
FISSC: a Fault Injection and Simulation Secure
Collection

Louis Dureuil1,2,3?, Guillaume Petiot1,3??, Marie-Laure Potet1,3, Thanh-Ha
Le4, Aude Crohen4, and Philippe de Choudens1,2

1 Univ. Grenoble Alpes, F-38000 Grenoble, France.
2 CEA, LETI, MINATEC Campus, F-38054 Grenoble, France.

{louis.dureuil,philippe.de.choudens,cecile.dumas,jessy.clediere}@cea.fr
3 CNRS, VERIMAG, F-38000 Grenoble, France.
{louis.dureuil,marie-laure.potet}@imag.fr

4 Safran Morpho
{thanh-ha.le,aude.crohen}@morpho.com

Abstract. Applications in secure components (such as smartcards, mo-
bile phones or secure dongles) must be hardened against fault injection
to guarantee security even in the presence of a malicious fault. Crafting
applications robust against fault injection is an open problem for all ac-
tors of the secure application development life cycle, which prompted the
development of many simulation tools. A major difficulty for these tools
is the absence of representative codes, criteria and metrics to evaluate or
compare obtained results. We present FISSC, the first public code collec-
tion dedicated to the analysis of code robustness against fault injection
attacks. FISSC provides a framework of various robust code implemen-
tations and an approach for comparing tools based on predefined attack
scenarios.

1 Introduction

1.1 Security assessment against fault injection attacks

In 1997, Differential Fault Analysis (DFA) [6] demonstrated that unprotected
cryptographic implementations are insecure against malicious fault injection,
which is performed using specialized equipment such as a glitch generator, fo-
cused light (laser) or an electromagnetic injector [3]. Although fault attacks
initially focused on cryptography, recent attacks target non-cryptographic prop-
erties of codes, such as modifying the control flow to skip security tests [16] or
creating type confusion on Java cards in order to execute a malicious code [2].

Fault injections are modeled using various fault models, such as instruction
skip [1], instruction replacement [10] or bitwise and byte-wise memory and regis-
ter corruptions [6]. Fault models operate either at high-level (HL) on the source

? This work has been partially supported by the SERTIF project (ANR-14-ASTR-
0003-01): http://sertif-projet.forge.imag.fr.

?? This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-
LABX-0025).

http://sertif-projet.forge.imag.fr

code or at low-level (LL) on the assembly or even the binary code. Both kinds
of models are useful. HL models allow to perform faster and understandable
analyses supplying a direct feedback about potential vulnerabilities. LL models
allow more accurate evaluations, as the results of fault injection directly depend
on the compilation process and on the encoding of the binary.

Initially restricted to the domain of smartcards, fault attacks are nowadays
taken into account in larger classes of secure components. For example the Pro-
tection Profile dedicated to Trusted Execution Environment5 explicitly includes
hardware attack paths such as power glitch fault injection. In the near future, de-
velopers of Internet of Things devices will use off-the-shelf components to build
their systems, and will need means to protect them against fault attacks [8].

1.2 The need for a code collection

In order to assist both the development and certification processes, several tools
have been developed, either to analyze the robustness of applications against
fault injection [10,5,4,14,8,7,11,13], or to harden applications by adding software
countermeasures [15,9,12]. All these tools are dedicated to particular fault models
and code levels. The main difficulty for these tools is the absence of represen-
tative and public codes allowing to evaluate and compare the relevance of their
results. Partners of this paper are in this situation and have developed specific
tools adapted to their needs: Lazart [14] an academic tool targeting multiple
fault injection, Efs [4] an embedded LL simulator dedicated to developers and
Celtic [7] tailored for evaluators.

In this paper, we describe FISSC (Fault Injection and Simulation Secure
Collection), the first public collection dedicated to the analysis of secure codes
against fault injection. We intend to provide (1) a set of representative appli-
cations associated with predefined attack scenarios, (2) an inventory of classic
and published countermeasures and programming practices embedded into a set
of implementations, and (3) a methodology for the analysis and comparison of
results of various tools involving different fault models and code levels.

In Sec. 2, we explain how high-level attack scenarios are produced through
an example. We then present the organization and the content of this collection
in Sec. 3. Lastly in Sec. 4, we propose an approach for comparing attacks found
on several tools, illustrated with results obtained from Celtic.

2 The VerifyPIN Example

Fig. 1 gives an implementation of a VerifyPIN command, allowing to com-
pare a user PIN to the card PIN under the control of a number of tries. The
byteArrayCompare function implements the comparison of PINs. Both functions
illustrate some classic countermeasures and programming features. For example
the constants BOOL_TRUE and BOOL_FALSE encode booleans with values more

5 TEE Protection Profile. Tech. Rep. GPD SPE 021. GlobalPlatform, november 2014

robust than 0 and 1 that are very sensible to data fault injection. The loop of
byteArrayCompare is in fixed time, in order to prevent timing attacks. Finally,
to detect fault injection consisting in skipping comparison, a countermeasure
checks whether i is equal to size after the loop. The countermeasure function
raises the global flag g_countermeasure and returns.

