Attacks against Smart Cards: Hands On Session

Jean-Louis Lanet
SSD - XLIM Labs, University of Limoges,
87000 Limoges, France
Email: jean-louis.lanet@unilim.fr

Abstract—Smart card are often the target of software or
hardware attacks. Recently several logical attacks have been
developed that allows to dump the EEPROM memory. This kind
of attack are particularly affordable for students who can learn
reverse engineering techniques on devices known to be tamper
resistant. This tutorial will demonstrate how with a few material
a graduate student within a couple of hours is able to reverse an
application.

Index Terms—smart card, logical attack, shell code, counter
measures, reverse engineering

I. INTRODUCTION

Java Card is a kind of smart card that implements one of the
two editions, “Classic Edition” or “Connected Edition”, of
the standard Java Card 3.0 [1]. Such a smart card embeds a
virtual machine which interprets codes already romized with
the operating system or downloaded after issuance. Due to
security reasons, the ability to download code into the card
is controlled by a protocol defined by Global Platform [2].
This protocol ensures that the owner of the code has the
necessary authorization to perform the action. Java Card is
an open platform for smart cards, i.e. able of loading and
executing new applications after issuance. Thus, different
applications from different providers run in the same smart
card. Thanks to type verification, byte codes delivered by
the Java compiler and the converter (in charge of giving a
compact representation of class files) are safe, i.e. the loaded
application is not hostile to other applications in the Java
Card. Furthermore, the Java Card firewall checks permissions
between applications in the card, enforcing isolation between
them.

Java Card is quite similar to any other Java edition. It
only differs (at least for the Classic Edition) from standard
Java in three aspects: i) restrictions of the language, ii) run
time environment and iii) applet life cycle. Due to resource
constraints the virtual machine in the Classic Edition must be
split into two parts: the byte code verifier executed off-card
is invoked by a converter while the interpreter, the API and
the Java Card Run time Environment (JCRE) are executed on
board. The byte code verifier is the offensive security process
of the Java Card. It performs the static code verifications
required by the virtual machine specification. The verifier
guarantees the validity of the code being loaded in the card.
The byte code converter transforms the Java class files,
which have been verified and validated, into a format that
is more suitable for smart cards, the CAP file format. Then,

an on-card loader installs the classes into the card memory.
The conversion and the loading steps are not executed
consecutively (a lot of time can separate them). Thus, it may
be possible to corrupt the CAP file, intentionally or not,
during the transfer. In order to avoid this, the Global Platform
Security Domain checks the file integrity and authenticates
the package before its registration in the card.

Some attacks have been successful in retrieving secret data
from the card. Thus we will present different approaches
to get access to data, which should bypass Java security
components. The aim of an attacker is to generate malicious
applications which can bypass firewall restrictions and
modify other applications, even if they do not belong to
the same security package. Several papers were published
and they differ essentially on the hypotheses of the platform
vulnerabilities and this tutorial will apply some of the
vulnerabilities that can be exploited with an ill-typed applet.

II. JAVA CARD SECURITY FEATURES

To enforce protection between applets, classical Java tech-
nology uses the type verification, class loader and security
managers to create private namespaces for applets. In a smart
card, complying with the traditional enforcement process is
not possible. On the one hand, the type verification is executed
outside the card due to memory constraints. On the other hand,
the class loader and security managers are replaced by the Java
Card firewall.

A. Byte Code Verifier

Allowing code to be loaded into the card after post-issuance
raises the same issues as the web applets. An applet not built
by a compiler (hand-made byte code) or modified after the
compilation step may break the Java sandbox model. Thus,
the client must check that the Java-language typing rules
are preserved at the byte code level. The Java is a strongly
typed language where each variable and expression has a type
determined at compile-time, so that if a type mismatches from
the source code, an error is thrown. The Java byte code is
also strongly typed. Moreover, local and stack variables of the
virtual machine have fixed types even in the scope of a method
execution. None of type mismatches are detected at run time,
and that allows making malicious applets exploiting this issue.

Due to resource constraints, the Byte Code Verifier is never
embedded into the card. It is often replaced by some static

checks during the load and some dynamic check during the
execution. In order to built an efficient attack, we need to
discover which checks are implemented and during which
phase their are executed.

