
Java Virtual Machine

Carte à puce et Java Card

ATAC

2011-2012

Jean-Louis Lanet

Jean-louis.lanet@unilim.fr

Agenda

• Introduction

• Run Time environment

• Virtual machine

• API

General Architecture

• A set of specifications
– Issued by Sun Microsystems

– Based on the Java platform

– http://java.sun.com/products/javacard

• Split in three parts
– Application programming interfaces (APIs)

– Execution environment (JCRE)

– Virtual machine (VM)

• Another view: architecture, memory, life cycle

Java Card Architecture

Java source code
Development Library

.jar

Java

Compiler

*.java

Java Class files

.jar Byte code verifier,

converter, and signer

Off-card loader

Card

Image

On-card

 loader

API

Interpreter

O.S.

Java Card files

.cap

Java Card Virtual Machine

Architecture

• Converter (part of the JDK):

– Class file format takes too much space on java card

– Produces a format that fits the SC constraints,

• Tokenization of the format

– Need a representation of the content for pre-linking

– The converter uses all class files of a package and all export files
of ALL imported packages,

– Output an Export file and a Cap file

• Conversion process

– Verifies the Java Card language restriction

– Optimize byte code

– Invokes the off card verifier

Two specific file formats

• The CAP (Converted Applet) file format
– Contains all the classes from one package

– Semantically, is equivalent to a set of class (.class) files

– Syntactically, differs a lot from class (.class) files

• All “string names” are replaced by “token identifiers”

• The EXP (Export) file format
– Maintains the consistency between the originated class (.class) files and the

resulting CAP file

• Only for public (exported) data

• Contains API information for a package of classes (access scop, class name,
method signature,…)

– Can be freely distributed, used during pre-linking phase

– Not loaded into the card

The CAP file

• Contains an executable representation of package classes

• Contains a set of components (11)

• Each component describes an aspect of CAP file
– Class info

– Executable byte code

– Linking info,…

• Optimized for small footprint by compact data structure

• Loaded on card

Interdependences

Java Card architecture

Natives Layers

Hardware : CPU + Memories + IO

Java Card Virtual Machine

Framework APIs

(V)OP APIs

&

Applet Manager

JavaCard Applet 1 JavaCard Applet 2

Native API

Java Card memory model

• By default, all objects are implicitly persistent
– Because we have few RAM

– Objects must survive between two sessions

• Some arrays can be transient
– For efficiency and security reasons

• Transactional mechanisms are provided
– All write operations on persistent memory are atomic

– At the programming level a mechanism to handle
transactions is also available

Java Card memory

Transient Heap

JStack

Persistent Heap

Bytecodes &

Applets structs
Natives Layer

& JCVM

Framework APIs

Romized

Applets

RAM (~1Kb) EEPROM (~32Kb) ROM (~64Kb)

Memory spaces

Java Card 2.1

• File format of applet :

– Standardized

– file .cap identical to .class excepted :

• One .cap file per Java package

• « Firewall » between applets

– The virtual machine must ensure that the code doesn’t run out of its
execution space (context)

– Means to switch the execution context

• Entry point object and global array can be accessed by applets (e.g., APDU)

• JCRE can access each object

• Interaction between applet through a shareable interface

• System.share (Object ...) method suppressed

Java Card 2.2

• Load process of the .cap file standardized

– Interoperability of JC 2.1 stop at the smart card loading,

• Object, applet and package deletion

• On card verifier (optional),

• Logical channels,

• Optional Garbage collector on demand,

• Support elliptic curves and AES algorithm,

• JC-RMI

– Skeleton/stub generator ‘a la RMI’ hide the APDU encoding-decoding

• Rapid development and integration of SC applets

Java Card 3

• Roadmap
– Published march, 31, 2008

• Integrate
– Multithreading, Garbage Collector
– TCP/IP, HTTP, Servlets
– Persistence by reachability
– Descriptive security, several VM execution mode,…
– Sharing model of services/object ..

