

Utilisation des méthodes formelles pour l'évaluation et la certification de produits de sécurité

Workshop Sertif

Bruno Ezvan 10 octobre 2016

- 1 Introduction
- 2 Présentation de Trusted Labs
- 3 Vérification formelle de circuits numériques pour la certification
- 4 Utilisation de méthodes formelles pour l'évaluation sécuritaire de logiciels
- 5 Nouveau cas d'utilisation : la sécurité des mobiles
- 6 Conclusion : objectifs des travaux suivants

- 1 Introduction
- 2 Présentation de Trusted Labs
- 3 Vérification formelle de circuits numériques pour la certification
- 4 Utilisation de méthodes formelles pour l'évaluation sécuritaire de logiciels
- 5 Nouveau cas d'utilisation : la sécurité des mobiles
- 6 Conclusion : objectifs des travaux suivants

' Introduction

- C Thèse CIFRE à TLabs et au LIP6 (équipe ALSOC) depuis avril 2015
- Sujet: "Vérification par composition pour un haut niveau d'assurance des objets connectés"
- Stage en 2014 chez TLabs sur la vérification formelle de circuits numériques décrits en Verilog.

- Introduction
- 2 Présentation de Trusted Labs
- 3 Vérification formelle de circuits numériques pour la certification
- 4 Utilisation de méthodes formelles pour l'évaluation sécuritaire de logiciels
- 5 Nouveau cas d'utilisation : la sécurité des mobiles
- 6 Conclusion : objectifs des travaux suivants

(A Global Security Expert

SECURITY CONSULTING

Define and strengthen security tailored to your needs

SECURITY EVALUATION

Get your solution certified by an ITSEF laboratory

CERTIFICATION SCHEME DEFINITION

Define tailor-made methodologies & certification processes for your industry or ecosystem

- Security analysis
- Security certification support
- Security by design
- Certification-ready development
- C Tools & training

- (ITSEF laboratory
- Security evaluation facilities
- Accreditations
 - **AFSCM**
 - CSPN (French light CC)
 - (Mobile payment scheme (BCMC)

- Security requirements
- Evaluation methodologies
- Protection Profiles

Our Success Timeline

Security evaluations for automotive industry

World 1st CPSN certificate for TEE

World 1st Java Card™ evaluation methodology

World 1st Java Card[™] EAL7 methodology AFSCM Laboratory for NFC applications in France

World 1st EAL7 certificate for IC

ANSSI accreditation for CSPN evaluations of connected devices

TEE PP certification (CC)

ORACLE"

Association Française du Sans Contact Mobile

GLOBALPLATFORM

2000

2001 2003 2004

2009

2012

2013

2014

2015

CAST evaluation methodology / scheme definition

Transport reference application Java Card™ evaluation

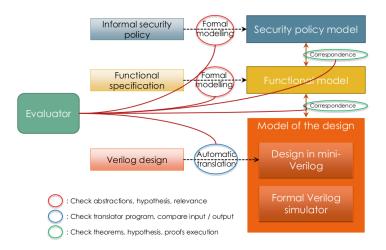
methodology definition & laboratory

Multos open platform security guidelines

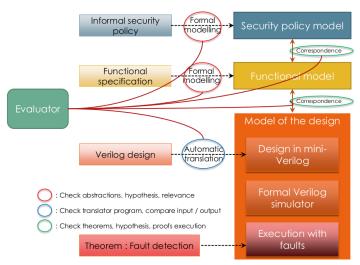
World 1st EAL7 certificate for smart card software platform

gemalto*

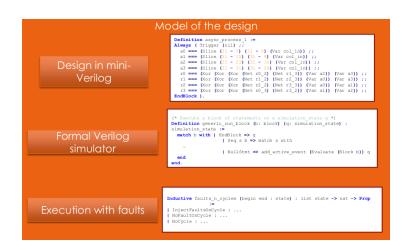
GlobalPlatform Pre-accredited Laboratory


Nationwide security For TEE evaluation facilities for m-payment in Belgium

- 1 Introduction
- Présentation de Trusted Labs
- 3 Vérification formelle de circuits numériques pour la certification
- 4 Utilisation de méthodes formelles pour l'évaluation sécuritaire de logiciels
- 5 Nouveau cas d'utilisation : la sécurité des mobiles
- 6 Conclusion : objectifs des travaux suivants