B. Firewall

The separation of different applets is enforced by the
firewall which is based on the package structure of Java Card
and the notion of contexts. When an applet is created, the
Java Card Runtime Environment (JCRE) uses a unique Applet
[Dentifer (AID) to link it with the package where it’s been
defined. If two applets are an instance of classes of the same
Java Card package, they are considered in the same context.
There is a super user context, called the JCRE context. Applets
associated with this context can access to objects from any
other context on the card. Each object is assigned to an unique
owner context which is the context of the applet created. An
object method is executed in the object owner context. This
context provides information allowing, or not, the access to
another object. The firewall prevents a method executing in
one context from access to any attribute or method of objects
to another context.

C. The CAP File

As described by S. Hamadouche in [3], the CAP (for Con-
vert APplet) file format is based on the notion of components.
It is specified by Oracle [1] as consisting of following standard
components:

1) The Header: contains main information about the CAP

file and the defined package;

2) The Directory: list the size of each component;

3) The Applet (optional): if the CAP file contains at least
one applet, this component has a reference to each
defined applet else this component is empty;

4) The Import: describes the imported packages by the
classes defined in the package;

5) The Constant Pool: contains each information about:
classes, methods and fields referred by each element of
the Method component of the CAP file;

6) The Class: describes each class and interface defined
in the package;

7) The Method: contains each declared method in the
package, the abstract methods defined by the classes and
the exceptions’ handler associated to each method;

8) The Static Field: has each information to create and
initialize each static field defined in the package;

9) The Reference Location: contains an offset list, in the
Method component to each element which has reference
in the Constant Pool component;

The Export (optional): lists each static element which
may be imported by the classes contain in other pack-
ages;

The Descriptor: gives needed information to analyze
and check the CAP file components.

Moreover, the targeted Java Card Virtual Machine (JCVM)
may support user custom components. We except the Debug

10)

11

component because it is only used on the debugging step and
it is not sent to the card.

@A}:p] et Component

Exzport Component

Header Component >

Reference location
Component

Directory Component

—%h‘r_}z ort Compenent

12
Debug Component

Descriptor Component.

Consent_Pocl
Component

Figure 1: Interdependency links between each of CAP file component

As described in the figure 1, each component has a dedi-
cated role and is linked to each others. A hand-modification
of a component is difficult and may provide meaningless file.
An invalid file is often detected during the installation step by
the targeted JCVM.

ITII. LOGICAL ATTACKS

Logical attacks against smart card can be classified in two
categories: ill-typed applications or well-typed applications.
But the second category can also be split into permanent well-
typed applications or transient well-typed applications. In ill-
typed applications [4], [5], the input file has been modified
in order to illegally obtain information. Permanent well typed
application [6], relies on some weakness of the specification.
Transient well-typed applications is a new research field [7],
[8] were an application mutes when a fault occurs. In this
direction, we have fault enabled viruses. 1ll-typed applications
and transient well-typed applications need to apply byte code
transformation engineering at the CAP file level.

A. The EMAN?2 attack

The attack consists in changing the index of a local variable.
The specification says that the number of variables that can be
used in a method is 255. It includes local variables, method
parameters, and in case of an instance method invocation, a
reference to the object on which the instance method is being
invoked. For that purpose we use two instructions: sload
and sstore. As described in the JCVM Specification , these
instructions are normally used in order to load a short from a
local variable and to store a short in a local variable.

So, if we change the operand of sload, says sload 4,
which store a short into the Local variable 4. Imagine that your
program store at the Java level a short value that corresponds
to the first element of an array into the last local variable plus
an offset of 2. It means that we try to store into a local that do
not exist. Due to the fact that the Byte Code Verifier checks the
range of the locals this must be detect during the conversion

process. But after this verification if one changes the value of
the operand it will not be detect during run time.

If the short value represent the address of the first element of
an Array, then this manipulation will change the return address
of the current method. When existing from this method,
instead of returning to the caller, the program will execute
the byte array. Then the content of the byte array must be
interpretable by the virtual machine without any stack under
or overflow. We are able to execute an arbitrary shell code,
hand written at the byte code level.

