
Java Virtual Machine

Advanced features

Carte à puce et Java Card
2010-2011

Jean-Louis Lanet

Jean-louis.lanet@unilim.fr

Agenda

• Atomicity

• Sharing mechanism

• Garbage collection

• Logical channel

• Byte code verification

• RMI

Atomicity and transactions

• Smart cards are emerging as a preferred device in
such applications as

– storing personal confidential data and

– providing authentication services in mobile and
distributed environment

• With smart card, there is a risk of failure at any
time during applet execution.

– a computational error,

– a user may accidentally remove card from the reader,
cutting off the power supply to the card CPU.

Atomic Operations:

• JCRE provides a robust mechanism to ensure
atomic operations:

– The java card platform guarantees that any update to a
single field in a persistent object or a single class field
is atomic.

– The java card platform supports a transactional model,
in which an applet can group a set of updates into a
transaction.

Atomicity (I)

• Atomicity means that any update to a single persistent

object field (including an array element) or to a class field

is guaranteed to either complete successfully or else be

restored to its original value if an error occurs during the

update.

• The concept of atomicity apply only to the contents of

persistent storage.

Atomicity (II)

• Atomicity defines how the JCRE handles a single data
element in the case of an error (power loss) occurs during
an update to that element

• JCRE atomicity feature does not apply to transient arrays.

• After an error occurs, the transient array is set to default
values (zero, false or null).

Block data updates in an array

• The javacard.framework.Util class provides
methods for block data updates (like in Java) :
1. arrayCopy

2. arrayCopyNonAtomic

3. arrayFillNonAtomic

Util.arrayCopy method

• Syntax:
– public static short arrayCopy(byte[] src, short

srcOff, byte[] dest, short desOff, short length)

• Guarantees that either all bytes are correctly copied or the
destination array is restored to its previous byte values.

• Note that if the destination array is transient, the atomic
feature does not hold.

• arrayCopy requires extra EEPROM writes to support
atomicity (slow)

Util.arrayCopyNonAtomic

• Syntax:
– public static short arrayCopyNonAtomic(byte[]
src, short srcOff, byte[] dest, short desOff,
short length)

• Does not use transaction facility.

Util.arrayFillNonAtomic

• Syntax:

– public static short arrayFillNonAtomic(byte[]

bArray, short bOff, short bLen, byte bValue)

• Non-atomically fills the elements of a byte array with

specified value.

Transactions

• Atomicity guarantees atomic modifications of a single data
element

• However, an applet may need to atomically update several
different fields in several different objects

• For example: credit or debit transaction

– Increment the transaction number

– Update the purse balance

– Write a transaction log

Transactions

• Java card technology supports a similar transactional
model, with commit and rollback

• It guarantees that complex operations can be accomplished
atomically; either they successfully complete or their
partial results are not put into effect.

 Commit Transactions

 // begin a transaction

JCSystem.beginTransaction();

 //all modifications in a set of updates of

 //persistent data are temporary until

 //the transaction is committed

 ……………

 //commit a transactions

JCSystem.commitTransaction();

Abort Transaction

• Transactions can be aborted either by an applet or by the
JCRE (by calling JCSystem.abortTransaction
method)

• Aborting a transaction causes the JCRE to throw away any
changes made during the transaction and restore
conditionally update fields or array elements to their
previous value

• A transaction must be in progress when the
abortTransaction method is invoked; otherwise, the
JCRE throws a TransactionException.

Abort Transaction

• If power is lost or an error occurs during a transaction, the

JCRE invokes a JRCE internal rollback facility the next

time the card is powered on to restore the data involved in

the transaction to their pre-transaction value

Nested Transaction

• Transaction in the Java Card platform cannot be nested

(except JC3.0 co.-ed).

• There can be only one transaction in progress at a time.

(due to the limited computing resources of smart card.)

• If JCSystem.beginTransaction is called while a

transaction is already in progress, JCRE throws a

TransactionException

Commit capacity (I)

• To support the rollback of uncommitted transactions, the
JCRE maintains a commit buffer where the original
contents of the updated fields are stored until the
transaction is committed.

• The size of the commit buffer varies, depending on the
available card memory.

• Due to the size of commit buffer, putting too many things
in a transaction may not be possible

Commit capacity (II)

• Before attempting a transaction, an applet can check the
size of the available commit buffer against the size of the
data requiring an atomic update

• JCSystem provides two methods

– JCSystem.getMaxCommitCapacity() return the total
number of bytes in the commit buffer.

– JCSystem.getUnusedCommitCapacity() returns the
number of unused bytes left in the commit buffer.

Commit capacity (III)

• In addition to storing the contents of fields modified during

a transaction, the commit buffer holds additional bytes of

overhead data (location of the fields).

• The amount of overhead data depends on the number of

fields being modified

• If the commit capacity is exceeded during a transaction,

the JCRE throws a TransactionException. Even so,

the transactions is still in progress unless it is explicitly

aborted by the applet or by the JCRE.

