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Abstract. We propose an end-to-end approach to evaluate the robust-
ness of smartcard embedded applications against perturbation attacks.
Key to this approach is the fault model inference phase, a method to
determine a precise fault model according to the attacked hardware and
to the attacker’s equipment, taking into account the probability of occur-
rence of the faults. Together with a fault injection simulator, it allows to
compute a predictive metrics, the vulnerability rate, which gives a first
estimation of the robustness of the application. Our approach is backed
up by experiments and tools that validate its potential for prediction.
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1 Introduction

1.1 Context

Secure devices (smartcards, security tokens, and in the near future mobile phones)
are subject to drastic security requirements and certification processes. They
must be protected against high level attack potential as described in [1] (i.e.
multiple attackers with a high level of expertise, using sophisticated equipments,
etc.). As a result, norms (for instance, the Common Criteria) require the vul-
nerability analysis to follow the state-of-the-art in terms of attacks.4 Nowadays,
a very studied class of attack is perturbation attack, which is performed using
electrical glitches, focalised light [7] or electromagnetic injectors [12].5 Progress
‹ This work has been partially supported by the project SERTIF (ANR-14-ASTR-
0003-01).

‹‹ This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-
LABX-0025).

4 We target here the AVA class, dedicated to vulnerability assessment.
5 Sometimes referred to as "EM probes".



in perturbation techniques allow multiple attacks over the course of a single
execution [10] (also known as high-order attacks).

Perturbation attacks typically result in fault injection, which modifies the
data and/or control flow of the execution. Fault injection can be exploited to
access or modify secure assets on the card and to produce faulty ciphertexts
in cryptographic contexts [8]. Codes must be hardened using software counter-
measures (redundant tests, integrity counters, etc.) in addition to the already
mandatory hardware countermeasures. Qualifying the resulting robustness of
embedded software against fault injection is a very challenging task. It is nowa-
days a mainly hand-crafted process that requires various skills from the im-
plied people. Furthermore, the ever-evolving state of the art requires periodic
re-evaluations of previously certified embedded software.

1.2 Perturbation attack and Fault model

When assessing robustness, evaluators limit the type of faults they consider to
a specific fault model. Fault models vary greatly in the literature, with volatile
or non-volatile bit set or reset, register corruption or modifications of a byte
or a word in memory [3, 7, 16], and higher-level effects such as test inversion,
data reassignment and instruction replacement [5, 11, 13]. The variability of fault
models can be explained by several factors: the memory technologies used in the
card, its logic circuits, the available hardware countermeasures, the equipment of
the attacker and the attack parameters: for instance, in EM injectors the model
depends on the angle between the injector and the plane of the card [12].

1.3 Evaluation process

Assessing the robustness of an embedded software against fault injection spans
several subprocesses. Code analysis aims to detect vulnerabilities in the software
from the source and assembly codes and looks for attack paths using a given
fault model. Penetration tests consist in performing perturbation attacks on the
card according to the hardware technology and with some knowledge about the
behaviour of the application (for instance, obtained with power consumption
analysis).

Based on the results of these two processes, an attack potential is determined,
according to a scoring grid [1]. Attack potential takes into account several fac-
tors such as elapsed time, the attacker’s expertise, knowledge of the target of
evaluation (TOE), equipment and the availability of open samples. For each fac-
tor, a table establishes the correspondence between possible levels for this factor
and identification and exploitability ratings. For instance, the knowledge of the
TOE can be public, restricted, sensitive, critical or very critical. The final rating
combines the values of identification and exploitability associated to each factor.

1.4 Open problems

Hardening and evaluating embedded software against fault injection is a hot
topic as demonstrated by the number of recent studies dedicated to this subject.