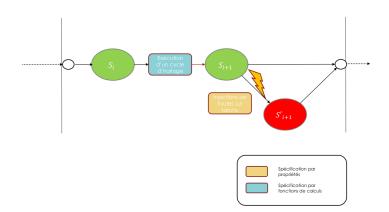


Vérification formelle de circuits numériques pour la certification



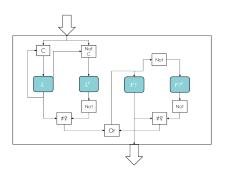
Analyse de robustesse

Modèle du système


Modèle de fautes

Modèle de fautes

- C Fautes transitoires sur une multitudes de bits des éléments mémorisants
- C Plusieurs localisations de fautes possibles à un instant donné
- Injections sur plusieurs cycles
- C Hypothèse : impossible d'injecter des fautes sur les latches de la contre-mesure



Formalisation des fautes

Circuit et contre-mesure

Conclusion

- Difficulté à calquer un modèle de fautes au niveau gates à un niveau d'abstraction différent (RTL)
- Difficile de formaliser un modèle de faute réaliste

Vérification fontionnelle d'un circuit

Chiffres

- C Vérification fontionnelle d'un circuit (modulaire) AES (chiffrement symétrique)
 - 38 modules
 - 3500 ligne de Verilog
 - C Spécification d'AES : 660 lignes de formalisation en Coq
 - 25 personne-jours pour la preuve

Conclusion

- Modularité : permet d'appliquer l'analyse sur des circuits plus importants
- Méthodes déductives requièrent expertises et travail manuel

- 1 Introduction
- 2 Présentation de Trusted Labs
- 3 Vérification formelle de circuits numériques pour la certification
- 4 Utilisation de méthodes formelles pour l'évaluation sécuritaire de logiciels
- 5 Nouveau cas d'utilisation : la sécurité des mobiles
- 6 Conclusion : objectifs des travaux suivants

Utilisation méthodes formelles pour l'évaluation sécuritaire de logiciels

Projet FP7 STANCE

Objectif : Mise en place d'une boîte à outil capable de vérifier des propriétés de sécurité d'applications écrites en C, C++ ou en Java.

Trusted Labs

- C Evaluer l'utilisation de méthodes formelles d'analyse statique de logiciels dans le cadre de l'évaluation sécuritaire à un niveau d'assurance modéré (non formel)
- Outils: Plateforme Frama-C: plug-in d'interprétation abstraite (Value) et plug-ins basés sur Value
- Cas : ClamAV : un antivirus open source.
 - De nombreux parseurs de données malveillantes: packers, exécutables, images, documents, scripts...
 - La fonction de sécurité peut être contournée par déni de service
 - C L'antivirus peut être un point d'entrée : Remote Code Execution (RCE)

Value : Interprétation abstraite

- Méthode d'approximation des états atteignables d'un programme en utilisant une sémantique abstraite du langage de programmation.
- C Permet de déterminer un sur-ensemble des valeurs possibles d'une variable en chaque point du programme

<pre>int main(void) { intretres; int array[15]; int i; i = 0; white (i < 15) { array[i] = i; i ++; } retres = array[12]; returnretres; }</pre>	main.c lint main() { 3 int array[15]; 4 int i; 5 6 for (i = 0; i < 15; i++) { 7 array[i] = i; 8 } 9 10 return array[12];
}	12
formation Messages (0) Console Proper	12
	12
nformation Messages (0) Console Proper	12
nformation Messages (0) Console Proper Multiple selections	12

Retours - 1

- Difficulté de mise en place de l'analyse :
 - C Non support de directives du compilateur par le parseur de Frama-C
 - Modification des commandes du build de ClamAV pour inclure la libc Frama-C
 - ► Quelques inconsistances
- Value ne supporte pas la récursion
 - Pour chaque appel récursif, on peut soit l'ignorer ou utiliser une spécification à la place
 - ► En ignorant l'appel, l'analyse n'est plus sound (la sur-approximation n'est plus correcte)
 - La spécification doit être correcte et va généralement ajouter de l'approximation
- Le domaine d'interprétation n'est pas relationnel
 - C Trop de problèmes possibles (alarmes) relevés par l'outil
- C Impossible d'analyser l'ensemble du logiciel dans le temps impartis : résultats trop imprécis

