
ANR-ASTRID SERTIF :
Simulation for the Evaluation of Robustness of
embedded Applications against Fault injection

ANR-14-ASTR-0003-01
http://sertif-projet.forge.imag.fr/

Marie-Laure Potet1, Jessy Cledière2, Thanh-Ha Le3

(1) Laboratoire VERIMAG, Université de Grenoble-Alpes
(2) CEA-LETI

(3) SAFRAN IDENTITY AND SECURITY

11 octobre 2016

1 / 21

h

Context

⇒ Secure components (Hardware and Software) providing security
services (authentification, cryptography) and secure storage of
information.

I Attractive targets for attackers
I Can be physically attacked

⇒ Must be protected against high level attack potential (AVA-VAN.5)

2 / 21

Fault injection
I Perturbation attacks (EM or laser) =⇒ fault injection.
I Fault injection modifies the control and data flows.

1 int verify (char buffer [4]) {
2 int i;
3 int authenticated = 1;
4 // comparison loop
5 for(i = 0; i < 4; i++) {
6 if(buffer [i] != pin[i]) {
7 authenticated = 0;
8 }
9 }

10 // CM: redundant check
11 if (i != 4) { // CM
12 muteCard ();
13 }
14 return authenticated ;
15 }

1 MOV R0 , #00h ; i = 0
2 MOV R3 , #01h ; authenticated = 1
3 JMP WHILE
4 DO:
5 MOV R2 , [buffer +i]
6 MOV A, [pin+i]
7 CMP A, R2
8 JE ITER ; buffer [i] == pin [i]?
9 MOV R3 , #00h ; authenticated = 0
10 ITER:
11 INC R0 ; i++
12 WHILE :
13 MOV A, R0
14 CMP A, #04h
15 JB DO ; i < 4?
16 MOV A, R0
17 CMP A, #04h
18 JNE muteCard ; i != 4?
19 MOV A, R3
20 RET

3 / 21

Fault injection
I Perturbation attacks (EM or laser) =⇒ fault injection.
I Fault injection modifies the control and data flows.

1 int verify (char buffer [4]) {
2 int i;
3 int authenticated = 1;

4 goto ATTACK;

5 for(i = 0; i < 4; i++) {
6 if(buffer [i] != pin[i]) {
7 authenticated = 0;
8 }
9 }

10 ATTACK:
11 if (i != 4) { // CM
12 muteCard ();
13 }
14 return authenticated ;
15 }

1 MOV R0 , #00h ; i = 0
2 MOV R3 , #01h ; authenticated = 1
3 JMP WHILE
4 DO:
5 MOV R2 , [buffer +i]
6 MOV A, [pin+i]
7 CMP A, R2
8 JE ITER ; buffer [i] == pin [i]?
9 MOV R3 , #00h ; authenticated = 0
10 ITER:
11 INC R0 ; i++
12 WHILE :
13 MOV A, R0
14 CMP A, #04h

15 NOP
16 MOV A, R0
17 CMP A, #04h
18 JNE muteCard ; i != 4?
19 MOV A, R3
20 RET

3 / 21

Fault injection
I Perturbation attacks (EM or laser) =⇒ fault injection.
I Fault injection modifies the control and data flows.

1 int verify (char buffer [4]) {
2 int i;
3 int authenticated = 1;
4 // comparison loop

5 for(i = 4 ; i < 4; i++) {
6 if(buffer [i] != pin[i]) {
7 authenticated = 0;
8 }
9 }

10 // CM: redundant check
11 if (i != 4) { // CM
12 muteCard ();
13 }
14 return authenticated ;
15 }

1 MOV R0 , #0 4 h ; i = 0
2 MOV R3 , #01h ; authenticated = 1
3 JMP WHILE
4 DO:
5 MOV R2 , [buffer +i]
6 MOV A, [pin+i]
7 CMP A, R2
8 JE ITER ; buffer [i] == pin [i]?
9 MOV R3 , #00h ; authenticated = 0
10 ITER:
11 INC R0 ; i++
12 WHILE :
13 MOV A, R0
14 CMP A, #04h
15 JB DO ; i < 4?
16 MOV A, R0
17 CMP A, #04h
18 JNE muteCard ; i != 4?
19 MOV A, R3
20 RET

3 / 21

Assessing Robustness Against Fault Injection
Is an embedded application robust against fault injection?

I Penetration Testing: Physical perturbation attacks on the
application under test to inject faults.

I Look for successful attacks (=compromising security).
I Factors for Attack Potential Calculation

I Code Analysis: Detect vulnerabilities in the application with a
code review.

I Look for attack paths using a given fault model.
I Originally manual process, now with automatic tools
I Success rate T = FS

F .