As a consequence of the first attack against RSA [8], countermeasures are pro-
posed in cryptographic contexts [7, 10], some of which are formally proved to be
robust against a given fault model [9]. Unfortunately, due to the possibility for
multiple fault injection, countermeasures can also be attacked [14]. Thus, adding
the suitable set of countermeasures becomes a very complex task. Moreover, as
pointed out by S. Mangard in his keynote at CARDIS 2014,6 a significant part
of the vulnerabilities discovered by evaluators implies non-cryptographic code.

Another research direction is the development of automated tools simulating
fault injection, at the source code [4, 6, 13] or at the binary levels [5, 11]. These
tools can be combined with a proof-based approach in order to qualify the ro-
bustness of the considered applications, as shown in [4, 9, 13]. Fault injection
simulators provide exhaustiveness and reproducibility. But, in return, these tools
generally produce a very large number of potential attacks, which requires man-
ual examination to decide if the attacks are actually a serious threat. Indeed,
these tools being dedicated to some specific fault models, the attacks they detect
are not necessarily achievable on a given hardware component.

1.5 Our approach

In this paper, our contributions are the following: we propose an end-to-end
approach, and tools, to respond to these challenges. The proposed approach
introduces a preparatory phase designed to infer the most suitable fault model
according to the considered hardware, independently of a given application. Fault
models take into account the probability of occurrence of faults. The second step
is fault injection simulation, which explores the consequences of the obtained
fault model on the application. Lastly, we propose a predictive vulnerability
rate, based on the results provided by both the inference and fault injection
simulation phases, allowing us to classify attacks and to measure robustness. As
we will see, this rating gives a partial measure of the attack potential, requiring
no penetration testing campaign. Fig. 1 summarizes the approach.

The proposed approach allows the evaluator to fine-tune the fault model in
order to improve the result of fault injection simulation, and makes the fault
model reusable between applications using the same card. Although an alterna-
tive method to find fault models through experiments has been proposed in [15],
it is not part of an end-to-end process, which is the specificity of our approach.
In particular, to our knowledge, no other attempt has been made to combine the
results of a fault model deduced at the card level with fault injection simulation,
with the goal of producing a vulnerability rating at the application level.

The remainder of this paper is organized as follows: section 2 proposes a
formalization of the fault models which can be produced by the inference phase;
section 3 proposes a methodology for fault model inference and illustrates it on
a case study; section 4 presents CELTIC, a fault injection simulator, and defines
the vulnerability rate and sensibility of a location; finally, section 5 presents

6 "The if statement that surrounds the cryptographic implementations".



Fault Model

Application Attacker Knowledge

Fault Model
Inference

Smartcard Attacker Equipment

Fault Injection
Simulator

Successful Attacks

Rating

Vulnerability Rate

Device level
Application level

Fig. 1. The overall approach

experiments we conducted to evaluate the vulnerability rate, and gives some
future perspectives.

2 Fault model formalization

Fault models are a key part of our approach: they must be easy to specify as they
serve as input of fault injection simulation; they must be low-level enough to be
described as an output of fault model inference; lastly we aim to retain enough
expressiveness to be compatible with classic fault models such as instruction skip
or volatile bit (re)set.

2.1 Fault and Fault Model

With this in mind, we define a location, an instant, a fault and a fault model.
The location and instant express the classic time and space characteristics of a
fault.

Definition 1. Location ` “ pstorage_type, idq: An abstract storage unit of type
storage_type (e.g., non-volatile memory such as EEPROM, volatile memory
such as RAM, registers) uniquely identified by id (an address in memory, a
register name or number, etc.).

Definition 2. Instant i: An abstract value that identifies when a fault occurs.
It can be expressed in seconds from the beginning of the execution, in numbers
of loads from a given location, or number of loads/stores from any location.

Definition 3. Fault pi, `, a, bq: A replacement b of the value a returned by a load
from location ` at the instant i.



Definition 4. Fault model FMd,e: A set of sequences of faults that can actually
be injected during the execution of any program on a device d with the perturba-
tion equipment e.