TransactionException

• JCRE throws a TransactionException if

– nested transaction

– commit buffer overflow

• TransactionException provides a reason code to
indicate the cause of the exception:

– IN_PROGRESS: beginTransaction was called while a transaction was
already in progress

– NOT_IN_PROGRESS: commitTransaction or abortTransaction

– BUFFER_FULL:

– INTERNAL_FAILURE

Local variables and Transient
Objects during a transaction

• Update to transient objects and local variables are never
undone regardless of whether or not they were inside a
transaction

• See the example 1 in next page

– key_buffer: transient object

– a_local: local variable

• See the example 2

– Ref_1: reference to a transient object

– Ref_2: reference to a persistent object

EXAMPLE1
Byte[] key_buffer = JCSystem.makeTransientByteArray

(KEY_LENGTH, JCSystem.CLEAR_ON_RESET);

JCSystem.beginTransaction();

Util.arrayCopy (src, src_off, key_buffer, 0,

KEY_LENGTH);

Util.arrayCopyNonAtomic (src, src_off, key_buffer, 0,

KEY_LENGTH);

For(byte i =0; i<KEY_LENGTH; i++)

 key_buffer[i]=0;

Byte a_local = 1;

JCSystem.abortTransaction();

A_local = ?

EXAMPLE2

JCSystem.beginTransaction();

// ref_1 refers to a transient object

ref_1 = JCSystem.makeTransientObjectArray(LENGTH,

JCSystem.CLEAR_ON_DESELECT);

// ref_2 refers to a persistent object

ref_2 = new SomeClass();

if(!condition)

 JCSystem.abortTransaction();

else

 JCSystem.commitTransaction();

return ref_2; // return null if abortTransaction

Applet isolation

• The firewall provides a strong isolation mechanism
between contexts

• Shareable interfaces are a feature in the API to enable
applet interaction through a Shareable Interface Object
(SIO),

• From the owning context, the SIO is a normal object
whose fields and methods can be accessed,

• To any other context, only the methods defined in the
shareable interface are accessible,

• All other fields and methods are protected by the firewall.

Sharing mechanism

• Methods of an object that implements a shareable interface
(SI) can be invoked through the firewall

• Once shared an object (SIO) can’t be un-shared

• However the caller needs to obtain a reference to this
object

– Applet A agree to share with applet B

– Applet A declares to implement a shareable interface and
implements the services

– Applet B access the services by obtaining an object reference and
invoking the service methods.

Server Applet A

• A defines a Shareable Interface (SI) that extends the

interface javacard.framework.Shareable

• Defines a class C that implements SI with the methods

defined in SI,

• Defines other methods protected by the firewall

• A creates an object instance of class C

Shareable Interfaces

Applet A

Server

Applet B

Client JCRE

JCSystem.getAppletSIO (AIDA,parameter)
Applet.getSIO (AIDB,parameter)

Reference on X or null
Reference on O or null

O . M1()

result

Under A’s context!

null
SecurityException

Shareable Interfaces

Applet A

Server

Applet B

Client JCRE

JCSystem.getAppletSIO (AIDA,parameter)
Applet.getSIO (AIDB,parameter)

Reference on O or null
Reference on O or null

O . M1()

result

Under A’s context!

Y . M2()

O1. M2() ANY OTHER OBJECT OF A CONTEXT!

Example server side

The server must create a shareable interface that extends
javacard.framework.Shareable

package myPackage

import javacard.framework.Shareable

public interface loyaltyInterface extends Shareable {

 public void grantPoint (short amount)

}

• The server implements the interface

package myPackage

public class loyaltyApp extends Applet implements loyaltyInterface {

 private short (miles);

 public void grantPoint (short amount) {

 miles= (short) (miles+amount) ;

 }

 }

Example client side

• The client needs to know the server AID,

 import myPackage;
 public class clientApp extends Applet {

 // request SIO from the server

 loyaltyInterface sio = (loyaltyInterface)

JCSystem.getAppletShareableInterfaceObject (AIDServer,

(byte) 0)

 if (sio ==null){ISOException.throwIt();}

 sio.grantPoint(theAmount);

• The JCRE looks up the server applet and invokes the server
getShareableInterfaceObject with the client AID as parameter !!!