Factor
Elapsed Time
Expertise

Knowledge of the TOE
Access to the TOE

Equipment
Open Samples

Table: Factors of
Attack Potential

Figure: The 2 processes

4 / 21

Sertif objectives
Consortium:

I CEA-LETI: J. Clédière, L. Dureuil, Ph. de Choudens, C. Dumas
I SAFRAN Identity and Security: Thanh-Ha Le, Ch. Cachelou, A.

Crohen, L. Rivière
I Vérimag: ML Potet, L. Mounier, G. Petiot

Main objective: rationalize and automate as much as possible the
robustness assessment process (for evaluator and developer) w.r.t. the
state-of-the-art (spatial and temporal multiple faults) including
reproductivity and re-evaluation.

More concretely:
I Combination between physical attacks and code review
I Simulation tools evaluation (including robustness criteria)
I Evaluation of countermeasure relevance

5 / 21

Open problems . . . and some results
I A better articulation between code review and penetration testing

I How to link code vunerabilities with penetration test and vice versa?
I how to be confident in the used fault model?

⇒ Cardis 15, Lionel Rivière PhD thesis, Louis Dureuil PhD thesis (next
talk)
⇒ . . .

I Code analysis by tools
I Automatisation: a reproductible, complete and timeless process
I Generally a combinatorial process producing a lot of attacks
I Measures of robustness?

⇒ 3 types of tools: Lazart (Vérimag), CELTIC (CEA), EFS (SAFRAN)
and the FISSC benchmark
⇒ . . .

6 / 21

Lazart (Vérimag)
⇒ C code robustness evaluation against fault injection using symbolic
execution

	 	 	 	 	

appli.ll	
CFG	

Coloring	
Mutant	

Generation	 Attack	
Objective	

1	
appli.ll	 Mutation	

Strategy	

mutant.ll	

Symbolic	 test	
case	 generation	

✔	

2	

Attack	 path	 Inconclusive	 Robustness	

3	

I Fault model: condition inversion, skip call, data modification
I Goal: Reach or avoid a CFG block or a logical formula
I Possibility of multiple fault injection scenarios

7 / 21

Lazart (2)
⇒ a high-level tool dedicated to logical weakness in the algorithms.

I An interactive tool (to play with fault injection): symbolic inputs,
oracles and fault models

I Based on Klee, a concolic tool for LLVM. Potentially activates all
possible paths and fault injections.

I A notion of redundant attacks (fault injection points)
I Scenario representation in terms of graphs

Verifypin_2 example:

#fault injection #attacks #non redundant attacks
1 2 2
2 9 1
3 19 0
4 21 1

8 / 21

EFS (SAFRAN Identity and Security)
I Embedded Fault Simulator: An embedded tool within the target

device (e.g. smartcard), running at Hardware Abstraction Layer.
	

1	
EFS	 Handler	

Attack	
Parameters	

IC	 Response	

Testcase	
Generation	

Host	
Computer	 Response	 &	 Fault	

classification	

✔	
Smartcard	

3	

2	 4	

:	 Attack	 Paths	

:	 Inconclusive	

:	 Robustness	

I Fault mechanism: a subroutine with a high priority level, granting
read/write access to all the component registers and memories.

I Fault models: allows arbitrary code to be executed in an interruption
(e.g. register value modification, RAM modification, instruction
skipping/replacement, arbitrary jumps. . .).

I Advantages:
I fault injections on physical component.
I side-channel observations.

9 / 21

EFS (2)
Results obtained with the EFS:

I For each of the execution cycle of the targeted routine(s), we
collect:

I The routine(s) response
I The address of the attacked instruction

I An externalized Oracle analyses the responses
I Results on AES last round with fault model PC ← PC + 2

Fault rate
Fault type without CM with CM
No attack 4.683 % 4.683 %
Board reboot 5.785 % 6.336 %
Coutermeasure activated 0.0 % 88.430 %
One byte difference on output 76.309 % 0.0 %
2 to 15 bytes differencies on output 0.275 % 0.0 %
Random output 9.091 % 0.551 %

10 / 21

CELTIC (by CEA-LETI)
Native smartcard binaries simulation with fault injection.

I Custom Architecture Description Language for retargetability.
I Exhaustive injection campaign at the binary level
I Fault models: base library extensible with scripts (fault model

composition)
I User-defined victory oracles.
I JIT-enabled simulation for improved performance

11 / 21

CELTIC (2)
CELTIC Outputs:

I Execution trace for the Golden Run
I The list FS of successful attacks.
I For each successful attack:

I Characteristics of the fault (address, instant, type of fault)
I Faulty execution trace

12 / 21

FISSC: our secure collection
⇒ a Fault Injection and Simulation Secure Collection
Objectives:

I Evaluation of simulation tools
I Evaluation of (hardened) implementations

Difficulties:
I No available collected examples
I Tools dedicated to various fault models and levels of code
I How to compare results? Attacks?