While this definition of a fault may seem restrictive, it covers classic fault
models as well as combination thereof, and faults on code and data:

– Volatile bit (re)set or byte change on code or data. Set of faults that modify a
load of the address corresponding to the code or data to the specified value.

– Instruction skip (NOP). In this model, instructions are skipped, i.e., replaced
by NOP (no operation) instructions. The NOP fault model is a set of se-
quences of faults that replace the loads of the original opcodes and operands
of the skipped instructions with NOP opcodes.

– Non-volatile faults. Set of sequences of faults that replace the original value
returned by all loads from the affected location with the modified value until
the next store to the affected location.

2.2 Probabilistic Fault Model

Probabilistic fault models refine fault models by adding two additional key pieces
of information: The probability of occurrence of each kind of fault and their
relation to the attack parameters. This way, we aim to capture the notion of
plausibility of a fault.

Definition 5. Attack Parameters p: A tuple of physical quantities that the at-
tacker can measure and choose in a given range of values. We denote as P the
space of the attack parameters.

Definition 6. Probabilistic Fault Model Md,e:

PrpF “ f | pq (1)

where F is a random variable valued in the domain of faults, and represents the
fault injected during an attack on device d with equipment e, where f denotes a
specific sequence of faults, and p the attack parameters.

In section 3.2, we conduct fault model inference on a commercial, ARMv7-M,
secure smartcard (denoted card A) using EM injection.7 In EM injection, the
attack parameters are a tuple p “ pθ, x, y, z, tq, where θ is the angle between
the probe and the plane of the card, x, y and z give the spatial localization
of the probe relatively to the card, and t is the delay before the EM field is
applied. Table 1 presents the resulting probabilistic fault model for card A with
P “ tp´90˝, x0, y0, z0, t0`jδq | j P Nu, with x0, y0, z0, t0 and δ chosen constants.

7 Our EM injector is made of small copper wire loops (100µm), driven by a 500A
current during 10ns.



Table 1. Probabilistic Fault Model for card A under EM perturbation

Fault Sequence Probability
ă pij , `j , a, 0q ą| a ‰ 0 4.8%

ă pij , `j , a, bq ą| a ‰ 0^ |a´b|
a
ď 1% 1.8%

ă pij , `j , a, bq ą| a ‰ 0^ 1% ă
|a´b|

a
ď 20% 1.6%

ă pij , `j , a, bq ą| a ‰ 0^ b ‰ 0^ |a´b|
a
ą 20% 1.3%

ă pij , `j , a, 0q, pij`1, `j`1, a
1, 0q ą| a ‰ 0^ a1 ‰ 0 0.5%

ă ∅ ą (No fault observed) 90%

3 Fault Model Inference

Probabilistic fault model inference is performed in three steps.
Step 1. Parameter discovery: we determine a space P0 of attack parameters

where faults occur reasonably often and whose size is small enough to carry the
rest of the process.

Step 2. Raw fault model construction: we perform many perturbation at-
tacks for each parameter p P P0 on the target device running a specific program
called the fault detection program.

Step 3. Fault model generalization: we manually infer a more general fault
model extending parameters and values.

We detail each of these steps and illustrate them in this section. In the
traditional approach, testers perform step 1 identically, while step 2 is conducted
directly on the tested application and step 3 is missing, which leads to suboptimal
code reviews.

3.1 Fault Detection Program

In [15], the authors propose a method called fault model extraction to estab-
lish a fault model from observations of the result of perturbation attacks on a
specific test program. But in our understanding, little is done to ensure that
the interpretation matches the fault that is actually injected. This is however
a difficult problem, because an observation can result from various faults (for
instance, a fault on data can result from a volatile bit reset in memory, or from a
faulty store instruction). While the exact fault is not of interest when attacking
a single application (only the success of the attack matters), it becomes crucial
to eliminate context-dependent results when working at the device level.

Our specifically designed fault detection program is a first step in this di-
rection. It directly outputs the fault injected during an execution under pertur-
bation attack, and uses a sentinel to give us confidence that this observation
matches the actual injected fault.

