Evaluation of the Embedded Software Robustness
Against Intentional Fault Injections by Simulation

Maél Berthier?. Cécile Dumas!, Louis Dureuil’?, Thanh-Ha Le?, Marie-Laure Potet> Lionel Riviere?

ICEA-LETI

°’SAFRAN MORPHO
SVERIMAG, University of Grenoble

SERTIF project

e Evaluate software implementations against fault injection attacks targeting

data and control flow.
@ Propose robustness evaluation criteria of software implementations.
@ Compare the simulation tools independently developed by the partners.

@ Build a benchmark of smartcard applications directed towards fault injection.

CSimulation tools Robust /

e

/ Software to test /

~

CPerturbation attack@

Vulnerable /

Fault simulators

Lazart (by VERIMAG)

EFS (by MORPHO)

CELTIC (by CEA-LETI)

@ Embedded Fault Simulator: embedded into

@ C code robustness evaluation against fault
injection using symbolic execution.

the target device (smartcard,
micro-controller), at the low-level assembly

@ Native smartcard binaries simulation with
fault injection.

entry COde_ / Code to test / / Fault Model /
1 @ Fault mechanism: a self-test program with a (Simiat@ 7/ Reference Faults /
T[F e . CFG Mutation Mutant applill . - . . - . Execution
Vans o Coloring | "t/ "_Generation high priority level, granting access to critical l
for.body for.end mutant.l] 2 . . -
s e registers, memories and execution flow of the / it;;:;iiséful G Exiiiﬂﬁns 4 Gimulatod)
/ A/ Symbolic test SMa rtca rd .
it then land.Ihs.true case generation @ . . . / 0 1 /
\ Tj F P - o Fault models: code alterations (instruction race
P <

if.end

\

for.inc

Inconc lusive Robustness

if.then9 Attack path

@ Advantages:

skipping, instruction alteration), data
modification at register level.

@ Custom Domain Specific Language to
decode and execute native instructions.

@ Fault model: volatile memory perturbation,

@ Goal: Reach or avoid a CFG block. o fault injections on physical component.
N o side-channel observations. can model data and code faults.
@ Fault model: control-flow condition . User-defined vict |
_ _ EFS Handler Paran?ecters Q ser-acrined VvICtory oracies.
Inversion. < ;
250F 7 D) ' ' ¢ SimplePin
@ Based on Klee, a concolic tool for LLVM. @ 2 Testease Host . -
. . . . Re:lzg;?ieciilliult Generation Computer MSD] 6}'{!::)40(:: MOV A. RO
@ A complete diagnostic: activates all possible) H . . | 0x540d: CMP A, #0%h Replace
. . . : Attack Paths : ' .
paths and fault injections. R o IC Response | R { 0xB40e: JNC DO
. o - . : Inconclusive [j oF | B | - *'I]
@ Scales to multiple fault injection scenarios. . [Smartca”‘}
Combining high-level and low-level simulations Fault simulation benchmark
(Paper “Combining High-Level and Low-Level Approaches to Evaluate Software Implementations Robustness Against Multiple Fault Injection Attacks”, FPS 2014) G o) als .
o Observation: vulnerability sets detected by Lazart and EFS often @ Providing a common set of representative code examples (with or without
intersect, however each simulator also detects vulnerabilities that are not countermeasures), hardened against fault injection.
revealed by the others tool. @ Testing fault simulation tools on the benchmark to:
Example byteArrayCompare Lazart EFS o Quantify and qualify the robustness of code examples.
1/// Byte array comparis ; ' '
{[// Byte array comparison o erser an)d Fault Attacks Skipped ~ Attacks o Establish relevant comparisons between the tools.
3 int i = 0; - -
4 llbytelstatus = BOOL_FALSE; number Instructions Organization;
5 byte diff = BOOL_FALSE; .
6 for i(jif?é 1i[zﬁvigi$;[ﬂi;+> 0 0 0 0 @ Two categories of examples:
| e diff N EEO%ETEE; S00L FALSE)S 1 1 1 4 @ Code snippets to evaluate tools and their fault models.
i i == pinSize iff == _ : : : : :
10 status = BOOL_TRUE; g (1) é i e Full implementations, to qualify their relative robustness.
11} return status, .
12} . X 4+) @ For each code example, we provide:
@ Source code (in C).
Total 3 Total 6 o Victory oracle (conditions for an attack to be successful).
_] - @ Toolchain (OS, compiler) and compilation invocation.
Elxample verify PIN azart e Relevant information about the expected memory layout.
equal = BOOL_TRUE; .
2|for(i=0 ; i<pinSize; i++) { // Main comparison Fault Attacks Sk/pped Attacks
3 equal = equal & ((userPin[i] != cardPin[i]) 7 BOOL_FALSE : . .
) EOULTRUE); number instructions / Pass / oo 1 -
steplounter++; . . 00 . paSS
6|3t (equal == BOOL_TRUE) { 0 0 0 0 [merbe fop((Simltion
7 if (equal != BOOL_TRUE) // Double test
8 goto counter_measure;]. O].].
9 ptc = MAX TRIES; // PIN Try counter (PTC) backup / Failed /
10 ptcTst = -MAX TRIES; // Second backup for test))) 1
11 if(ptc != -ptcTst) // Verifies the new value / Pass /
g authgflz(i)cgzlelgtiril?e?juzi{:hentication status update 3 O 3 O / Vulnerable /4CSimulation Found
145L if(s1r:2EgggnE§§TigUégégéI;XL_VALUE + 4) 4 1 4 O snippet B tools Vulnerability? '
1? ! elszeiuilr(lenticated = 0;) 5—|_]- m
18 if (stepCounter == INITIAL VALUE + 4
ég) goto failure; Total 3 Total 3 / Pass /
/ Vulnerable A(Simulation Found
. - snippet C 00ls Vulnerability? . .
e Optimization: combining the simulation tools revealed enhanced — : i Tool 2: pass 48 Tool 3: pass 54
vulnerability detection, accuracy and coverage.
byteArrayCompare verifyPIN
Approach Tests Attacks Detection Time Approach Tests Attacks Detection Time Pe rSPECtlveS Of S ERTI F
Rate Rate _ _
Lazart 56 27 (3) 117% ~ 3 Lazart 29 18(3) 16.6% - 3 @ Extension to secure elements or smart secure devices.
EFS 2652 204 (6) 2,9% ~ 9mn EFS 4528 72(2) 2,7% ~ 17mn @ Robustness against high-order fault injection.
Both 56+ 572 20 (4 20% ~ 2 Both 494720 14 (3 21.4% =~ 1.5 - - -
° il 4) i il 2 i G) ’ il @ Studies of compiler impact on robustness and counter-measures.
Agence ;\'aliuna.l.(.e. (I._.e la Rechg.r_c_he /.-7/ 0 E S g FR ﬁ N V
DGA ASTRID N erimac
Morpho

SERTIF: ANR-14-ASTR-0003-01 Simulation for the Evaluation of Robustness of embedded Applications against Fault injection.