Example server side revisited

The server must create a shareable interface that extends
javacard.framework.Shareable

package myPackage

import interface loyaltyInterface extends Shareable {... }

• The server implements the interface
package myPackage

public class loyaltyApp implements loyaltyInterface{ private
short (miles);

 public void grantPoint (short amount) {

 miles= (short) (miles+amount) ;

 }

 public Shareable getShareableInterfaceObject
(ClientAID, byte param){

 if (clientAID.equals(myFriend)){

 return ((Shareable)this)}

 else {return null}

 }

Example client side revisited

• The client needs to know the server AID,

 import myPackage;
 public class clientApp extends Applet {

 // request SIO from the server

 loyaltyInterface sio = (loyaltyInterface)

JCSystem.getAppletShareableInterfaceObject

(AIDServer, (byte) 0)

 if (sio == null){ISOException.throwIt();}

 sio.grantPoint(theAmount);

Agenda

• Sharing mechanism

• Garbage collection

• Logical channel

• Byte code verification

• RMI

Java Card applet life cycle

Off-card

On-card

Applet

sources

Applet

class files

Applet

cap file

Applet

Activated

Applet

Loaded

Applet

Selected

Applet

Processing

JCVM

load

delete

delete

Install / Register

Select 

 Deselect

Process 

 return

Compilation Conversion

AID Instance

Applet Installation

• Applet installer is an optional part of the JCRE (if no post issuance)

• If the installer is included, then the deletion manager is mandatory,

• To the terminal the installer appears to be an applet (AID, select,…)

but doesn’t need to be installed as an applet,

• Installer applet privileges are the same as the RTE,

– Read and write directly in memory,

– Access object owned by other applets,

– Invoke non-entry point methods of the RTE,

– Able to invoke the install method of a new applet.

Deletion manager

• To the terminal the DM appears to be an applet,

• Same as the installer it doesn’t need to be implemented as an applet,

• Same privileges as the installer,

• An applet instance deletion may be unsuccessful :

– An object owned by the applet instance is referenced from an object
owned by another applet instance,

– An object owned by the applet instance is referenced from a static field,

– An applet instance belonging to the context is active on the card

• Applet instance deletion must be atomic,

• The resource used by the deleted instance may be recovered for future
use.

Applet deletion

• Request deletion sent in the form of an APDU,

• To be eligible for deletion, no object on the card should have
dependencies on the applet to be deleted,

• Warning static objects belong to the package not the applet…

• Call the uninstall () of the javacard.framework.AppletEvent
interface

– Must implement AppletEvent interface

– Before applet deletion,

– Allow to release resources such as static objects and shared keys,

– Backup data into another applet space.

– Notify all other dependant applets,

Guidelines

• Calling uninstall method does not guarantee that the applet
will be deleted,

– Other applet are still dependent on this applet,

– A tear occurs before the deletion element are processed

• Implement the uninstall method defensively:

– The applet continues to function consistently and securely if
deletion fails,

– Applet can withstand a possible tear during the execution,

– The uninstall method can be called again if deletion is reattempted.

Requesting the uninstall

private class test extends Applet implements AppletEvent{

 private boolean disableApp = false;

 ...

 public void uninstall () {

 if (!disableApp){

 // to protect against tear

 JCSystem.beginTransaction ();

 disableApp = true; // marked uninstalled

 ... Remove dependency

 JCSystem.commitTransaction();

 }

 }

 public boolean select (){

 if (disableApp) return false ;

 return true;

 }

Object deletion

• Allows to recover unreachable objects,

• Such an object can neither be pointed to by a static field nor by an
object field,

• Objects in persistent memory and potentially volatile memory,

• Needs eeprom write operations, slow and security marker.

• GC “on request”, optional,

• Initiated by the applet but activated by JCRE at the return of process
command

• The API in javacard.framework.JCSystem contains two
static methods:

– isObjectDeletionSupported,inform applet if object deletion is
supported by the platform,

– requestObjectDeletion (), invoke the mechanism.

Guidelines

• When throwing exception avoid creating exception objects
and rely on the GC to perform clean up,

• Do not create objects in method or block scope, the Object
deletion mechanism should not be considered as a GC !

• Use the deletion mechanism when a large object such as a
certificate or key must be replaced by a new one

• Use the object deletion mechanism when object resizing is
required.

Requesting the deletion

Void updateBuffer (byte requiredSize)

try {

 if (buffer != null && buffer.length == requiredSize)

 {return}

 JCSystem.beginTransaction ();

 byte[] oldBuffer = buffer;

 if (oldBuffer != null)

 JCSystem.requestObejctDeletion();

 JCSystem.commitTransaction ()

 } catch (Exception e) {

 JCSystem.abortTransaction(); }

}

Agenda

• Sharing mechanism

• Garbage collection

• Logical channel

• Byte code verification

• RMI

Logical Channels

• In Java Card the session-specific security data of an application is
available only when selected,

• When deselected, part of RAM is cleared (keep in mind the transient
object) and session keys for example are lost,

• In a multi application card, need to switch from an application to
another,…

• Problems :

– Java Card is currently mono threaded

– Not possible to perform a new action while the previous one is not
completed

– An application shall be selected to process an APDU command

Handling channel information on
APDU commands

A terminal can start up to 20 sessions (JC 2.2.2, 4 only with JC 2.2.1)

– Each session uses a logical channel,

– Session are associated with IO interface, one for contact and one for
contact less communication (ISO 14443),

– An applet instance can receive APDU from both IO interface, so an applet
can be connected up to 40 logical channels,

– If two APDU arrives concurrently, the contact less session has the higher
priority,

– Power loss on the contacted interface implies a card reset even a contact
less session is in progress.