1 BOOL VerifyPIN () {
2 g_authenticated = BOOL_FALSE;
3 if(g_ptc > 0) {
4 if(byteArrayCompare(g_userPin ,
5 g_cardPin , PIN_SIZE)
6 == BOOL_TRUE) {
7 g_ptc = 3;
8 g_authenticated = BOOL_TRUE;
9 return BOOL_TRUE;

10 } else {
11 g_ptc --;
12 return BOOL_FALSE;
13 }
14 } return BOOL_FALSE; }

15 BOOL byteArrayCompare(UBYTE* a1 ,
16 UBYTE* a2 , UBYTE size) {
17 int i;
18 BOOL status = BOOL_FALSE;
19 BOOL diff = BOOL_FALSE;
20 for(i = 0; i < size; i++) {
21 if(a1[i] != a2[i]) {
22 diff = BOOL_TRUE; } }
23 if(i != size) {
24 countermeasure (); }
25 if(diff == BOOL_FALSE) {
26 status = BOOL_TRUE;
27 } else { status = BOOL_FALSE;
28 } return status; }

Fig. 1: Implementation of functions VerifyPIN and byteArrayCompare

To obtain high-level attack scenarios, we use the Lazart tool [14] which
analyses the robustness of a source code (C-LLVM) against multiple control-
flow fault injections (other types of faults can also be taken into account). The
advantage of this approach is twofold: first, Lazart is based on a symbolic
execution engine ensuring the coverage of all possible paths resulting from the
chosen fault model; second, multiple injections encompass attacks that can be
implemented as a single one in other fault models or low-level codes. Thus,
according to the considered fault model, we obtain a set of significant high-level
coarse-grained attack scenarios that can be easily understood by developers.

We apply Lazart to the VerifyPIN example to detect attacks where an at-
tacker can authenticate itself with an invalid PIN without triggering a counter-
measure. Successful attacks are detected with an oracle, i.e., a boolean condition
on the C variables. Here: g_countermeasure != 1 && g_authenticated ==

BOOL_TRUE. We chose each byte of the user PIN distinct from its reference coun-
terpart. Table 1 summarizes, for each vulnerability, the number of required faults,
the targeted lines in the C code, and the effect of the faults on the application.

Number of faults Fault injection locations Effects

1 l. 25 invert the result of the condition

1 l. 4 invert the result of the condition

2
l. 20 do not execute the loop
l. 23 do not trigger the countermeasure

4 l. 21 (four times) invert each byte check

Table 1: High-level attacks found by Lazart and their effects

In FISSC, for each attack, we provide a file containing the chosen inputs
and fault injection locations (in terms of basic blocks of the control flow graph)

as well as a colored graph indicating how the control flow has been modified.
Detailed results for this example can be found on the website.6

3 The FISSC Framework

As pointed out before, FISSC targets tools working at various code levels and
high-level attack scenarios can be used as reference to interpret low-level attacks.
Then, we supply codes at various levels and the preconized approach is described
in Fig. 2 and illustrated in Sec. 4.

C code

assembly

binary

HL attack scenarios

LL attacks

attack matching

HL analysis

LL analysis

Fig. 2: Matching LL attacks with HL attack scenarios

In this current configuration, FISSC supports the C language and the ARM-
v7 M (Cortex M4) assembly. We do not distribute binaries targeting a specific
device, but they can be generated by completing the gcc linker scripts.

3.1 Contents and file organization

The first release of FISSC contains small basic functions of cryptographic im-
plementations (key copy, generation of random number, RSA) and a suite of Ver-
ifyPIN implementations of various robustness, detailed in section 3.2. For these
examples, Table 2 describes oracles determining attacks that are considered suc-
cessful. For instance attacks against the VerifyPIN command target either to
be authenticated with a wrong PIN or to get as many tries as wanted. Attacks
against AESAddRoundKeyCopy try to assign a known value to the key in order
to make the encryption algorithm deterministic. Attacks against GetChallenge
try to prevent the random buffer generation, so that the challenge buffer is left
unchanged. Attacks against CRT-RSA target the signature computation, so that
the attacker can retrieve a prime factor p or q of N .