Listing 1.1 is an excerpt of the fault detection program, that targets an
ARMv7-M architecture and aims at detecting EEPROM faults. Initially, r0
points to the start of an EEPROM buffer, r1 to the start of a RAM buffer,
r2 and r3 to different parts of the output buffer. The program performs a copy



of the EEPROM buffer to the output buffer and a copy of the RAM buffer to the
output buffer. This program is put in RAM and ran from there. We then perform
perturbation attacks to see the faults injected in EEPROM copied to the output
buffer. This way, we can see how many EEPROM locations are perturbed as
well as the injected values.

The copy of the RAM buffer acts as the sentinel. If the RAM copy is faulty,
then it means that the attack perturbed the RAM or registers. In such case, we
cannot guarantee the integrity of the code of the fault detection program, and
we must discard the result.

This fault detection program can easily be adapted to other devices and
architectures as long as they allow execution from RAM. Once the EEPROM
fault model has been established, we can swap the roles of RAM and EEPROM
in the program to establish the RAM fault model.

; main_loop:
58: ldrb r5, [r0, #0] ; r5 <- @EEPROM
5a: strb r5, [r2, #0] ; r5 -> @IO_EEPROM
5c: ldrb r5, [r1, #0] ; r5 <- @RAM
5e: strb r5, [r3, #0] ; r5 -> @IO_RAM
60: add.w r0, r0, #1 ; @EEPROM += 1
64: add.w r1, r1, #1 ; @RAM += 1
68: add.w r2, r2, #1 ; @IO_EEPROM += 1
6c: add.w r3, r3, #1 ; @IO_RAM += 1

Listing 1.1. Fault detection program for card A

We now apply the three steps of fault model inference to card A.

3.2 Case Study/Step 1: Parameter Discovery

We tested the influence of the angle θ and the position (x, y) of the injector
relatively to the surface of the chip, with z at a fixed value z0. Regarding the
influence of θ, and in accordance with the state of the art [12], we found a
majority of bitset faults with the injector parallel to the card (e.g., θ “ 00), and
a majority of bit reset faults the injector orthogonal (´900). Fig. 2 shows an
overlay at (x, y) positions where faults occurred for a fixed θ angle.

3.3 Case Study/Step 2: Raw Fault Model Construction

We attacked the device running our fault detection program repeatedly. We
denote as a the value in the EEPROM buffer in the fault detection program.
We chose P0 “ tp´90

0, x0, y0, z0, t0 ` 10kq | k P t0, . . . , 39uu, with 300 values a
randomly chosen in [0, 65535] (we additionally tested the special values 0 and
FFFF). For each pair (p, a) of parameter and input value, we performed 30
repetitions, for a total of 30ˆ 40ˆ 300 “ 360000 repetitions which resulted in a
10 days process. From the raw results, we generated Fig. 3, a heat map of the
probability that a value a be replaced by the value b.



Fig. 2. (x, y) positions where an EEPROM fault is injected with θ “ ´900
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Fig. 3. Heat map of the probability of replacing a with b
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Fig. 4. Histogram of the repartition of perturbed values as a function of their distance
to the original values

3.4 Case Study/Step 3: Fault Model Generalization

Fault model generalization is a necessary manual step taken to extend the fault
model from the tested parameters to a bigger space of parameters and to gener-
alize the model from our fault detection program to any application. To extend
the fault model from the tested values to any value, we noticed in Fig. 3 that
a majority of faults reset the original halfword a to 0, but a significant part
of the faults result in slight alteration of a, i.e., the perturbed value b is such
that the relative difference dpa, bq “ |a´b|

a is small.8 We used this knowledge to
build the bins of the histogram in Fig. 4, which illustrates the repartition of the
probabilities of occurrence of the faults as a function of dpa, bq. We can see the
prevalence of the zero (dpa, 0q “ 1), and of the smallest values of the function
(when dpa, bq ă 0.01), that match the probabilities summarized in Table 1 of
section 2.2.