Channel 0 is the default channel for both IO interface,

– Opened at card reset and cannot be closed,

– All other channels are closed at reset.

Applet selection

Multiplex command into the APDU channel, if no sharing.

If sharing is needed, use multi selectable applets…

Only specific APDU commands can contain encoded logical information

An applet can be selected on one logical channel, but also through several
channels (contact less or not),

Use of the CLA byte,

– If CLA = “0000 00cc” then the two least bits (cc) are used for the logical channels
which range from 0 to 3, i.e. :0x0X and 0x1X

– If CLA = “0100 cccc” then the four least bits (cccc) are used for the logical
channels which range from 4 to 19, i.e. 0x4Y, 0x5Y, 0x6Y and 0x7Y.

– Card compliant with 2.2.2 spec must also support proprietary class value
0x8X, 0x9X, 0xAx and 0xBX (channel 0 to 3) and 0xCY, 0xDY, 0xEY
and 0xFY (Channel 4 to 19).

Default applet

Currently selected Applet : the applet which is responding to an APDU

Normally an applet can only be selected if a command SELECT FILE is
successfully treated,

Some applet need a default applet to be selected after reset, specially for
opening a new logical channel,

Logical channels may share the same instance applet as the default applet
instance.

Card reset

After a reset the JCRE performs initialization and checks the
presence of a default applet,

– It provides the channel 0 to this applet,

– Select this applet and execute the select() method of this applet

– If an exception is thrown or returns false, the JCRE must indicate
that no active applet are available on channel 0,

– The JCRE must send an ATR.

Applet selection

Two possibilities

– Using a command APDU MANAGE CHANNEL OPEN

• Open a channel from an already opened channel and selection of a default
applet on that channel,

• If P2 equals 0, let the JRTE chose the channel in other case P2 must be in the
range 0..19.

• Call the select method or MultiSelectable.select if required,

• In case of an exception or a return false, the channel is closed (status code
0x6999),

– With a command APDU SELECT FILE

• Select an applet on a new logical channel

In both cases, the CLA byte must specify either the channel to be open or
the open channel

– INS=0x70 for the command APDU MANAGE CHANNEL OPEN

– INS=0xA4 for the command APDU SELECT FILE

Deselecting an applet

While receiving a command APDU MANAGE CHANNEL CLOSE

(INS=0x70)

While selecting another applet using a SELECT FILE,

Or selecting the same applet on another channel specified in the CLA

byte,

The RTE call the MultiSelectable.deselect

(appInstStillActive) method, where the

appInstStillActive parameter is set to true if the same applet

instance is still active on another logical channel,

Multi selectable applet

Multi-selectable applets shall implement the interface
javacard.framework.MultiSelectable

In such a case, the following methods are invoked during
selection and de-selection respectively,

– MultiSelectable.select ()

– MultiSelectable.deselect()

When a multi-selected applet instance is deselected from of
the logical channels the method
MultiSelectable.deselect is called

When this instance is the last active, the
Applet.deselect is called

Agenda

• Sharing mechanism

• Garbage collection

• Logical channel

• Byte code verification

• Software based attacks

JVM offensive vs. defensive

• Sun defines only a byte code format and a verification
algorithm,

• It is possible to code a defensive virtual machine,

• Until now a few cards implement BC verification or
partially

• If post issuance is allowed without any cryptographic
means to authenticate the sender, it becomes unavoidable
to implement it

• Often some of the test are implemented in a hybrid way

Exemple

Consider the following code fragment:

private int monIncrement ;

public int increment(int base) {
 int resultat ;
 resultat = base + monIncrement ;
 return resultat + 1 ;
}

Execution of byte code

• aload_0 execution

– Checks variable 0 exist

– It contains a ref

– Stack is not full

– Push the value of variable 0 on top

of stack

aload_0
getfield 01
iload_1
iadd
istore_2
iload_2
iconst_1
iadd
ireturn

Code
Variables
Locales

this

3

??

0

1

2

Pile
d’Exécution

this

Execution of byte code

• getfield 01execution

– Checks the stack is not empty

– The ToS contains a ref, pop it

– The ref is not NULL and is well typed

– Cheks the required field

– Push the value of the field on top of

stack

aload_0
getfield 01
iload_1
iadd
istore_2
iload_2
iconst_1
iadd
ireturn

Code
Variables
Locales

this

3

??

0

1

2

Pile
d’Exécution

37

Execution of byte code

• iload_1 execution
– Checks variable 1 exists

– Int contains an integer

– Stack is not full

– Push the value of variable 0 on ToS

aload_0
getfield 01
iload_1
iadd
istore_2
iload_2
iconst_1
iadd
ireturn

Code
Variables
Locales

this

3

??

0

1

2

Pile
d’Exécution

37

3

Such an execution is costly

• Java is a typed language
– Instruction are typed

– Execution stack must be typed

– Local variables must be typed

• Java guarantee the correct frame allocation
– Local variables must have been allocated

– Stack under and overflow must be check

• Such verifications have been a huge problem for other
stack based languages
– Java introduced type verification

Useful the verification ?