Our proposal:
I A collection of (extensible) examples
I High level attack scenarios with regard to success oracles
I Matching criteria between results (by address or by fault model)

13 / 21

Contents

Examples:
Example Oracle
VerifyPIN g_authenticated == 1

VerifyPIN g_ptc >= 3

AES KeyCopy ! equal(key, keyCpy)

GetChallenge equal(challenge, prevChallenge)

CRT-RSA (g_cp == pow(m,dp) % p && g_cq != pow(m,dq) % q)
|| (g_cp != pow(m,dp) % p && g_cq == pow(m,dq) % q)

Countermeasures: hardened booleans, virtual stack, double arguments,
step counter, loop counter, data redundancy, double calls, double tests,
control flow integrity

Programming Features: Explicit call, Fixed Time Loops, inlining

14 / 21

Results

I Normalized and modular examples
I C sources and Thumb-2 assembly

listings
I high-level attack scenarios on CFG

Example 1-fault atk 2-fault atk
VerifyPIN 2 0
+fixed time loops 2 1
+FTL +inlining 2 1
+FTL +INL +loop counter 2 0
+FTL +double calls 0 4
+FTL +INL +double tests 0 3
+FTL +INL +DT +step counter 0 2
+control flow integrity 0 2
+FTL +INL +DT +SC +CFI 0 1

15 / 21

Using the benchmark

I Get http://sertif-projet.forge.imag.fr/

I Analyze C sources, asm listings

I Compare your results against the archived results

I Contribute your examples, countermeasures and results

⇒ An example with results using CELTIC and EFS:
http://sertif-projet.forge.imag.fr/pages/example.html

A first piece. . .

16 / 21

http://sertif-projet.forge.imag.fr/
http://sertif-projet.forge.imag.fr/pages/example.html

HL scenario coverage

Figure: Matching HL and LL attacks

17 / 21

An open problem: Fault Injection Code Metrics

⇒ How results can be evaluated?
I Identify sensitive points in a code
I Propose a vulnerability rate (evaluator’s point of view). For instance:

|successful attack|
|realized attacks|

I Determine how to harden the code (developer’s point of view):
regroup “equivalent” attacks

Metrics difficulties:
I Attacker’s model
I sensibility to the size of code

18 / 21

An open problem: Countermeasures analysis

Objectives:
I How to choose adapted countermeasures ?

I depend on the fault model
I could be costly
I complexity due to multiple fault injection (CM can be attacked)

Open problems:
I Define and test metrics against various hardened examples
I Cost and comparison between classical countermeasures
I Dedicated analysis to establish dependency between contermeasures

and assets to be protected
I . . .

19 / 21

An open problem: a process mixing code analysis and
penetration testing

With a good knowledge of possible attacker’s parameter for a given
device is it possible to mainly use simulation tools?

I How to determine precisely an attacker model for a given device?
I component characterization against EM, laser, FBBI. . .
I how to reveal only flash modification, registers modifications from

RAM modifications, during data transfer or its storage . . .

I A more reproductible and automatic process compatible with a
certification process?

20 / 21

References
Louis Dureuil: Analyse de code et processus d’évaluation des composants sécurisés
contre l’injection de fautes. PhD thesis, October 2016

L. Dureuil, G. Petiot, M-L. Potet, T-H. Le, A. Crohen and P. de Choudens. FISSC: a
Fault Injection and Simulation Secure Collection SAFECOMP 2016.

L. Dureuil, M-L. Potet, P. de Choudens, C. Dumas and J. Clédière. From Code Review
to Fault Injection Attacks: Filling the Gap using Fault Model Inference. Cardis 2015.

Lionel Rivière. Securing software implementations against fault injection attacks on
embedded systems. PhD thesis, TELECOM ParisTech, Paris, September 2015.

L. Rivière, M-L. Potet, T-H. Le, J. Bringer, H. Chabanne and M. Puys. Combining
High-Level and Low-Level Approaches to Evaluate Software Implementations
Robustness Against Multiple Fault Injection Attacks. FPS 2014

L. Rivière, Z. Najm, P. Rauzy, J-L. Danger, J. Bringer, Laurent Sauvage: High
precision fault injections on the instruction cache of ARMv7-M architectures. HOST
2015

M-L. Potet, L. Mounier, M. Puys and L. Dureuil. Lazart: a symbolic approach to
evaluate the impact of fault injections by test inverting. ICST 2014, International
Conference on Software Testing.

M. Berthier, J. Bringer, H. Chabanne, T-H. Le, L. Rivière, V. Servant. Idea:
Embedded Fault Injection Simulator on Smartcard. ESSoS 2014

21 / 21

	Objectives of the Sertif project