B. Sketch of the Tutorial

During this tutorial you will learn how to replay the EMAN
2 attack [5], get the addresses of the most important method
of the API, generate a simple return code attack, then develop
a rich shell code, dump an installed applet and discover some
(inefficient) counter measure embedded in the card.

a) Writing the attack applet: During this phase you will
design your first Java Card application, compile it, convert it
(from class to CAP), load it into the card thanks to the OPAL
library and run it. You will send commands to the card and
receive the response. This is the regular job of a Smart Card
application designer. Learn to load and unload applications in
the card.

b) Manipulating the Java Stack: You will transform your
CAP file in order to be able to recover addresses of instances
inside the card, lure the linker by retrieving the exact addresses
of the API in memory, add and remove byte code in the binary
CAP. These are the first steps of the logical attacks: the byte
code engineering phase.

c) Writing shell code: You will generate your first attack
by replaying the EMAN2 attack. The main idea is to change
an operand in the byte array in order to store the value of an
array in the return address location. At that time, the array will
be fill by a return byte code. You will verify that this hook
has no visible effect on the program. And then dynamically
you will change the content of the array with your own rich
shell code able to download the content of the card.

d) Discovering the content of the card: Then you will
navigate into the card memory, find objects, classes, arrays,
methods and so on. May be you will find already installed
applet... but also the basic countermeasures against this attack.
You will have to discover by your self how to bypass these
countermeasures.

C. Tools used to set up the Attack

This kind of attack is often based on CAP file modification
and upload of hostile applet. To exploit this vulnerability we
need tools to automate the process: the CapMap and OPAL.

e) The Cap File Manipulator (CapMap): In this section,
attacks are based on an ill-formed CAP file. The CAP file,
likely explained in the previous section, has several dependent
components. In order to have an easy way to made the required
modifications, we developed a Java-library which provides the
modifications and corrections of dependencies on the CAP file.
This open-source library [9] will be used during this tutorial
with the on-line version of the CapMap.

f) OPAL: OPAL[10] is a Java 6 library that implements
Global Platform 2.x specification. It is able to upload and
manage applet life cycle on Java Card. It is also able to
manage different implementations of the specification via a
pluggable interface.

These libraries provide an efficient way to automate
attacks with the analysis of the card responses and generate
appropriate requests.

Attendees should master the Java language, have a Java
compiler on their laptop have a Java IDE (Eclipse,...). They
should upload the OPAL library before attending the tutorial.

IV. EXPERIMENTS

Each attendee will use a reader and a smart card. Each
smart card has a number. Cards and reader must be return to
the instructor at the end of the tutorial session.

First of all, you need to set up the environment.
You need a compiler chain to be installed with the
OPAL library thta you can download at the follow-
ing address https://bitbucket.org/ssd/opal/downloads/. Down-
load the version opal-library-xxxx-SNAPSHOT-jar-with-
dependencies.jar (xxxx being the latest commit version).
Add this library in your classpath project of your IDE. The
Java source files and the compilation scripts are available
at the following address: http://cartes.msi.unilim.fr Download
Applets source code, it contains a zip file applets_crisis.zip.
Log into the web service using the user name crisis12_n where
n is the number written on the smart card, the password is the
same (example crisis12_4 for the card labeled 4).

In this file, you will find the applets Crisis1, Crisis2, Crisis3,
a helloworld applet and four client applications to run on
your laptop for communicating with the smart card. The Java
program Crisisl has to be used with the applet Crisisl and
so on. The program Simple_OPAL_Main.java has to be used
with the hello world applet. In these client programs, you
have to modify the line 95 installApplet (PACKAGE_ID, AP-
PLET_ID, APPLET _ID, "TODO:YOUR_FILE"); the string by
the name of your CAP file (the Java Card binary file format).

The gencapfile is the script (.bat) for windows platform or
(.sh) for linux platform. Extract the zip and store it in your
laptop. These scripts will be used to compile and convert the
Java Card Applet. It will generate the CAP files in each applet
directory.