To generalize the space of attack parameters to: P “ tp´900, x0, y0, z0, t0 `
jδq | j P Nu, we observed the probability of fault injection as a function of time
(Fig. 5) and noticed a periodicity δ “ 720ns.

Moreover, we observed a relation between the position of the perturbed half-
word in the EEPROM buffer and the time parameter. Specifically, if t “ t0` jδ,
then the jth halfword of the buffer is perturbed. This property is essential to
generalize the inferred fault model to any application under test as it ensures
that there exists a range of time parameters such that any EEPROM location

8 The hamming distance was considered, but gave results harder to use with our sim-
ulation tool.
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Fig. 5. Probability of fault as a function of time

accessed at some point in the application can be perturbed. Although it does
not explicitly give us the correct time parameter, we see in section 4.2 that only
its existence is required for vulnerability rating. To our knowledge, such prop-
erty expressing the relation between the attack parameters and the space-time
characteristics of the fault have not been described in the literature.

3.5 Variability of fault models

Table 2 summarizes the probabilistic fault model we inferred on a secure smart-
card B that uses a proprietary CISC instruction set. We attacked with a laser,
and chose P “ tppower “ 1W, spot size “ 20µm, λ “ 980nm, x “ x0, y “
y0, d “ 100ns, t “ t0 ` jδ) }, where λ is the wavelength of the laser, and d the
duration of a laser shot. Comparing the two fault models, we can notice that
card B puts values at 0 with much more consistency, but can perturb between
1 and 6 consecutive bytes whereas faults in card A typically perturb a single
halfword. This illustrates the variability of fault models, which is linked to the
attacked hardware and to the equipment of the attacker.

4 Assessing Robustness at the Application Level

4.1 Automatic Code Analysis

The next step of our approach (see Fig. 1) consists in simulating fault injection
at the application level. To do so, we designed and implemented CELTIC,9 a
9 CEsti-LeTi Integrated Circuit



Table 2. Fault model for card B

Faults Probability
ă pij , `j , a, 0q ą 4.32%

ă pij , `j , a0, 0q, pij`1, `j`1, a1, 0q ą 2.93%
ă pij , `j , a0, 0q, pij`1, `j`1, a1, 0q, pij`2, `j`2, a2, 0q ą 3.13%

ă pij , `j , a0, 0q, . . . , pij`3, `j`3, a3, 0q ą 2.98%
ă pij , `j , a0, 0q, . . . , pij`4, `j`4, a4, 0q ą) 6.56%
ă pij , `j , a0, 0q, . . . , pij`5, `j`5, a5, 0q ą 2.48%

ă ∅ ą (No fault injected) 77.58%

simulator of native smartcard binaries, able to simulate fault injection. CELTIC
was implemented in C++.

Listing 1.2 provides a pseudo algorithm for CELTIC. The simulator starts
classically with a golden run (variable Xref) of the tested native smartcard appli-
cation, i.e., a run without fault injection (function simulateWithoutFault). The
golden run allows to gather information which is used to identify all locations that
are accessed during the execution, where faults are susceptible of being injected.
CELTIC can be configured to use any probabilistic fault model Md,e inferred
following the process of section 3, according to the definition given in section 2.1.
Each possible sequence of faults f “ă pi0, `0, a0, b0q, . . . , pik, `k, ak, bkq ą is gen-
erated from all sequences of accesses ă pi0, `0, a0q, . . . , pik, `k, akq ą in the golden
run that match the faults described by Md,e (function findAllFaults). For each
f , the algorithm performs an attack, i.e., a simulation where the matching se-
quence is replaced with the sequence ă pi0, `0, b0q, . . . , pik, `k, bkq ą (function
simulateWithFaults). A user-provided oracle on the state of the simulated pro-
cessor allows to filter the successful attacks (function isAttackSuccessful).10 We
denote as FS (variable successful) the set of faults that lead to successful at-
tacks, and F (variable attacks) the set of all performed attacks. FS is used as an
input to compute the vulnerability rate, according to the probability attached
to each kind of faults in the fault model.