• Some properties are statically verifiable.
– No need to check them dynamically

– Check once during upload

• Verification can be very costly
– Unfortunately Sun designed the byte code in order to simplify the

verification,

– Rules on byte code are clearly stated

How to ?

• Different kind of properties,
– The simplest properties are just tests (size of a component etc.),

– Type verification is more complex and need a specific mechanism

• Verification based on Abstract Interpretation
– Abstract values replace real value

– Fix point algorithm replace loop evaluation

Static constraints

• Major constraints are:

– Branch only to method code;

– Branch only to an instruction not operand

– An instruction cannot access a variable for which the index is
higher than the declared one

– All the reference to the constant pool must be well typed

– End of method must finish with a return

– Exception handler are bounded by instruction and their end is after
the start.

Structural constraints

• Major constraints are:
– All instruction are executed with the expected arguments on top of

stack and in the variables

– A local variable is not accessed before being assigned a value

– Size of stack cannot exceed max_stack

– Stack underflow is not allwed

– All method invocation are well typed

– Fields and private methods are correctly accessed

– All assignments are type-verified

• Plus several minor verifications…

Method verification

• Information are include in the CAP file
– Signature (parameter type and return parameter)

– Size max of the stack

– Number of local variables

• Other MUST be inferred during verification
– Local variable types

– Stack type

Abstract execution example

• aload_0 execution

– Variable 0 exists

– It contains a ref

– Stack is not full

– Push the TYPE of the variable on ToS

aload_0
getfield 01
iload_1
iadd
istore_2
iload_2
iconst_1
iadd
ireturn

Code
Variables
Locales

ref: C

int

unknown

0

1

2

Pile
d’Exécution

ref: C

Abstract execution example

• getfield 01execution

– The stack is not empty

– ToS contains a ref, pop it

– Checks the type of the ref

– Chek the required field

– Push the TYPE of the field on ToS

aload_0
getfield 01
iload_1
iadd
istore_2
iload_2
iconst_1
iadd
ireturn

Code
Variables
Locales

ref: C

int

unknown

0

1

2

Pile
d’Exécution

int

Abstract execution example

• iload_1 execution

– Check variable 1 exists

– Its TYPE is an int

– Stack is not full

– Push an INT on ToS

aload_0
getfield 01
iload_1
iadd
istore_2
iload_2
iconst_1
iadd
ireturn

Code
Variables
Locales

ref: C

int

unknown

0

1

2

Pile
d’Exécution

int

int

Type compatibility

ifeq

Program Stack Map

sconst_0 x x x
x x x s

Type compatibility

ifeq

Program Stack Map

sconst_0 x x x
x x x s

ifeq

sconst_0
x x x s

iaload
[i s x x

goto xx

xx

i x x i0

i x x i0

ifeq

TOP

S i0

Compatible with

About type inference and
verification

• The method is simple
– But the example was trivial,

– Branching add complexity

– Exception handler add also complexity

– Subroutines cannot be treated by this scheme (the function is not
monotonic)

• Hard to test (really !)
– Building test cases is very complex

– One way is to prove the correctness of the code

• Speed up the interpreter execution time
– Less verification during execution

Execution without verification

• aload_0 execution

– Push the value of variable 0 on ToS

aload_0
getfield 01
iload_1
iadd
istore_2
iload_2
iconst_1
iadd
ireturn

Code
Variables
Locales

this

3

??

0

1

2

Pile
d’Exécution

this

Execution without verification

• getfield 01 execution

– Checks ToS is not NULL

– Pop the ref on ToS

– Push the epected field on ToS

aload_0
getfield 01
iload_1
iadd
istore_2
iload_2
iconst_1
iadd
ireturn

Code
Variables
Locales

this

3

??

0

1

2

Pile
d’Exécution

37

Execution without verification

• iload_1 execution

– Push the value of variable 1 on ToS

aload_0
getfield 01
iload_1
iadd
istore_2
iload_2
iconst_1
iadd
ireturn

Code
Variables
Locales

this

3

??

0

1

2

Pile
d’Exécution

37

3

Conclusion on byte code
verification

• Byte code verification is a key mechanism of Java

– The interpreter is designed to run with BC verification

– BC verification is very efficient

• Most of the cases linear complexity

• Worst case quadratic

– Then interpreter is simple and efficient

• JIT compiler is also simplified

• BC verification is a key element to Java success

– It allows to download safely executable code

– Applet isolation.