• Two different profiles,
– Connected, CLDC 1.1 --/++
– Classic i.e. JC2.2.2++

• Required architecture
– Close to J2ME/CLDC
– 32b, MMU/noMMU, 40KB RAM, 256KB FlashNOR

Security

• New features vs. JC
– SecurityManager

– AccessController

– Java.net.SocketPermission

• New challenges
– Update servlet and/or applet reconfiguration

– On-line application update

– Implementation of declarative security

Agenda

• Introduction

• Run Time environment

• Virtual machine

• API

Execution environment (JCRE)

• Define how a Java Card manages its resources

• Define constraints on the Java Card operating system
– Applet lifetime (installation, register and deletion)

– Logical channels and applet selection,

– Transient objects,

– Applet isolation (firewall) and sharing,

– Transaction and atomicity,

• RMI, The JCRE is at the heart of a Java Card

APDU commands

• 2 types of APDU can be sent to the card:

– OS/Administrative commands

• OS commands available in JCRE and CM

– Select, Load, Install …

• Administrative commands specified by Gemplus

– Get Info, ...

– Applicative commands

• specific to the JC applets loaded in the card

• eg : debit, credit, getbalance for an e-purse applet

• eg : create file, update file for the gsm applet

Two Command dispatchers

• JCRE’s task: main dispatcher

– Route the incoming commands to the JCVM and the selected

applet

• Applet designer’s task: second dispatcher

– Implement the applet’s command dispatcher (extraction of the

header information and call of the associated method)

J
 C

 R
 E

 Method_1()

Method_2()

Method_i()

Applet B
process()

Applet A
process()

Applet C
process()

Unsupported features
Dynamic class loading

• Classes are statically linked before being downloaded

• No way to download classes on the fly as needed...

• Applets only refer to classes which already exist on the card

Methods()

Applet 1

Data

Methods()

Applet 2

Data

Classes

Java Card applet life cycle

Off-card

On-card

Applet

sources

Applet

class files

Applet

cap file

JCVM

load

Compilation Conversion

AID Package

AID Class

Java Card applet life cycle

Off-card

On-card

Applet

sources

Applet

class files

Applet

cap file

Applet

Activated

Applet

Loaded

Applet

Selected

Applet

Processing

JCVM

load

remove

remove

Install / Register

Select 

 Deselect

Process 

 return

Compilation Conversion

AID Instance

import javacard.framework.*

...

public class MyApplet extends Applet {

// Definitions of APDU-related instruction codes

...

// Constructor

MyApplet() {...}

// Life-cycle methods

install() {...}

select() {...}

deselect() {...}

process() {...}

// Private methods ... }

Install method

• JCRE call this static method first and gives

– Applet instance AID

– Applet privilege

– Applet parameters

• Install method create an instance of an Applet subclass

– Perform any necessary initializations,

– If no parameter is provided, only one installation

• The install() method must directly or indirectly call the
register() method to complete the installation; failing to do so will
cause installation to fail.

• Uninstall method (JC 2.2) will be seen later.

Register method
• Used by the applet to register this applet instance

• Interacts with the java Card runtine environment

– void register()

• Assign the applet instance AID with class AID byte

– void register(byte [] bArray, short bOffset, byte bLenght)

• Assign applet instyance AID with the specified AID bytes

• Warning: when receiving the byte array as parameters of the install
command, the length is sent before the AID

• public static void install(byte[] bArray, short bOffset, byte bLength)

throws ISOException {

• =>

• register(bArray, (short)(bOffset + 1), (byte)bArray[bOffset]);

bArray

bOffset

AID length AIB bytes

bLength

Select Method

• The JCRE invokes select() to notify the applet that it has been
selected for APDU processing.

• You don't have to implement this method unless you want to
provide session initialization or personalization.

• The select() method must return true to indicate that it is
ready to process incoming APDUs, or false to decline selection.

• The default implementation by javacard.framework.Applet class
returns true.

public boolean select() {

// Perform any applet-specific session initialization.

return true; }

Process method (1)

• Once an applet has been selected it is ready to receive
command APDUs

• Contains the core application code of the applet

• Handles all the incoming APDU messages for the applet
selected

• Called by the JCRE

• Upon normal return from this method the Java Card
runtime environment sends the ISO 7816-4 success status
word 90 00

• If it throws an exception the JCRE sends the associated
reason code as the response status

Process Method (2)

The generic process() method is:

1. Extracts the APDU CLA and INS fields

2. Retrieves the application-specific P1, P2, and data fields

3. Processes the APDU data

4. Generates and sends a response

5. Returns gracefully, or throws the appropriate ISO
exception

public void process(APDU apdu) throws ISOException {

// Get the incoming APDU buffer.