def celtic(program , faultModel , isAttackSuccessful ):
attacks = set ()
successful = set ()
Xref = simulateWithoutFault(program)
for f in findAllFaults(Xref , faultModel ):

attacks.add(f)
Xfault = simulateWithFaults(program , f)
i f isAttackSuccessful(Xfault ):

successful.add(f)
return successful , attacks

Listing 1.2. Pseudo-algorithm of CELTIC

10 For instance, in a PIN verification one can check that the authentication token is
true even though the provided PIN is wrong.



4.2 Vulnerability Rate

At its core, the vulnerability rate of the product describes how easy it is for the
attacker to perform a successful attack. We propose the following definition:

Definition 7. Vulnerability Rate V: Let P be the space of attack parameters,
Md,e be a probabilistic fault model, and FS be the set of successful attacks.

V “ PrpAttack is successfulq

“
ÿ

pPP
PrpAttack is successful | pq ¨ Prppq

V “
ÿ

pPP

ÿ

fPFS

PrpF “ f | pq

looooooooooomooooooooooon

Fault Model & CELTIC

¨ Prppq
loomoon

Attacker choice

(2)

where Prppq is the probability that the attacker chooses the parameters p for
the perturbation attack.

Remark 1. Since we sum the space of attack parameters P, we do not need to
know the explicit attack parameters p that contribute to V.

Prppq depends on the attacker model. In the general case it can follow any
law of probability, but we propose several typical models that suit the practice
of the evaluators:

Equiprobable attacker. An attacker without knowledge does not favor any attack,
i.e., @p P P, Prppq “ 1

|P| :

Vequi “

ř

pPP

ř

fPFS

PrpF “ f | pq

| P |
(3)

Realistic Attacker. In practice, the attacker has some knowledge of the parame-
ters to use, for instance through side-channel information on the attacked appli-
cation, and will use this knowledge to apply the equiprobable model on a reduced
space P 1 of attack parameter values, that still contains the attack parameters p
that contribute to V.

All-knowing attacker. An all-knowing, ideal attacker attacks only with the pa-
rameters pmax such that

ř

fPFS

PrpF “ f | pmaxq is maximal, which is equivalent

to a degenerated equiprobable attacker where P 1 “ tpmaxu.

Remark 2. Vmax “
ř

fPFS

PrpF “ f | pmaxq ě Vequi for any considered P 1.



4.3 Sensibility of a single location

Automatic tools tend to output many vulnerabilities, some of which are less
relevant than others. Therefore, existing tools [6] classically regroup successful
attacks according to their location to find the most vulnerable locations. Vul-
nerability rate can be restricted by location for this purpose:

Definition 8. Sensibility S` of the location `: The vulnerability rate restricted
to the successful sequences of faults that involve `, denoted as F`

S:

S` “
ÿ

pPP

ÿ

fPF`
S

PrpF “ f | pq ¨ Prppq (4)

5 Experimentation and Conclusion

5.1 Experimental Comparison with the Traditional Approach

Rating comparison. We compared the vulnerability rating V with the rating
T obtained in the traditional approach, using the physical success rate ϕ as ref-
erence. Our goal is to show the benefits in accuracy of using a probabilistic fault
model obtained from fault model inference. To do so, we conducted experimen-
tal penetration tests on the cards A and B on several implementations of classic
commands of various robustness.

We calculated the empirical success rate ϕ as the ratio of the number of
physical successful attacks to the total number of performed attacks. To deter-
mine V we used CELTIC with the inferred fault model of Table 1. We used
the realistic attacker model with sets of attack parameters P 1 adapted to each

command. We also computed T “ |F 1
S|

|F 1| , the "traditional" success rate offered by
existing tools [5, 6], where F 1S and F 1 denote respectively the set of successful
and the set of all possible attacks found by CELTIC with an arbitrary exhaustive
byte replacement fault model. We chose arbitrarily the fault model to reflect the
practice of the "traditional" approach, and our choice was the exhaustive byte
replacement because it model a situation with zero knowledge of the values that
can be injected. Table 3 summarizes the results of the various ratings.