Agenda

• Sharing mechanism

• Garbage collection

• Logical channel

• Byte code verification

• RMI

Java Card-based applications

BO 40 xx xx 05 61 62 63 00

90 00

BO 20 xx xx 01 01 00

90 00

BO 30 xx xx 00 01

09 90 00
Processes

the request

Processes

the request

Processes

the request

Exchanges are done through APDU messages

defined by the legacy smart card protocol

Client

Application

Card

Application

cardPurse.checkPassword(“abc”)

void / exception

cardPurse.debit(1)

void / exception

cardPurse.getBalance()

9
Processes

the request

Processes

the request

Processes

the request

Exchanges are done through method invocations

supported by the object abstraction

Client

Application

Server

Application

Client/server application

RMI paradigm

Client Object

RMI paradigm

Client Object

Client Object Stub Skeleton

APDU

Methods and arguments

Return and exception

RMI in the Java platform

• Characteristics
– Client-server application protocol : defines a format for

method invocation

– Uses Java platform interfaces as contracts

– Supports mobile code

• Advantages
– Communicates through invocation

– No message encoding and decoding: independent of low-level
protocol

– Reduces communication errors: reports problems with
RemoteException

RMI subset

• Remote object features
– Designed with Remote and RemoteException

– One object reference exported

– Generated skeleton is a Java Card API-based applet
instance

• Remote method features
– Parameters and return types can be primitive types

(boolean, byte, short) and single-dimensional arrays.

– Java Card API exceptions are reported like in RMI

Java Card Application

Interface

Definition

Five-step development

Define the remote interface to your card service

Java Card Application

Implementation

of the service

Interface

Definition

Five-step development

Implement your card service

Java Card Application

Implementation

of the service

Interface

Definition

jcrmic

Client

Stub

Card

Skel

Five-step development

Run “jcrmic” on the implementation classes

Java Card Application

Implementation

of the service
Implementation

of the service

Card Applet

Interface

Definition

jcrmic

Client

Stub

Card

Skel

Interface

Definition

Five-step development

Install your service with the Card Skeleton in the
card

Java Card Application

Implementation

of the service

Implementation

of the client

Terminal application

Implementation

of the service

Card Applet

Interface

Definition

jcrmic

Client

Stub

Card

Skel

Interface

Definition

Interface

Definition

Five-step development

Use the Client Proxy to invoke card service’s
methods from your client application

Off-card On-card

Java Card 2.2 sequence diagram
Client App Card App JCRE

Command APDU

Prepares the
command

Response APDU Decodes the
response

process(apdu)

Decodes the command

Processes the request

Prepares the response

Java Card 2.2 RMI sequence
diagram

Client App Card App

Processes

the request

Off-card On-card

method(params)

Command APDU

Response APDU

Return value

process(apdu)

method(params)

Return value

Java Card 2.2 RMI sequence
diagram (under the hood)

Client App Card App JCRE Client Proxy Card Skel

Prepares the
command

Decodes the
response

Prepares the

response

Decodes the

command

Processes

the request

The complete picture

Client side

Client app

Server side

myApplet applet

Dispatcher

Remote object

JCRE

RMI services

1- create

The complete picture

Client side

Client app

Server side

myApplet applet

Dispatcher

Remote object

JCRE

RMI services

2- create

3- register

The complete picture

Client side

Client app

Server side

myApplet applet

Dispatcher

Card Accessor

Remote object

JCRE

RMI services

4- create

The complete picture

Client side

Client app

Server side

myApplet applet

Dispatcher

Card Accessor

Remote object

JCRMI connect

JCRE

RMI services

5- create

The complete picture

Client side

Client app

Server side

myApplet applet

Dispatcher

Card Accessor

Remote object

JCRMI connect

JCRE

RMI services

6- select myApplet

The complete picture

Client side

Client app

Server side

Dispatcher

Card Accessor

Remote object

JCRMI connect

JCRE

RMI services
7- get initial reference

myApplet applet

The complete picture

Client side

Client app

Server side

myApplet applet

Dispatcher

Card Accessor

Remote object

JCRMI connect

JCRE

R_O_stub RMI services

Development with Java Card 2.2
RMI

• Design the Counter interface
– Design the method signatures

– Define required constants

– Add checked exceptions

• Then, implement a class ...

Interface ICounter

import java.rmi.Remote ;

import java.rmi.RemoteException ;

import javacard.framework.UserException ;

public interface ICounter extends Remote
{
 public static final short NEGATIVE_VALUE = 1;

 public short read()
 throws RemoteException;

 public short increment(short amount)
 throws RemoteException, UserException;

 public short decrement(short amount)
 throws RemoteException, UserException;
}

Interface ICounter

import java.rmi.Remote ;

import java.rmi.RemoteException ;

import javacard.framework.UserException ;

public interface ICounter extends Remote
{
 public static final short NEGATIVE_VALUE = 1;

 public short read()
 throws RemoteException;

 public short increment(short amount)
 throws RemoteException, UserException;

 public short decrement(short amount)
 throws RemoteException, UserException;
}

Implementation class Counter

 public class Counter extends CardRemoteObject
implements Icounter {
private short value;

public Counter() { value = 0; }

public short read() throws RemoteException {
 return value;
}

public short decrement(short amount)
 throws RemoteException, UserException {
 if (amount<0 || value-amount<0)
 UserException.throwIt(NEGATIVE_VALUE);
 value -= amount;
 return value;
}

