
Evaluation of the Embedded Software Robustness
Against Intentional Fault Injections by Simulation

Maël Berthier2, Cécile Dumas1, Louis Dureuil1,3, Thanh-Ha Le2, Marie-Laure Potet3, Lionel Rivière2
1CEA-LETI

2SAFRAN MORPHO3VERIMAG, University of Grenoble

SERTIF project
Evaluate software implementations against fault injection attacks targeting
data and control flow.
Propose robustness evaluation criteria of software implementations.
Compare the simulation tools independently developed by the partners.
Build a benchmark of smartcard applications directed towards fault injection.

Software to test

Simulation tools

Perturbation attacks

Evaluation

Robust

Vulnerable

Fault simulators
Lazart (by VERIMAG)

C code robustness evaluation against fault
injection using symbolic execution.

	   	   	   	   	  

appli.ll	  
CFG	  

Coloring	  
Mutant	  

Generation	  Attack	  
Objective	  

1	  
appli.ll	  Mutation	  

Strategy	  

mutant.ll	  

Symbolic	  test	  
case	  generation	  

✔	  

2	  

Attack	  path	   Inconclusive	   Robustness	  

3	  

Goal: Reach or avoid a CFG block.
Fault model: control-flow condition
inversion.
Based on Klee, a concolic tool for LLVM.
A complete diagnostic: activates all possible
paths and fault injections.
Scales to multiple fault injection scenarios.

EFS (by MORPHO)
Embedded Fault Simulator: embedded into
the target device (smartcard,
micro-controller), at the low-level assembly
code.
Fault mechanism: a self-test program with a
high priority level, granting access to critical
registers, memories and execution flow of the
smartcard.
Fault models: code alterations (instruction
skipping, instruction alteration), data
modification at register level.
Advantages:

fault injections on physical component.
side-channel observations.

	  

1	  
EFS	  Handler	  

Attack	  
Parameters	  

IC	  Response	  

Testcase	  
Generation	  

Host	  
Computer	  Response	  &	  Fault	  

classification	  

✔	  
Smartcard	  

3	  

2	  4	  

:	  Attack	  Paths	  

:	  Inconclusive	  

:	  Robustness	  

CELTIC (by CEA-LETI)

Native smartcard binaries simulation with
fault injection.

Custom Domain Specific Language to
decode and execute native instructions.
Fault model: volatile memory perturbation,
can model data and code faults.
User-defined victory oracles.

Combining high-level and low-level simulations
(Paper “Combining High-Level and Low-Level Approaches to Evaluate Software Implementations Robustness Against Multiple Fault Injection Attacks”, FPS 2014)

Observation: vulnerability sets detected by Lazart and EFS often
intersect, however each simulator also detects vulnerabilities that are not
revealed by the others tool.

Example byteArrayCompare
1 // Byte array comparison
2 static byte byteArrayCompare(byte* a1, byte* a2){
3 int i = 0;
4 byte status = BOOL_FALSE;
5 byte diff = BOOL_FALSE;
6 for (i=0; i<pinSize; i++)
7 if (a1[i] != a2[i])
8 diff = BOOL_TRUE;
9 if ((i == pinSize) && (diff == BOOL_FALSE))

10 status = BOOL_TRUE;
11 return status;
12 }

Lazart EFS
Fault

number
Attacks Skipped

instructions
Attacks

0 0 0 0
1 1 1 4
2 1 2 1
3 0 3 1
4 1 4+ 0

Total 3 Total 6

Example verifyPIN
1 equal = BOOL_TRUE;
2 for(i=0 ; i<pinSize; i++) { // Main comparison
3 equal = equal & ((userPin[i] != cardPin[i]) ? BOOL_FALSE :

BOOL_TRUE);
4 stepCounter++;
5 }
6 if(equal == BOOL_TRUE) {
7 if(equal != BOOL_TRUE) // Double test
8 goto counter_measure;
9 ptc = MAX_TRIES; // PIN Try counter (PTC) backup

10 ptcTst = -MAX_TRIES; // Second backup for test
11 if(ptc != -ptcTst) // Verifies the new value
12 goto counter_measure;
13 authenticated = 1; // Authentication status update
14 if(stepCounter == INITIAL_VALUE + 4)
15 return EXIT_SUCCESS;
16 } else {
17 authenticated = 0;
18 if (stepCounter == INITIAL_VALUE + 4)
19 goto failure;
20 }

Lazart EFS
Fault

number
Attacks Skipped

instructions
Attacks

0 0 0 0
1 0 1 1
2 2 2 1
3 0 3 0
4 1 4 0

5+ 1
Total 3 Total 3

Optimization: combining the simulation tools revealed enhanced
vulnerability detection, accuracy and coverage.

byteArrayCompare
Approach Tests Attacks Detection

Rate
Time

Lazart 56 27 (3) 11,7% ≈ 3s
EFS 2652 204 (6) 2,9% ≈ 9mn
Both 56 + 572 20 (4) 20% ≈ 2mn

verifyPIN
Approach Tests Attacks Detection

Rate
Time

Lazart 49 18 (3) 16,6% < 3s
EFS 4528 72 (2) 2,7% ≈ 17mn
Both 49 + 720 14 (3) 21.4% ≈ 1.5mn

Fault simulation benchmark
Goals:

Providing a common set of representative code examples (with or without
countermeasures), hardened against fault injection.
Testing fault simulation tools on the benchmark to:

Quantify and qualify the robustness of code examples.
Establish relevant comparisons between the tools.

Organization:
Two categories of examples:

Code snippets to evaluate tools and their fault models.
Full implementations, to qualify their relative robustness.

For each code example, we provide:
Source code (in C).
Victory oracle (conditions for an attack to be successful).
Toolchain (OS, compiler) and compilation invocation.
Relevant information about the expected memory layout.

Vulnerable

snippet A
Simulation

tools

Found

Vulnerability?

Pass

Failed

Vulnerable

snippet B
Simulation

tools

Found

Vulnerability?

Pass

Failed

Vulnerable

snippet C
Simulation

tools

Found

Vulnerability?

Pass

Failed

8

6

10

12 16

21

7

Tool 2: pass 48 Tool 3: pass 54

Tool 1: pass 55

Perspectives of SERTIF
Extension to secure elements or smart secure devices.
Robustness against high-order fault injection.
Studies of compiler impact on robustness and counter-measures.

SERTIF: ANR-14-ASTR-0003-01 Simulation for the Evaluation of Robustness of embedded Applications against Fault injection.