byte[] buffer = apdu.getBuffer();

// Get the CLA; mask out the logical-channel info.

buffer[ISO7816.OFFSET_CLA] = (byte) (buffer

[ISO7816.OFFSET_CLA] & (byte)0xFC);

// If INS is Select, return

if ((buffer[ISO7816.OFFSET_CLA] == 0) &&

(buffer[ISO7816.OFFSET_INS] == (byte)(0xA4)))

return;

// If unrecognized class, return "unsupported class."

if (buffer[ISO7816.OFFSET_CLA] != MyAPPLET_CLA)

ISOException.throwIt(ISO7816.SW_CLA_NOT_SUPPORTED);

// Process (application-specific) APDU commands aimed at

MyApplet.

switch (buffer[ISO7816.OFFSET_INS]) {

 case VERIFY_INS: verify(apdu); break;

 …

Selection protocol

Is it a select
APDU ?

Invoke its
process method

AID match

Is an applet
Already

Selected ?

Invoke the select
Of the selected

applet

Invoke deselect
Of the current

applet

Yes

Yes

Yes

ok

ok

No

Selection protocol

Is it a select
APDU ?

Is an applet
Already

Selected ?

Invoke its
process method

AID match

Return status
No applet is

selected

Yes

Yes

No

No

Selection protocol

Is it a select
APDU ?

Is an applet
Already

Selected ?

Invoke its
process method

Return status
No applet is

selected

Yes

No

No

Selection protocol

Is it a select
APDU ?

Is an applet
Already

Selected ?

Invoke its
process method

AID match

Is an applet
Already

Selected ?

Return status
No applet is

selected

Invoke the select
Of the selected

applet

Invoke deselect
Of the current

applet

Agenda

• Introduction

• Run Time environment

• Virtual machine

• API

Virtual machine (VM)

• This specification is made of several parts

– The definition of the Java language subset that is
supported

– The definition of 2 specific file formats

– The definition of a specific instruction set

Java language subset

• Supported

– boolean, byte, short

– int (optional)

– Objects

– Arrays

– Virtual methods

– Dynamic allocation

– Packages

– Exceptions

– Interfaces

• Not supported

– float, double, long

– char, String

– Multi-dimensional arrays

– Garbage collector

– Finalization

– Threads

– Dynamic loading of
classes

– Security manager

BC interpretation

• It is the execution engine for the byte code loaded into the
card,

• It controls byte code execution, memory allocation and
participate to the security through the firewall,

• Often it includes more tests than the firewall due to the
absence of BC verifier…

Java Card Architecture

Java source code
Development Library

.jar

Java

Compiler

*.java

Java Class files

.jar Byte code verifier,

converter, and signer

Off-card loader

Card

Image

On-card

 loader

API

Interpreter

O.S.

Java Card files

.cap

Java Card Virtual Machine

Java Card Architecture

Java source code
Development Library

.jar

Java

Compiler

*.java

Java Class files

.jar

Signer

Off-card loader

Card

Image

On-card

 loader

API

Interpreter

O.S.

Java Card files

.cap

Java Card Virtual Machine

Byte code verifier,

converter,

Example

• Manage a counter (loyalty, ePurse) 32 bits

• APDU managed by the applet:

– int read ()

• command AA 01 XX XX 00 04

• response RV3 RV2 RV1 RV0 90 00

– int increment ()

• command AA 02 XX XX 04 AM3 AM2 AM1 AM 04

• response RV3 RV2 RV1 RV0 90 00

– int decrement ()

• command AA 03 XX XX 04 AM3 AM2 AM1 AM 04

• response RV3 RV2 RV1 RV0 90 00

Applet counter
package unilim.counter ;

import javacard.framework.* ;

public class counter extends Applet {

 // valeur is 32 bit value

 private int valeur;

 public Counter() {

 valeur = 0;

 // only one instance of counter

 register(); }

 public static void install(APDU apdu){

 new Counter(); }

}

Applet counter
public void process(APDU apdu) {

 /* get the APDU buffer to obtain a reference to the APDU buffer. When the applet receives

 the APDU object, only the first five APDU header bytes are available in the APDU

buffer. They are the CLA, INS, P1, P2, and P3 bytes respectively.

