P/C
responses

Install
Uninstall

APDU

JCRE

APDU
e.g.
Envelopes

Proactive polling, 91XX, Fetch,
Proactive commands,
Terminal Response

File
access

File access

…

sim.access package

sim.toolkit package

sim.toolkit Classes

EditHandler This class is the basic class for the construction of a list of simple
TLV elements

EnvelopeHandler The EnvelopeHandler class contains basic methods to handle the
Envelope data field.

EnvelopeResponseHandler The EnvelopeResponseHandler class contains basic methods to
handle the Envelope response data field.

ProactiveHandler This class is the basic class for the definition of Proactive commands

ProactiveResponseHandler The ProactiveResponseHandler class contains basic methods to
handle the Terminal Response data field.

ViewHandler The ViewHandler class offers basic services and contains basic
methods to handle TLV list.

ToolkitRegistry The Registry class offers basic services and methods to allow
any Toolkit applet to register its configuration during the
install phase.

MEProfile The MEProfile class contains methods to question the handset
profile.

sim.toolkit Exceptions

ToolkitException This exception extends the Throwable class and allows
the classes of this package to throw specific exceptions in
case of problems.

Toolkit registry
public class MyToolkitApplet extends Applet implements

ToolkitInterface,ToolkitConstants {

public MyToolkitApplet() {

 reg = ToolkitRegistry.getEntry();

 menuId = reg.initMenuEntry(menuEntry, (short)0,

 (short)menuEntry.length, PRO_CMD_SET_UP_CALL, false, 0, 0);

 reg.disableMenuEntry(menuId);

 reg.setEvent(EVENT_FORMATTED_SMS_PP_ENV);

}

public static void install(byte bArray[], short bOffset, byte

bLength) throws ISOException {

 MyToolkitApplet applet = new MyToolkitApplet();

 applet.register();

}

Toolkit registry
public class MyToolkitApplet extends Applet implements

ToolkitInterface,ToolkitConstants {

public MyToolkitApplet() {

 reg = ToolkitRegistry.getEntry();

 menuId = reg.initMenuEntry(menuEntry, (short)0,

 (short)menuEntry.length, PRO_CMD_SET_UP_CALL, false, 0, 0);

 reg.disableMenuEntry(menuId);

 reg.setEvent(EVENT_FORMATTED_SMS_PP_ENV);

}

public static void install(byte bArray[], short bOffset, byte

bLength) throws ISOException {

 MyToolkitApplet applet = new MyToolkitApplet();

 applet.register();

}

The applet can be
triggered by both selection

mechanisms.

Toolkit registry
public class MyToolkitApplet extends Applet implements

ToolkitInterface,ToolkitConstants {

public MyToolkitApplet() {

 reg = ToolkitRegistry.getEntry();

 menuId = reg.initMenuEntry(menuEntry, (short)0,

 (short)menuEntry.length, PRO_CMD_SET_UP_CALL, false, 0, 0);

 reg.disableMenuEntry(menuId);

 reg.setEvent(EVENT_FORMATTED_SMS_PP_ENV);

}

public static void install(byte bArray[], short bOffset, byte

bLength) throws ISOException {

 MyToolkitApplet applet = new MyToolkitApplet();

 applet.register();

}

Register for some events

How to handle pro active
commands ?

• The SIM application toolkit protocol (i.e. 91xx, Fetch, Terminal

Response) is handled by the GSM applet and the Toolkit Handler, the

toolkit applet shall not handle those events.

• The SIM Toolkit Framework shall provide a reference of the
sim.toolkit.ProactiveHandler to the toolkit applet so that

when the toolkit applet is triggered it can :

– initialise the current proactive command with the init() method ;

– append several Simple TLV to the current proactive command with the

appendTLV() methods ;

– ask the SIM Toolkit Framework to send this proactive command to the

ME and wait for the reply, with the send() method.