Example Oracle

VerifyPIN g_authenticated == 1

VerifyPIN g_ptc >= 3

AES KeyCopy g_key[0] = g_expect[0] || ... || g_key[N-1] = g_expect[N-1]

GetChallenge g_challenge == g_previousChallenge

CRT-RSA (g_cp == pow(m,dp)% p && g_cq != pow(m,dq)% q)
|| (g_cp != pow(m,dp)% p && g_cq == pow(m,dq)% q)

Table 2: Oracles in FISSC

6 http://sertif-projet.forge.imag.fr/documents/VerifyPIN_2_results.pdf

http://sertif-projet.forge.imag.fr/documents/VerifyPIN_2_results.pdf

Each example is split into several C files, with a file containing the actual
code, and other files providing the necessary environment (e.g., countermeasure,
oracle, initialization) as well as an interface to embed the code on a device (types,
NVM memory read/write functions). This modularity allows one to use the
implementation while replacing parts of the analysis or interface environments.

3.2 The VerifyPIN Suite

Applications are hardened against fault injections by means of countermeasures
(CM) and programming features (PF). Countermeasures denote specific code
designed to detect abnormal behaviors. Programming Features denote imple-
mentation choices impacting fault injection sensitivity. For instance, introducing
function calls or inlining them introduces instructions to pass parameters, which
changes the attack surface for fault injections. Table 4 lists a subset of classic
and published PF and CM we are taking into account. The objective of the suite
is not to provide a fully robust implementation, but to observe the effect of the
implemented CM and PF on the produced attack scenarios.

HB FTL INL BK SC DT
scenarios for i faults

1 2 3 4 Σ

v0 2 0 0 1 3

v1 X 2 0 0 1 3

v2 X X X 2 1 0 1 4

v3 X X X X 2 1 0 1 4

v4 X X X X X 2 0 1 1 4

v5 X X X X 0 4 4 1 9

v6 X X X X 0 3 0 1 4

v7 X X X X X 0 2 0 0 2

Table 3: PF/CM embedded in VerifyPIN suite

PF

INL Inlined calls

FTL Fixed time loop

CM

HB Hardened booleans

BK Backup copy

DT Double test

SC Step counter

Table 4: List of CM/PF

Table 3 gives the distribution of CM and PF in each implementation (v2
is the example of Fig. 1). Hardened booleans protect against faults modifying
data-bytes. Fixed-time loops protect against temporal side-channel attacks. Step
counters check the number of loop iterations. Inlining the byteArrayCompare

function protects against faults changing the call to a NOP. Backup copy pre-
vents against 1-fault attacks targeting the data. Double call to byteArrayCompare
and double tests prevent single fault attacks, which become double fault attacks.
Calling a function twice (v5) doubles the attack surface on this function. Step
counters protect against all attacks disrupting the control flow integrity [9].

4 Comparing Tools

The HL scenarios and oracles defined in Sec. 2-3 allow for the comparison of
tools in the FISCC framework. In particular, the successful attacks discovered
by tools should cover the HL scenarios. In order to associate HL scenarios and

attacks we propose several Attack Matching criteria. Attack matching consists in
deciding whether some attacks found by a tool are related to attacks found by
another tool. An attack is unmatched if it is not related to any other attack.

In [5], HL faults are compared with LL faults with the following criterion:
attacks that lead to the same program output are considered as matching. This
“functional” criterion is not always discriminating enough. For instance, codes
like verifyPIN produce a very limited set of possible outputs (“authenticated”
or not). We propose two additional criteria:
Matching by address. Match attacks that target the same address. To match LL
and HL attacks, one must additionally locate the C address corresponding to
the assembly address of the LL attack.
Fault Model Matching. Interpret faults in one fault model as faults in the other
fault model. For instance, since conditional HL statements are usually compiled
to cmp and jmp instructions, it makes sense to interpret corruptions of cmp or
jmp instructions (in the instruction replacement fault model) as test inversions.

4.1 Case study

We apply our criteria to compare the results of Celtic and Lazart on the
example of Fig. 1. In our experiments, Celtic uses the instruction replacement
fault model, where a single byte of the code is replaced by another value at
runtime. Testing the possible values exhaustively, Celtic finds 432 successful
attacks. We then apply our two matching criteria to these results. Fig. 3 indicates
the number of successful attacks per address of assembly code, and the (manually
determined) correspondence between assembly addresses and C lines. The C lines
4, 20, 21, 23 and 25 correspond to the scenarios found by Lazart in Table 1.
They are matched by address with the attacks found by Celtic. Celtic attacks
that target a jump or a compare instruction are also matched by fault model.

4.2 Interpretation

Fault model matching can be used to quickly identify HL-attacks amongst LL-
attacks with only a hint of the correspondence between C and assembly, while
address matching allows to precisely find the HL-attacks matched by the LL-
attacks. Both matching criteria yield complementary results. For instance, at-
tacks at address 0x41eb are matched only by address, while attacks at 0x41fd
only by fault model.