 byte[] buffer = apdu.getBuffer();

 // ignore the applet select command dispached to the process

 if (selectingApplet()) { return; }

/*When an error occurs, the applet may decide to terminate the process, and to throw an

 exception containing the status word (SW1, SW2) to indicate the processing state of

the card. An exception that is not caught by an applet is caught by the JCRE. */

 if (buffer[ISO7816.OFFSET_CLA] != 0xAA)

 ISOException.throwIt(ISO7816.SW_CLA_NOT_SUPPORTED);

 switch (buffer[ISO7816.OFFSET_INS]) {

 case 0x01: ... // read

 case 0x02: ... // increment

 case 0x03: ... // decrement see next slide

 default:

 ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED); }

 }

}

Decrement
case 0x03: // Decrement

{ // receiving the data

 byte octetsLus = apdu.setIncomingAndReceive();

 if (octetsLus != 4)

 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

 int montant = (buffer[ISO7816.OFFSET_CDATA]<<24) |

 (buffer[ISO7816.OFFSET_CDATA+1]<<16) |

 (buffer[ISO7816.OFFSET_CDATA+2]<<8) |

 buffer[ISO7816.OFFSET_CDATA+3];

 // treatment

 if (montant<0 || valeur-montant<0)

 ISOException.throwIt((short)0x6910);

 valeur = valeur - montant;

 // Envoie de la réponse

 buffer[0] = (byte)(valeur>>24);

 buffer[1] = (byte)(valeur>>16);

 buffer[2] = (byte)(valeur>>8);

 buffer[3] = (byte)(valeur);

 // single operation

 apdu.setOutgoingAndSend((short)0, (short)4);

 return;

}

Agenda

• Introduction

• Run Time environment

• Virtual machine

• API

Unsupported features : Cloning

• No clone() method in class Object
Use Util.arrayCopy() instead

• Clonable interface not provided

• Creating copies of objects is critical

H E L L O

a b

Executing: b = a

gives:
Executing: b = clone(a)

gives:

H E L L O

a

H E L L O

a
H E L L O

b

APIs (1/2)

• Define a set of Java classes
– Used to develop Java Card services (applets)

– Dedicated for a smart card environment

• Those classes comply with current standard
– Business Java (java.lang.Object)

– ISO-7816 (e.g., APDUs)

– Cryptographic

• Those classes does not define by themselves
services

APIs (2/2)

• Contains 3 mandatory packages

– java.lang

• Basic classes of the language

– javacard.framework

• Framework of classes and interfaces for the core functionality of an applet
(AID, APDU, Applet, ISO, PIN, JCSystem, Util, and exceptions classes)

– javacard.security

• Core classes dedicated to cryptographic services (public/private key, random
number generator,…)

• And one optional package

– javacardx.crypto

• Implementation classes for ciphering/deciphering (strong cipher)

Java.lang
• Object { public Object();

• public boolean equals(Object obj); }

• Throwable { public Throwable(); }

-- Exception

-- RuntimeException

-- ArithmeticException

-- ClassCastException

-- NullPointerException

-- SecurityException

-- ArrayStoreException

-- NegativeArraySizeException

-- IndexOutOfBoundsException

-- ArrayIndexOutOfBoundsException

Javacard.framework
• public final class AID

Encapsulates constants related to ISO7816-5

Public final static field with SW_ prefixes in order to standardize status response

Fields with OFFSET_ prefixes defines constants to use as index in the APDU buffer byte array

• public class ISOException

Encapsulates an ISO 7816-4 response status word as its reason code

throwIt () allows to output a status word error

• public class Util

– Byte array manipulation and comparaison

– Type conversion (short/byte)

• arrayCopy () atomic/non-atomic copy of byte array

• arrayCopyNonAtomic () non-atomic copy of byte array

• arrayCompare () byte array comparaison

• arrayFillNonAtomic() : fill an array with an int value

• makeShort () create a short using a byte

Javacard.framework

public class ISO7816

• ISOExceptioon.throwtIt (short reason)

• public abstract class PIN

– Represent an byte array for a PIN code

– ownerPIN secret code to be update and/or checked

• Static constant field
– public static final short SW_NO_ERROR = (short) 0x9000

– public static final short SW_FILE_NOT_FOUND = (short) 0x6A82

– public static final short SW_RECORD_NOT_FOUND = (short) 0x6A83

– public static final short SW_INCORRECT_P1P2 = (short) 0x6A86

– public static final short SW_WRONG_P1P2 = (short) 0x6B00

– public static final short SW_CLA_NOT_SUPPORTED = (short) 0x6E00

– ...

