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e Evaluate software implementations against fault injection attacks targeting

data and control flow.
@ Propose robustness evaluation criteria of software implementations.
@ Compare the simulation tools independently developed by the partners.

@ Build a benchmark of smartcard applications directed towards fault injection.
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@ Embedded Fault Simulator: embedded into

@ C code robustness evaluation against fault
injection using symbolic execution.

the target device (smartcard,
micro-controller), at the low-level assembly

@ Native smartcard binaries simulation with
fault injection.
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@ Advantages:

skipping, instruction alteration), data
modification at register level.

@ Custom Domain Specific Language to
decode and execute native instructions.

@ Fault model: volatile memory perturbation,

@ Goal: Reach or avoid a CFG block. o fault injections on physical component.
N o side-channel observations. can model data and code faults.
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Combining high-level and low-level simulations Fault simulation benchmark
(Paper “Combining High-Level and Low-Level Approaches to Evaluate Software Implementations Robustness Against Multiple Fault Injection Attacks”, FPS 2014) G o) als .
o Observation: vulnerability sets detected by Lazart and EFS often @ Providing a common set of representative code examples (with or without
intersect, however each simulator also detects vulnerabilities that are not countermeasures), hardened against fault injection.
revealed by the others tool. @ Testing fault simulation tools on the benchmark to:
Example byteArrayCompare Lazart EFS o Quantify and qualify the robustness of code examples.
1/// Byte array comparis ; ' '
{[// Byte array comparison o erser an)d Fault  Attacks Skipped ~ Attacks o Establish relevant comparisons between the tools.
3 int i = 0; - -
4 llbytelstatus = BOOL_FALSE; number Instructions Organization;
5 byte diff = BOOL_FALSE; .
6 for i(jif?é 1i[zﬁvigi$;[ﬂi;+> 0 0 0 0 @ Two categories of examples:
| e diff N EEO%ETEE; S00L FALSE)S 1 1 1 4 @ Code snippets to evaluate tools and their fault models.
i i == pinSize iff == _ : : : : :
10 status = BOOL_TRUE; g (1) é i e Full implementations, to qualify their relative robustness.
11} return status, .
12} . X 4+ ) @ For each code example, we provide:
@ Source code (in C).
Total 3 Total 6 o Victory oracle (conditions for an attack to be successful).
_ ] - @ Toolchain (OS, compiler) and compilation invocation.
Elxample verify PIN azart e Relevant information about the expected memory layout.
equal = BOOL_TRUE; .
2|for(i=0 ; i<pinSize; i++) { // Main comparison Fault Attacks Sk/pped Attacks
3 equal = equal & ((userPin[i] != cardPin[i]) 7 BOOL_FALSE : . .
) EOULTRUE); number instructions / Pass / oo 1 -
steplounter++; . . 00 . paSS
6|3t (equal == BOOL_TRUE) { 0 0 0 0 [ merbe fop((Simltion
7 if (equal != BOOL_TRUE) // Double test
8 goto counter_measure; ]. O ]. ].
9 ptc = MAX TRIES; // PIN Try counter (PTC) backup / Failed /
10 ptcTst = -MAX TRIES; // Second backup for test ) ) ) 1
11 if(ptc != -ptcTst) // Verifies the new value / Pass /
g authgflz(i)cgzlelgtiril?e?juzi{:hentication status update 3 O 3 O / Vulnerable /4CSimulation Found
145L if(s1r:2EgggnE§§TigUégégéI;XL_VALUE + 4) 4 1 4 O snippet B tools Vulnerability? '
1? ! elszeiuilr(lenticated = 0; ) 5—|_ ]- m
18 if (stepCounter == INITIAL VALUE + 4
ég ) goto failure; Total 3 Total 3 / Pass /
/ Vulnerable A(Simulation Found
. - . . . . . snippet C 00ls Vulnerability? . .
e Optimization: combining the simulation tools revealed enhanced — : i Tool 2: pass 48 Tool 3: pass 54
vulnerability detection, accuracy and coverage.
byteArrayCompare verifyPIN
Approach  Tests Attacks Detection Time Approach  Tests Attacks Detection  Time Pe rSPECtlveS Of S ERTI F
Rate Rate _ _
Lazart 56 27 (3) 117%  ~ 3 Lazart 29 18(3) 16.6% - 3 @ Extension to secure elements or smart secure devices.
EFS 2652 204 (6) 2,9% ~ 9mn EFS 4528 72(2) 2,7% ~ 17mn @ Robustness against high-order fault injection.
Both 56+ 572 20 (4 20% ~ 2 Both 494720 14 (3 21.4% =~ 1.5 - - -
° il 4) i il 2 i G) ’ il @ Studies of compiler impact on robustness and counter-measures.
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