}

Implementation class Counter

public class Counter extends CardRemoteObject
implements Icounter {
private short value;

public Counter() { value = 0; }

public short read() throws RemoteException {
 return value;
}

public short decrement(short amount)
 throws RemoteException, UserException {
 if (amount<0 || value-amount<0)
 UserException.throwIt(NEGATIVE_VALUE);
 value -= amount;
 return value;
}

}

Implementation class Counter

public class Counter extends CardRemoteObject
implements Icounter {
private short value;

public Counter() { value = 0; }

public short read() throws RemoteException {
 return value;
}

public short decrement(short amount)
 throws RemoteException, UserException {
 if (amount<0 || value-amount<0)
 UserException.throwIt(NEGATIVE_VALUE);
 value -= amount;
 return value;
}

}

Implementation class Counter

public class Counter extends CardRemoteObject
implements Icounter {
private short value;

public Counter() { value = 0; }

public short read() throws RemoteException {
 return value;
}

public short decrement(short amount)
 throws RemoteException, UserException {
 if (amount<0 || value-amount<0)
 UserException.throwIt(NEGATIVE_VALUE);
 value -= amount;
 return value;
}

}

myApplet Applet

import javacard.framework.service.RemoteService;

import javacard.framework.service.RMIService;

import javacard.framework.APDU;

public class myApplet extends Applet {

 private Dispatcher dispatcher;

 private RemoteService remoteService;

 private ICounter iCounter;

…

}

myApplet Applet
 …

public myApplet() {

 disp = new Dispatcher((short)1);

 iCount = new ICount();

 remoteService = new RMIService(iCounter);

 disp.addService(remoteService,Dispatcher.PROCESS_COMMAND);

}

public static void install(byte[] aid,short s,byte b) {

 myApplet server = new myApplet();

 server.register();

}

public void process(APDU apdu) throws javacard.framework.

ISOException {

disp.process(apdu); }

Client Slide (1/3)

import opencard.core.service.*;

import com.sun.javacard.javax.smartcard.rmisclient.*;

import com.sun.javacard.ocfrmiclientimpl.*;

import javacard.framework.UserException;

public class CounterClient extends java.lang.Object{

 public CounterClient()

 public static void main (java.lang.String[] argv)

 // arg[0] contains the debit amount

 try {

 // initialize OCF

 SmartCard.start();

 // wait for a smart card

 CardRequest cr = new CardRequest
(CArdRequest.NEWCARD,null,OCFAccessor.class);

Client Slide (1/3)

import opencard.core.service.*;

import com.sun.javacard.javax.smartcard.rmisclient.*;

import com.sun.javacard.ocfrmiclientimpl.*;

import javacard.framework.UserException;

public class CounterClient extends java.lang.Object{

 public CounterClient()

 public static void main (java.lang.String[] argv)

 // arg[0] contains the debit amount

 try {

 // initialize OCF

 SmartCard.start();

 // wait for a smart card

 CardRequest cr = new CardRequest
(CArdRequest.NEWCARD, null, OCFAccessor.class);

 SmartCard myCard SmardCard.waitForCard (cr)

Client Slide (2/3)

try { …

// 1) Obtain an RMI Card Accessor CardService for the JCRE

CardAccessor myCS = (CardAccessor) myCard.getCardService

(OCFCardAccessor.class, true)

// 2) Create an RMI connector instance

JavacardRMIConnect jcRMI = nex JavaCardRMIConnect (myCS)

// 3) Select the applet

byte[] aidCounter new byte[] {0x57,…}

jcRMI.selectApplet (aidCounter);

// 4) obtain the initial reference on the counter interface

Counter myCounter = (Counter) jcRMI.getInitialReference();

Client Slide (3/3)

try { …

// Obtain an RMI …

// obtain the initial reference … myCounter

try {

 short balance = myCounter.decrement (amount);

 } catch (UserException jce) {…}

System.out.println (balance);

Bla, bla, bla

Development with Java Card 2.2
RMI

• Prepare the Card application

– Generate the skeleton from the interface

– Convert in a card execute-in-place format the card applet classes

– Upload the converted card applet classes to the card

– Install the card applet on-card

• Prepare the client application

– Generate the client proxy from the interface

– Write a client application using the proxy

– Install the client application on card terminal hosts

Introduction

• The Global Platform provides specifications to define security policies
and cryptographic mechanisms to protect download and delete of
applications.

• Each applet can be securely loaded and removed using either Public
Key or Symmetric key cryptography.