Example

private static final byte MY_COMMAND = PRO_CMD_DISPLAY_TEXT;

private static final byte MY_TAG = TAG_TEXT_STRING;

private byte[] text = new byte[12];

text[0] = (byte)‘L';

text[1] = (byte)‘I';

text[2] = (byte)‘M';

ProactiveHandler proHdlr;

proHdlr = ProactiveHandler.getTheHandler();

proHdlr.init(MY_COMMAND, (byte)0, DEV_ID_ME);

proHdlr.appendTLV((byte)(MY_TAG | TAG_SET_CR), DCS_8_BIT_DATA,

text, (short)0, (short)3);

result = proHdlr.send();

Proactive Response Handler

private byte[] data;

data = new byte[32]; // build a buffer

ProactiveResponseHandler ProRespHdlr;

ProRespHdlr = ProactiveResponseHandler.getTheHandler();

byte result = ProRespHdlr.getGeneralResult();

respHdlr.findTLV(TAG_DEVICE_IDENTITIES, 1);

byte sourceDev = ProRespHdlr.getValueByte((short)0);

byte destinDev = ProRespHdlr.getValueByte((short)1);

if (ProRespHdlr.findTLV(TAG_TEXT_STRING, (byte)1) ==

TLV_FOUND_CR_SET) {

 if ((short len = ProRespHdlr.getValueLength()) > 1) {

 ProRespHdlr.copyValue((short)1, data, (short)0,

 (short)(len - 1));

 }

 }

Envelope Handler

private static final byte MY_TAG = (byte)0x54;

private byte[] data;

data = new byte[32];

void processToolkit (byte event) throws ToolkitException {

 // get the EnvelopeHandler system instance

 EnvelopeHandler theEnv = EnvelopeHandler.getTheHandler();

 // look for MY_TAG TLV

 if (theEnv.findTLV(MY_TAG, (byte)1) != TLV_NOT_FOUND) {

 // check first element byte

 if (theEnv.getValueByte((short)0) == (byte)1) {

 // copy element part into data buffer

 theEnv.copyValue((short)1, data,(short)0,

 (short)(theEnv.getValueLength() - 1));

 }

 }

}

The complete example: Hello World

import javacard.framework.*;

import sim.toolkit.*;

public class HelloWorld extends Applet implements

ToolkitConstants, ToolkitInterface {

private final byte COMMAND_QUALIFIER = (byte)0x80;

private final byte[] MENU_ENTRY =

{‘C',‘r',‘y',‘p',‘t','i',‘s'};

private final byte[] HELLO_WORLD =

{'H','e','l','l','o',' ','w','o','r','l','d',' ','!'};

private ToolkitRegistry registry;

public HelloWorld() {

 registry = ToolkitRegistry.getEntry();

 registry.initMenuEntry(menuEntry, (short)0,(short)

MENU_ENTRY.length, PRO_CMD_DISPLAY_TEXT, false, 0, 0);

}

public static void install(byte bArray[], short bOffset,byte

bLength) throws ISOException {

 HelloWorld applet = new HelloWorld();

 applet.register();

}

public void processToolkit (byte event) throws

ToolkitException {

 ProactiveHandler proHdlr = ProactiveHandler.getTheHandler();

 if (event == EVENT_MENU_SELECTION) {

 proHdlr.init((byte) PRO_CMD_DISPLAY_TEXT,(byte)

COMMAND_QUALIFIER, DEV_ID_ME);

 proHdlr.appendTLV((byte)(TAG_TEXT_STRING),HELLO_WORLD,(shor

t)0, (short) HELLO_WORLD.length);

 proHdlr.send();

 }

}

sim.access Interfaces & Classe

SIMView SIMView is the interface between the GSM
application and any SIM Toolkit applet.

SIMSystem The Class SIMSystem provides a way to get access
to the GSM file system.

In any case, the SIM Toolkit applet will only access
to methods of the SIMView interface. No instance
of this class is needed.

Example
import javacard.framework.*; import sim.toolkit.*;

public class MyApplet extends Applet implements ToolkitInterface {

private SIMView simView; private byte[] buffer;

private ToolkitRegistry registry;

public MyApplet () {

 registry = ToolkitRegistry.getEntry();

 simView = SIMSystem.getTheSIMView();

 buffer = new byte[32];

}

public static void install(APDU apdu) throws ISOException {

 MyApplet applet = new MyApplet();

 applet.register();

}

public void getADN(short adnNumber) {

 simView.select(SIMView.FID_EF_TELECOM);

 simView.select(SIMView.FID_EF_ADN);

 simView.readRecord((short)adnNumber, SIMView.MODE_ABSOLUTE,
(short)0, buffer, (short)0, (short)32);

 }

}

Any question ?