Table 3. Rating criteria of several implementations on various cards

Card Command V T ϕ | P 1 |
A VerifyPIN 2.35ˆ 10´5 3.2ˆ 10´2 3.40ˆ 10´5 5883
A SecureVerifyPIN 2.08ˆ 10´6 8.5ˆ 10´5 0 5000
A GetChallenge 2.01ˆ 10´5 1.75ˆ 10´3 2.94ˆ 10´5 6800
A SecureGetChallenge 7.1ˆ 10´7 2.74ˆ 10´6 0 3000
B GetChallenge 1.1ˆ 10´3 1.2ˆ 10´3 1.4ˆ 10´3 231
B SecureGetChallenge 0 2.14ˆ 10´4 0 833



For all less secure implementations, our vulnerability rate V has the same
order of magnitude as ϕ.

For all implementations except GetChallenge on card B, T predicts a much
higher probability of success than ϕ. The difference between T and ϕ is depen-
dent on the inconsistencies between the arbitrarily chosen fault model and the
one that can actually be achieved on card. In SecureGetChallenge on card B,
both V “ ϕ “ 0, whereas in other secure implementations, ϕ “ 0 ‰ V. The
difference comes from the approximations of V, which in turn are the results
of approximations in the fault model inference process. Another source of ap-
proximation is the choice of P, in particular the chosen range of time values in
perturbation attacks are supposed to cover exactly the execution time of the
code, which is difficult to ensure in practice. Lastly, ϕ is also approximated, in
the sense that the individual experiments may have been too short to expose
the vulnerabilities.11

Prediction of Elapsed Time in Attack Potential. The elapsed time factor
of the attack potential is classically obtained as the inverse of the multiplication
of the number of attacks per second s—in our case, determined experimentally
at 1.27 attack¨s´1 with EM and at 3.30 attack¨s´1 with laser—by the empiri-
cal success rate ϕ: ps ˆ ϕq´1. This process requires however that the evaluator
performs the physical perturbation attacks on the application. It would be in-
teresting to predict the elapsed time factor using V. We calculated ps ˆ Vq´1

and ps ˆ T q´1 using the ratings obtained from our previous experiments. The
results are summarized in Table 4, along with the score that the attack would
receive according to the elapsed time factor (ET) in attack potential. From the
results we can see that the score for T does not match ϕ, being lower in almost
all cases. On the other hand, V has scores similar to ϕ, and therefore gives a
good approximation of the elapsed time factor.

Table 4. Comparison of (expected) exploitability times

Card Command psˆ Vq´1
Ñ ET psˆ T q´1

Ñ ET psˆ ϕq´1
Ñ ET

A VerifyPIN 8 hours 3 24 seconds 0 6 hours 3
A SecureVerifyPIN 1 week 4 2.5 hours 3 ą 3 days11 ě 4
A GetChallenge 10 hours 3 7 min 0 7.4 hours 3
A SecureGetChallenge 2 weeks 6 3.5 days 4 ą 3 days11 ě 4
B GetChallenge 5 min 0 5 min 0 5 min 0
B SecureGetChallenge unpractical * 20 min 3 ą 3 days11 ě 4

Sensibility of the locations. Fig. 6 compares the sensibilities of the locations
` “ pEEPROM, addressqwith address P r0x100030, 0x10006cs, S` (defined in