Retours - 2

Analyse hors contexte de fonctions

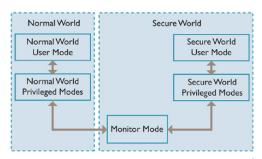
Fonction	Nombre de lignes	Ratio lignes/alarmes
scanpe	4830	4
ununpack	815	2,3

Nombre d'alarmes trop élevé : trop d'approximations

Limitation des cas d'applications

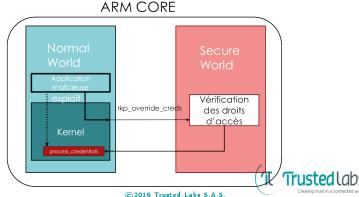
- Pas de support de logiciels mixtes assembleurs et C
- Uniquement safety, pas d'outils clef en main (à notre connaissance) pour analyser les aspects suivant requis par les critères communs :
 - Politique de contrôle d'accès
 - Contrôle du flot d'informations

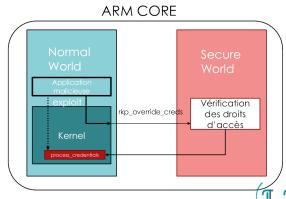
Conclusion


C L'utilisation de Value et des plugins associés ne se justifie pas dans le cadre d'évaluation sécuritaire à un niveau modéré d'assurance (non formel, EAL1-5) où seuls quelques jours sont attribués à l'analyse du code.

- 1 Introduction
- 2 Présentation de Trusted Labs
- 3 Vérification formelle de circuits numériques pour la certification
- 4 Utilisation de méthodes formelles pour l'évaluation sécuritaire de logiciels
- 5 Nouveau cas d'utilisation : la sécurité des mobiles
- 6 Conclusion : objectifs des travaux suivants

TrustZone


- Extensions de sécurité sur les architectures ARMv7 ou 8
- Le temps d'exécution d'un core se partage entre deux processeurs virtuels
- C Isoler les fonctions de sécurité en dehors du "Rich OS" (exemple : Android) dans le Trusted OS
- Normal World → Android
- Secure World → Trusted OS


KnoxOut : Description vulnérabilité

- KKP (Real-time Kernel Protection). But : défendre le kernel (Android, Normal OS) d'un potentiel exploit (mitigation)
- Le kernel a une vulnérabilité de type write-what-where
- C L'exploit normal consiste à exploiter la vulnérabilité pour écrire la valeur root dans process_credentials
- Avec Knox, process_credentials est read-only pour le Normal World : l'exploit ne fonctionne pas!

KnoxOut : Description vulnérabilité

- Le Kernel peut demander à RKP le changement des crédentials via rkp_override_creds (contrôle d'accès)
- C RKP vérifie lui même si l'action est autorisée.
- kernel et par la vulnérabilité write-what-where du kernel.

KnoxOut : Conclusion

- La prise en compte des contrôles d'accès lors des évaluations sécuritaires est aussi importante que la memory-safety.
- C Le contrôle du flot d'informations l'est aussi dans le cadre de produits de sécurité fournissant des mécanismes d'isolation

- 1 Introduction
- 2 Présentation de Trusted Labs
- 3 Vérification formelle de circuits numériques pour la certification
- 4 Utilisation de méthodes formelles pour l'évaluation sécuritaire de logiciels
- 5 Nouveau cas d'utilisation : la sécurité des mobiles
- 6 Conclusion : objectifs des travaux suivants

Conclusion : objectifs des travaux suivants

Objectifs

- Mettre en place un outillage facilitant l'évaluation sécuritaire de système de l'internet des objets
- (Automatisation
- C Focus sur propriété sécuritaire ou fonctions de sécurité moins ciblées par d'autres techniques
 - Contrôle du flot d'information
 - ← Contrôle d'accès

Moyens

- Analyse au niveau assembleur
 - Éviter le problème l'écart entre les différents niveau d'abstraction (exemple des fautes)
 - Éviter de limiter l'analyse à un sous-ensemble particulier dans langage haut niveau (exemple : non support d'extensions du compilateur)
 - Inclure les spécificités de l'architecture matérielle (exemple : TrustZone)
- Analyse compositionelle

Questions?

Questions?