Interestingly, some multiple fault scenarios of Lazart are implemented by
single fault attacks in Celtic. For instance, the 4-fault scenario of l.21 is imple-
mented with the attacks at address 0x41b6. In the HL scenario the conditional
test inside the loop is inverted 4 consecutive times. In the LL attacks, The corre-
sponding jump instruction is actually not inverted, but its target is replaced so
that it jumps to l.26 instead of l.22. These attacks are matched with our current
criteria, although they are semantically very different. Lastly, 20 LL-attacks re-
main unmatched. They are subtle attacks that depend on the encoding of the
binary or on a very specific byte being injected. For instance, at 0x41da, the

Fig. 3: Matching HL and LL attacks

value for BOOL_FALSE is replaced by the value for BOOL_TRUE. This is likely to
be hard to achieve with actual attack equipment.

In this example, attack matching criteria allows to show that Celtic attacks
cover each HL-scenario. Other tools can use this approach to compare their
results with those of Celtic and the HL-scenario of Lazart. Their results
should cover the HL-scenario, or offer explanations (for instance, due to the
fault model) if the coverage is not complete.

5 Conclusion

FISSC is available on request.7 It can be used by tool developers to evaluate
their implementation against many fault models and it can be contributed to
with new countermeasures (the first external contribution is the countermeasure
of [9]). We plan to add more examples in the future releases of FISSC (e.g.
hardened DES implementations) and to extend Lazart to simulate faults on
data.

References

1. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Chris-
tianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols, LNCS, vol.
1361, pp. 125–136. Springer (1998)

7 To request or contribute, send an e-mail to sertif-secure-collection@imag.fr.

2. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In: Gollmann, D., Lanet, J.L., Iguchi-Cartigny, J. (eds.) Smart
Card Research and Advanced Application. 9th IFIP WG 8.8/11.2 International
Conference. LNCS/Security & Cryptology, vol. 6035, pp. 148–163. Springer (2010)

3. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures. Pr. of the IEEE
100(11), 3056–3076 (2012)

4. Berthier, M., Bringer, J., Chabanne, H., Le, T.H., Rivière, L., Servant, V.: Idea:
Embedded fault injection simulator on smartcard. In: ESSoS. LNCS, vol. 8364, pp.
222–229. Springer (2014)

5. Berthomé, P., Heydemann, K., Kauffmann-Tourkestansky, X., Lalande, J.: High
Level Model of Control Flow Attacks for Smart Card Functional Security. In:
ARES 2012. pp. 224–229. IEEE (2012)

6. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Advances in Cryptology–EUROCRYPT97. pp.
37–51. Springer (1997)

7. Dureuil, L., Potet, M.L., Choudens, P.d., Dumas, C., Clédière, J.: From code review
to fault injection attacks: Filling the gap using fault model inference. In: 14th Smart
Card Research and Advanced Application Conference, CARDIS15. LNCS (2015)

8. Holler, A., Krieg, A., Rauter, T., Iber, J., Kreiner, C.: Qemu-based fault injection
for a system-level analysis of software countermeasures against fault attacks. In:
Digital System Design (DSD), Euromicro15. pp. 530–533. IEEE (2015)

9. Lalande, J., Heydemann, K., Berthomé, P.: Software countermeasures for control
flow integrity of smart card C codes. In: Pr. of the 19th European Symposium on
Research in Computer Security, ESORICS 2014. pp. 200–218 (2014)

10. Machemie, J.B., Mazin, C., Lanet, J.L., Cartigny, J.: SmartCM a smart card fault
injection simulator. In: IEEE International Workshop on Information Forensics
and Security. IEEE (2011)

11. Meola, M.L., Walker, D.: Faulty logic: Reasoning about fault tolerant programs. In:
19th European Symposium on Programming, ESOP. pp. 468–487. Springer (2010)

12. Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal verification of a
software countermeasure against instruction skip attacks. J. Cryptographic Engi-
neering 4(3), 145–156 (2014)

13. Pattabiraman, K., Nakka, N., Kalbarczyk, Z., Iyer, R.: Discovering application-
level insider attacks using symbolic execution. In: 24th IFIP TC 11 International
Information Security Conference, SEC 2009. pp. 63–75. Springer (2009)

14. Potet, M.L., Mounier, L., Puys, M., Dureuil, L.: Lazart: A symbolic approach
for evaluation the robustness of secured codes against control flow injections. In:
Seventh IEEE International Conference on Software Testing, Verification and Val-
idation, ICST 2014. pp. 213–222. IEEE (2014)

15. Séré, A., Lanet, J.L., Iguchi-Cartigny, J.: Evaluation of countermeasures against
fault attacks on smart cards. International Journal of Security and Its Applications
5(2) (2011)

16. Van Woudenberg, J.G., Witteman, M.F., Menarini, F.: Practical optical fault injec-
tion on secure microcontrollers. In: Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2011 Workshop on. pp. 91–99. IEEE (2011)

	FISSC: a Fault Injection and Simulation Secure Collection