11 Each experiment lasted for no more than 3 days.



section 4.3) with the classic criteria T` “
|F`

S|
|F`| (normalized to be comparable

with S`) on VerifyPIN on card A (EM injection). Our goal is to demonstrate
the importance of the weighting given to each fault according to a probabilistic
fault model in our approach on the detection of "sensible" spots in the code.
We observe a false positive at address 0x100042, where T` is high while S` “ 0.
Indeed, faults at address 0x100042 are faults where the original values is a “ 0,
which we excluded in our probabilistic fault model for card A (see Table 1).
Conversely, we observe two "false negatives", i.e, T` ! S` at addresses 0x100064
and 0x100066. Faults at this location have a modified value b “ 0, which has
a high probability of occurrence per the probabilistic fault model for card A.
An arbitrary fault model may result in missed vulnerable spots of the code,
and conversely spots may be falsely reported as vulnerable. In terms of code
analysis, it may lead to vulnerabilities inexplicably difficult to patch, or to the
introduction of unneeded countermeasures.

Fig. 6. Comparison of normalized T` and S`

5.2 Discussion

Our approach is an end-to-end process that aims at qualifying the robustness of
a smartcard product. This goal is achieved by splitting the assessment of robust-



ness between the probabilistic fault model, that handles the faults at the device
level, and the fault injection simulator that handles the consequences of the faults
at the application level. The approach shifts the responsibility of performing ef-
fective perturbation attacks from the application level to the device level. For
evaluators, this means an initial investment to perform the fault model inference
process, which becomes worthwhile when evaluating several applications using
the same device. For developers, it allows to compare the robustness of several
implementations without resorting to physical tests (assuming the fault models
are available).

The approach provides the vulnerability rate V, that allows to predict the
classic exploitability time factor of attack potential [1]. The attacker model Prppq
can be fine-tuned according to the Expertise and theKnowledge of the TOE of the
attacker. The fault model Md,e takes into account the equipment of the attacker.
The relation between the attack potential and our approach is summarized in
Table 5. We also defined a metrics S` to compute the sensibility of individual
attack paths and better assess the relevance of the vulnerable code spots detected
by our fault injection simulator.

Table 5. Factors of Attack Potential given by our approach

Factor V
Elapsed Time 3

Expertise Partial (Prppq)
Knowledge of the TOE Partial (Prppq)
Access to the TOE 7

Equipment Partial (Md,e)
Open Samples 7

Our approach introduces some approximations that influence the proposed
vulnerability rate. Similarly to other approaches, the parameter discovery step
relies on the choices of the evaluator (some interesting parameter values can
be ignored). Specific to our approach is the third step of manual generalization,
which can also lead to approximations in the resulting model. Since our approach
also model the attacker, the choice of an unrealistic model of Prppq also leads to
approximations in V. It still constitutes an improvement over the complete lack
of model, though.

Furthermore, while our fault detection program works flawlessly with faults
on the data, it cannot capture the extra mechanisms in use in microprocessors
such as instruction caches or instruction pipelines, and therefore approximates
faults on the code. Moreover, at the time of writing, no program is able to
detect faults on registers with certainty (a sentinel is difficult to design when all
instructions typically manipulates registers).



5.3 Perspectives

It would be interesting to compare our results with other fault observation means,
such as fault model extraction [15]. For instance, adding their fault detection
program to the fault model inference process would improve the confidence in
the resulting fault model.

The inference process of section 3 considers the case where a single perturba-
tion attack occurs during the execution of the command. How should we extend
this process to the now common multiple fault attacks? It is not obvious that
it is possible to reuse the fault models by assuming that perturbation attacks
are independent events. For instance, some extra technical difficulties can arise
when synchronizing several laser shots. Further tests are required to conclude
on the impact of fault model reuse in multiple fault scenarios.

Moreover, the fault injection simulator of section 4.1 is not able to cope
with the combinatory explosion associated with handling multiple fault attacks.
Some tools propose heuristics to reduce the combinatorics by simulating the
effects of the faults at a higher level [6, 13], but they lose the ability to compute
a vulnerability rate in the process, and they suffer from side-effects due to the
compiler [2] as they work at the source level.
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