– public static final byte CLA_ISO7816= 0x00

– public static final byte INS_SELECT= 0xA4

– public static final byte INS_EXTERNAL_AUTHENTICATE= 0x82

Pin interface

• Define a PIN behavior and a PIN value

• Try limit maximum trial of an incorrect PIN before being
blocked,

• Max PIN size, the maximum length of PIN,

• Try counter, the remaining number of trial,

• Validated flag => true if a valid PIN has been presented.
Flag is reset on every card reset.

• If a transaction is in progress update of the try counter shall
not participate to the transaction.

Javacard.framework.JCSystem

public final class JCSystem

• Static methods (natives) for interaction with the JCRE

• Transactions

– Only one level of transaction allowed

– beginTransaction(), commitTransaction (), abortTransaction

()

– Limited by the ram and eeprom capacity

• Transient array

– makeTransientXXXArray(lenght, event)

– Build a transient array reinitialized at reset or de-selection

• Object sharing

– Build an object that inherit from shareable

– Provide a reference with getAppletShareableInterfaceObject (AID,

Parameter)

Javacard.framework.APDU
• Define the format of the «data packets» exchanged between a reader and a

card:

– APDUs (Application Programming Data Units) are defined for both commands
and responses

– Status words SW1 et SW2 are standardized (OK = 0x9000)

• Provides methods for receiving data and sending data

• Designed to be protocol independent

• The incoming / outgoing APDU data size may be bigger that the APDU
buffer size and need to be read/write in portions by the applet.

Handling the APDU class

Unfolding of a communication
Inbound

• The JCRE receives the APDU

• The JCRE fills the APDU buffer with the header of the APDU

• The JCRE calls the process() method of the selected applet

– with the APDU object in parameter

• The applet retreives the APDU buffer (getBuffer() method)

– reads/analyses the header

– eventually calls the APDU object’ methods to receive data

APDU class: receiving data

• Byte[] getBuffer()
– returns the APDU buffer byte array, filled withAPDU header

• short setIncomingAndReceive()
 throws APDUException

– sets the transfer direction to inbound

– receives the incoming data in the APDU buffer at offset = 5

• short receiveBytes(short bOff)
 throws APDUException

– sets the transfer direction to inbound

– receives the incoming data in the APDU buffer at user offset

Unfolding of a communication
Outbound

• The applet processes the APDU

– SW1||SW2 = 90 00 by default

– At any point, the applet can send an ISOException by invoking the static
method ISOException.throwIt(reason)

• The JCRE automatically sends back the corresponding status word

• Eventually, the applet constructs an APDU response

– by filling the APDU buffer

– by invoking methods on the APDU object

• The JCRE sends back the response

APDU class: sending back data

• Short setOutgoing()throws APDUException

– Sets the transfer direction to outbound

– Obtains the length Le expected by the terminal

• setOutgoingLength(short length) throws

APDUException

– Sets the actual length

• sendBytes(short offset, short

length) throws APDUException

– Sends length bytes from the APDU buffer starting at
offset

APDU class: sending back data (2/2)

• setOutgoingAndSend(short offset, short
length)throws APDUException

– setOutgoing() + setOutgoingLength() +
sendBytes

• sendBytesLong(byte[] array, short
offset, short length) throws
APDUException

– Sends length bytes from another byte array starting at
offset

Javacard.framework.Applet

• Super class of all Java Card Applet, user applets must subclass Applet class.