You have access to the CapMap through a web service at
the following address :http:// cartes.msi.unilim.fr. With this
web service you can Upload a CAP file onto the server
and read the binary file clicking on Overview. You can edit
each method by clicking on Methods. Chose the method you
want to edit on the top left using the lift then click on the
OK button. In the Opcodes area you can modify the opcode,
and in the Arguments area you can modify the parameters of
the opcodes and once you click either on Submit or Enter
your modifications are taken into account. If you read your
binary file with e bf Overview button you can see that your

modifications have been taken into account, you can download
back your modified file using the Download button. Take care
if you modify the opcodes or the arguments in a way the
program is no more executable (undefined byte code,...) you
will raise an exception.

A. Step 0: checking the compiling and disassembling chain

Compile and convert using the script with a double click on
the bat file (either the .bat or .sh file), the simple applet Hello
world to verify your tool chain. It generates CAP files in a
new directory called Javacard for each applet. Once compiled
and converted use the Simple_OPAL_Main.java program to
upload it into the card, send the command apdu and verify the
response. Normally it should send the "Hello world" byte array
to the card which sends back the same byte array. Reaching
that point, you have validated your Java Card tool chain and
you are ready to try to hack the card.

Possible troubleshooting

« Wrong version of Java, the script is for the latest version
of Java says 1.7.0_07 if you use an earlier version, modify
the script file. To know your version use java -version.

o User of a 64 bits machine using a 32 bits Java: modify
in the batch file the address of the jdk: C:/program Files
(x86)/Java/jdk...

o User of Eclipse, it could not be able to find the API
smartcardio: in Project properties, in Errors/Warnings
click enable project specific settings and then in Dep-
recated and restricted API, change Forbidden reference
from Error to Warning.

B. Step 1: retrieving the address of an array

You will have to write your shell in an array. Even if it is
not mandatory, the first consists in basic stack manipulation
using the CapMap web service.

« Edit the Crisisl applet in your favorite Java editor. Find
the method getMyAddress(). Compile it, verify it, convert
it. In fact this step has already be done with the script
during the previous step but if you modify the source
code you have to redo it.

« Edit the resulting CAP file with the CapMap editor,

« Find the right method (one where you find the instruction
sspush OxCAFE), nullify the byte code in order to push
on top of the stack the reference of the array, recover the
CAP file,

o Load the application into the card, send the adequate
APDU and obtain the address of the array.

C. Step 2: perform an EMAN?2 attack to retrieve the address

At that point, you have obtained the linked addresses of the
API methods, you need to transform a new applet in order
to modify the return address of a called method. The return
address will be the reference of your array.

o Edit the Crisis2 client in your favorite Java editor, it
initialize (sendAPDU) your shell code with the minimum
to avoid a crash: it raises the exception 0x6789, it obtains

the address of the array, third send back the address to
the card,

o Edit the Crisis2 applet in your favorite Java ed-
itor. Three commands corresponding to the three
APDU : INS_SET_SHELLCODE which initializes the
shell code (already done in the array declaration),
INS_GET_SHELLCODE_ADDRESS: return the array
address (Warning you have to redo the step 1),
INS_EXECUTE_SHELL_CODE that patches the card.
Look at the method executeOurShellCode. The short
array_address is the one sent to the client and obtained
at step 1. Compile it, verify it, convert it.

« Edit the resulting CAP file and modify the index of the
local variable in order to store it at the return address
location of the array which is the (max local + arg)+ 1
(in case of doubt ask the instructor, this could be a cause
of the card suicide),

o Load the application into the card, execute the client on
the laptop it sends the three APDU the last one launching
your shell code. You are now able to store in the array
any shell code you want.

D. Step 3: discovering the addresses of the APl

We provide you only one API address: Throwlt() : in-
vokestatic 0x08c6. You will latter have to write linked shell
code in the previously specified array. To obtain the addresses
of the methods use the API discovering process.

« Edit the Crisis3 applet applet in your favorite Java editor.
Look at the methods getTheISOExceptionThrowIt() and
getThe APDUSetOutgoingAndSendAddress(). Compile it,
verify it, convert it.