• Need to embed the Card Manager as an applet or as native code

• Need to implement the GP API

– Services: Cardholder verification, personalization, security services,…

– Card Content management services : card locking, Application life cycle
state update,…

GP Card Domain

• Issuer representative

• Provides card global services:
– installation of applets on the card

– management of the applet life cycle

– personalization and reading card global data (such ICC serial number)

– management of the card life cycle

– blocking card service

– auditing services when the card is blocked

• Acts as the security domain for the issuer's applets

Introduction GP 2.2

• Re-engineering of Global Platform Card Framework

– Architectural extensions with Privileges and Security Domain hierarchies
support additional business models

– New Global Services, i.e. on-card client-server support

– Improved logical channel support

• Backward compatibility

• Enhancement for contactless interfaces

• Secure Channel Protocol based on Public Key Infrastructure SCP 10

• Card Specification 2.2 Overview Generic card architecture applicable
to both GP 2.1.1 (& 2.0.1) and new 2.2 PK features

• Card Remote Application Management over HTTP - Card
Specification v 2.2

• To be published SCP03 based on AES.

GP functionalities

• Applet & life cycle management,
– Need authentication and integrity for :

• Load, Install and Make Selectable

• Delete,

• Set-Get Status.

• Secure communication protocol,
– Entity authentication,

• Current Security level = Authenticated (SCP01,SCP02)
Any_Authenticated (SCP10)

– Confidentiality and/or Integrity and authentication,

• Integrity or Confidentiality and Integrity of a command sent to the
card,

• Integrity of the sequence of APDU command sent to the card

SCP 01

• This protocol modifies APDUs, using some pre-
established symmetric keys on both sides, to secure the
original APDUs with MAC checks and optional
encryption.

• Symmetric key, SCP01 is deprecated, backward
compatibility with GP 2.0.1

– Replaced by SCP 02 symmetric key protocol,

– Three levels of security

• Mutual authentication

• Integrity and data origin authentication

• Confidentiality : in which data being transmitted from the off-
card entity to the card, is not viewable by an unauthorized entity

SCP01 versus SCP02

• SCP02:

– Confidentiality : in which data being transmitted from the sending
entity (the off-card entity or card) to the receiving entity (respectively
the card or off-card entity) is not viewable by an unauthorized entity.

• For SCP01, data from host to card is not susceptible to sniffing but no
mention of the reverse to be true. For SCP02, both directions are not
susceptible to sniffing.

• SCP01 supports mutual auth while for SCP02, only the card
authenticates the host, with an option for the reverse.

• There is no encryption from the card side. Be aware that R-MAC is
optional, depending on the security policy of the issuer.

• Another differences between SCP01 and SCP02:

– The DEK in SCP02 is a session key, and in SCP01 it is static,

– The INITIALIZE UPDATE command is different regarding the P2
parameter and the structure of the response

Mutual Authentication

• It provides assurance to the card and the terminal they are
communicating with authenticated entity.

Terminal Card

Generate Host Challenge

Generate Card Challenge,
Generate session keys
Calculate card cryptogram

INITIALIZE UPDATE

INITIALIZE UPDATE response

Generate session keys,
Verify card cryptogram
Calculate host cryptogram EXTERNAL AUTHENTICATE

Verify host cryptogram

EXTERNAL AUTHENTICATE response

Initialize Update

• APDU INIT_UPDATE
– P1 key version number

– P2 key set index

– Data : host challenge

• RESPONSE
– Card cryptogram + Card Challenge

– Or 0x6A88 Referenced data not found

External Authenticate

• APDU EXTERNAL_AUTHENTICATE
– P1 Security Level

• 0x00 No Secure messaging

• 0x01 C-MAC

• 0x03 C-DECRYPTION and C-MAC

– Response:
• DATA Host Cryptogram and MAC

• Or 0x6300 Authentication failed

APDU Command MAC generation

• A C-MAC is generated by an off-card entity and applied
across the full APDU command being transmitted to the
card including the header (5 bytes) and the data field in the
command message

Cla Lc Data

Cla’ Lc’ Data

Cla’ = Cla + set bit3
Lc’ = Lc + C-MAC length

Padding

Cla’ Lc’ Data C-MAC
3-DES

C-MAC
Session key

ICV

APDU data field encryption

• If confidentiality is required, the off-card entity encrypts
the “clear text” data field of the command message being
transmitted to the card.

Cla Lc Data C-MAC

3-DES
S-ENC Session key

ICV

Cla Lc’ Encrypted Data C-MAC

Lc’ = Lc + 1+ padding length

Data L Padding

The Cryptographic Keys

• S-ENC, Secure Channel Encryption Key
– A static key to generate a session key: 16 bytes

– Used to Authentication and encryption (DES)

• S-MAC, Secure Channel Message Authentication Code
Key,
– A static key used to generate a session key: 16 bytes,

– Used to MAC verification (DES),

• DEK, Data Encryption Key
– Used as a static key, 16 bytes,

– For decrypting sensitive data (e.g. secret key)

SCP 01 drawbacks

• The main drawback of SCP01 is the lack of protection of
the card response : no MAC no sequence number.

• SCP02 includes a sequence number and a complete
response including a R-MAC.

• Expected weakness scenario:

– There is no proof that a transaction finished correctly,

– E.g : while loading an applet, an attacker can modify the Load-
Install-MakeSelectable response (9000 -> 6xxx).

Any question ?