• Methods called by the JCRE

• User applets must implements

– static void install(byte[] buf, short off, byte len)

• Create a new applet instance

– void process(APDU apdu)

• Called for requesting the applet isntance to execute a receive command

• User applets may overrides

– protected void final register()

• Called during installation for registering the newly created instance

– boolean select()

• Called when the applet instance is selected

– void deselect()

• Called when the applet instance is selected

javacard.security package

• Contains interfaces for managing keys

– Key,SecretKey,DESKey,PublicKey,RSAPublicKey,

DSAPublicKey,PrivateKeyRSAPrivateKeyDSAPriva

teKey,RSAPrivateCrtKey

• Contains objects for realizing cryptographic operations

– KeyBuilder, Signature, MessageDigest

 RandomData, CryptoException

2.2.2 API

AES: Advanced Encryption Standard (FIPS-197)

SEED Algorithm Specification : KISA - Korea Information Security Agency Standard
Names for Security and Crypto Packages

SHA (SHA-1): Secure Hash Algorithm, as defined in Secure Hash Standard, NIST FIPS
180-1

SHA-256,SHA-384,SHA-512: Secure Hash Algorithm, as defined in Secure Hash Standard,
NIST FIPS 180-2

MD5: The Message Digest algorithm RSA-MD5, as defined by RSA DSI in RFC 1321

RIPEMD-160: as defined in ISO/IEC 10118-3:1998 Information technology – Security
techniques - Hash-functions - Part 3: Dedicated hash-functions

DSA: Digital Signature Algorithm, as defined in Digital Signature Standard, NIST FIPS 186

DES: The Data Encryption Standard, as defined by NIST in FIPS 46-1 and 46-2

RSA: The Rivest, Shamir and Adleman Asymmetric Cipher algorithm

ECDSA: Elliptic Curve Digital Signature Algorithm

ECDH: Elliptic Curve Diffie-Hellman algorithm

AES: Advanced Encryption Standard (AES), as defined by NIST in FIPS 197

HMAC: Keyed-Hashing for Message Authentication, as defined in RFC-2104

And some more…

• Package javacardx.biometry : Extension package that contains

functionality for implementing a biometric framework on the Java Card

platform.

– BioBuilder, BioException, BioTemplate, OwnerBioTemplate, SharedBioTemplate

• Package javacardx.framework.math :Extension package that contains

common utility functions for BCD math and parity computations.

– BCDUtil, BigNumber, ParityBit

• Javacardx.apdu : Extension package that enables support for ISO7816

specification defined optional APDU related mechanisms.

• Javacardx.tlv : Extension package that contains functionality, for

managing storage for BER TLV formatted data, based on the ASN.1 BER

encoding rules of ISO/IEC 8825-1:2002, as well as parsing and editing BER

TLV formatted data in I/O buffers.

Key

SecretKey PrivateKey PublicKey

DESKey DSAPublicKey RSAPublicKey

DSAPrivateKey RSAPrivateKey RSACrtPrivateKey

The key hierarchy

Principe

Key Builder
buildKey

Key Instance
setKey

Cipher
getInstance

Cipher Instance

Init

doFinal

update

1

2

3

4

Principe

Signature

Mode Sign

Init

sign

data

Signature result

Signature

Mode verify

Init

verify

True/false

javacard.security

• KeyBuilder

– Creates non initialized cryptographic keys for signature and cipher
algorithms

– buildKey method create the key and returns a key interface

• Signature class

– Is an abstract class for signature algorithms

– Implementations must extend this class and implement all the
abstract methods,

– Contains all signature constants value for getInstance algorithms
parameters specification

Cryptography usage

• Once inside the applet:
DESKey k = KeyBuilder.buildKey(TYPE_DES, LENGTH_DES,

false) ;

Signature s = Signature.getInstance(ALG_DES_MAC_NOPAD,
false);

k.setKey(buffer, offset, length) ;

• At each usage:
s.init(k, MODE_SIGN) ;

s.update(in_buff, in_ofs, in_len) ;

s.sign(in_buff, in_ofs, in_len, out_buff, out_ofs) ;

s.verify(in_buff, in_ofs, in_len,out_buff, out_ofs);

javacardx.security.cipher

• Defines all cipher algorithms methods management

• Implementation of Cipher algorithms must extend this class and implement all
the abstract methods

• Contains all cipher constants value for getInstance algorithm parameter
specification

• Once inside the applet:

DESKey k = KeyBuilder.buildKey(TYPE_DES, LENGTH_DES,

false) ;

c = cipher.getInstance(ALG_DES_MAC_NOPAD, false);

k.setKey(buffer, offset, length) ;

• At each usage:

c.init(k, MODE_SIGN) ;

s.update(in_buff, in_ofs, in_len) ;

s.doFinal(in_buff, in_ofs, in_len, out_buff, out_ofs) ;

Any question ?