« Edit the resulting CAP file and remove the tokens in order
to push on top of the stack only the addresses that will
be resolved by the linker,

o Run the client program Crisis3 which send the APDU to
the card store the result. You have obtained the address
of the two API methods. If you want other addresses for
this card you have just to code the method.

E. Step 4: execute your rich shell code

Reaching that point you have hooked the card and you are
able to execute any arbitrary array in the card. Dump the
memory.

o In the array built a linked application that get a static
value, store it in a buffer and increment the address of
the static.

o When the buffer of 250 byte is full store it in the APDU
buffer send the response, built the adequate structure to
dump the memory from the address xxx to yyy,

« Run the external program xxxx which send the APDU to
the card store the result.

FE. Step 5: read the content of the array

Great you have dump the Java Card memory !!! Now pay
attention to the structure.

« Use an hexadecimal editor and find the array stored at
step one. What can you remark ?
o Find the countermeasure...

G. Step 6: find our own linked code in the memory

Now you know that addresses are scrambled when push on
top of the stack. It doesn’t matter the VM descrambled it for
you for free. Nevertheless each time something is easy to do
shall be protected in the card.Can you reverse a code ?

« Use an hexadecimal editor and find our own code.
o Look at the structure of the stored byte array far from
what you sent to card ?

At that point you have learn how to dump the memory of
the card, you saw that smart card manufacturers try to hide
information but you can bypass it, you are able to find applet
structures and modify other binary applications by removing,
adding code. Keep in mind you have play with development
card not a product. Do you believe a product is far from that
? What you can do with the shell code is just limited to your
imagination. Enjoy !

V. CONCLUSIONS

This tutorial has presented the basics step to set up a
logical attack against Java based smart card. This hands
on session uses smart card sell on official web site. These
cards are used for different markets such as e-Government,
mobile communication, public transportation, pay TV... It has
been demonstrated that several vulnerabilities remain into the
virtual machine. Attendees have been able to reverse some
part of the memory using an EMAN 2 attack. This attack
is generic and run on most of the current cards sell on web
sites or by major smart card manufacturers.

ACKNOWLEDGMENT

A special thank to Guillaume Bouffard who largely con-
tributed to this hands on session and the students of the
University of Limoges who verified every steps.

REFERENCES

[1] Oracle, “Java Card Platform Specification,” http://java.sun.com/javacard/
specs.html.

[2] Global Platform, “Card Specification v2.2,” 2006.

[3] S. Hamadouche, “Btude de la sécurité d’un vérifieur de Byte Code
et génération de tests de vulnérabilité,” Master’s thesis, Université de
Boumerdés, 2012.

[4] J. Iguchi-Cartigny and J. Lanet, “Developing a trojan applets in a smart
card,” Journal in computer virology, vol. 6, no. 4, pp. 343-351, 2010.

[5] G. Bouffard, J. Iguchi-Cartingy, and J.-L. Lanet, “Combined software
and hardware attacks on the java card control flow,” CARDIS, september
2011.

[6] E. Hubbers and E. Poll, “Transactions and non-atomic API calls in Java
Card: specification ambiguity and strange implementation behaviours,”
Radboud University Nijmegen, Dept. of Computer Science NIII-R0438,
2004.

[71 G. Barbu, H. Thiebeauld, and V. Guerin, “Attacks on java card 3.0
combining fault and logical attacks.” in CARDIS, ser. Lecture Notes
in Computer Science, D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny,
Eds., vol. 6035. Springer, 2010, pp. 148-163.

[8] E. Vetillard and A. Ferrari, “Combined attacks and countermeasures,”’
Smart Card Research and Advanced Application, pp. 133-147, 2010.

[9] T. Razafindralambo, G. Bouffard, and J.-L. Lanet, “A friendly frame-
work for hidding fault enabled virus for Java based smar tcard,” in 26th
Annual IFIP WG 11.3 Working Conference on Data and Applications
Security and Privacy DBSEC 2012, vol. 7371. Springer, 2012, pp.
122-128.

[10] A. Bkakria, G. Bouffard, J. Iguchy-Cartigny, and J.-L. Lanet, “OPAL:
an open-source Global Platform Java Library which includes the remote
application management over HTTP,” e-smart, september 2011.

