
Fault Model Inference in Practice

(1) Laboratoire VERIMAG, Université de Grenoble-Alpes
(2) CEA-LETI

(3) SAFRAN IDENTITY AND SECURITY

SERTIF Workshop, 2016-10-11

1 / 17

Two spaces of parameters

Perturbation

Behavior changes

Injection

Fault

p
Model

f

I Two spaces of parameters:
I parameter of the equipment p ∈ P:

p =̂ (x = 12 µm, y = 24 µm, d = 3800 ns,w = 850 ns)
I effect on the code f ∈ F : f =̂ (i = 124, store([0x540d], 0))

I How to model the effects of perturbation attack on code?
I The model will depend on the equipment of attack, and the

attacked device

2 / 17

Two spaces of parameters

Perturbation

Behavior changes

Injection

Fault

p
Model

f
???

I Two spaces of parameters:
I parameter of the equipment p ∈ P:

p =̂ (x = 12 µm, y = 24 µm, d = 3800 ns,w = 850 ns)
I effect on the code f ∈ F : f =̂ (i = 124, store([0x540d], 0))

I How to model the effects of perturbation attack on code?

I The model will depend on the equipment of attack, and the
attacked device

2 / 17

Two spaces of parameters

Perturbation

Behavior changes

Injection

Fault

p
Model

f
???

I Two spaces of parameters:
I parameter of the equipment p ∈ P:

p =̂ (x = 12 µm, y = 24 µm, d = 3800 ns,w = 850 ns)
I effect on the code f ∈ F : f =̂ (i = 124, store([0x540d], 0))

I How to model the effects of perturbation attack on code?
I The model will depend on the equipment of attack, and the

attacked device

2 / 17

Fault as a relationship

I Fault: p
f

c

(x = 12 µm, y = 24 µm, d = 3800 ns)
fA

(i = 124, store(A, 0))

I Fault model: set of faults

{(x = 12, y = 24, d = 3000 + 200k)

fA(k)

(i = 120 + k, store(A, 0)), k ∈ N}

I Probabilistic fault model to compute:

Pr(F = f | p)

3 / 17

Challenges

I The size of the space of parameters is too large
Hundreds of years of attacks to cover the whole space!

I Several faults can have the same effect:
I Register corruption
I Store instruction corruption
I Memory corruption

=⇒ Black-box effect

4 / 17

Defeating the black-box effect

Lionel Rivière’s PhD thesis: Fault model extraction
Fault detection program

I Programs to disambiguate between possible faults.
I Get knowledge about the content of the black-box
I An example: EEPROM-RAM buffer copy

I Executed from RAM
I Sentinel RAM-RAM buffer copy

1 ; main_loop :
2 58: ldrb r5, [r0, #0] ; r5 <- @EEPROM
3 5a: strb r5, [r2, #0] ; r5 -> @IO_EEPROM
4 5c: ldrb r5, [r1, #0] ; r5 <- @RAM
5 5e: strb r5, [r3, #0] ; r5 -> @IO_RAM
6 60: add.w r0, r0, #1 ; @EEPROM += 1
7 64: add.w r1, r1, #1 ; @RAM += 1
8 68: add.w r2, r2, #1 ; @IO_EEPROM += 1
9 6c: add.w r3, r3, #1 ; @IO_RAM += 1

However, obtained knowledge is partial

5 / 17

Fault Model Inference Method

2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

Figure: Fault model inference

1. Initialization phase: parameter discovery to reduce the space of
parameters

2. Iterative phase: physically attack several ad-hoc fault detection
programs on the reduced space

3. Generalization phase: extend results to bigger set of parameters

6 / 17

A Case Study

2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

I “Card C”: “Unsecure” Cortex M-4 8MHz
I Attacked with EM injector (100 µm copper loop with a 500A

current during 10 ns)
I The method in practice:

1. Initialization phase: effect of the parameters of equipment
2. Iterative phase: 3 successive programs
3. Generalization phase

7 / 17

Initialization phase: Effect of position and angle

2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

: θ = −90◦ : θ = 0◦

I EEPROM
faults

I

RAM/registers
faults

I Mute

Choose one angle

8 / 17

Initialization phase: Effect of position and angle

2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

: θ = 90◦ : θ = 180◦

I EEPROM
faults

I

RAM/registers
faults

I Mute

Choose one angle

8 / 17

Initialization phase: Effect of altitude

2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

5 10 15 20 25 30 35 40 45 50
z

0.0

0.2

0.4

0.6

0.8

1.0

ra
te

error rate
nominal rate
fault rate

Figure: Influence of z

Choose one z

9 / 17

Initialization phase: Effect of delay
2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

165000 170000 175000 180000 185000
time (ns)

2

4

6

8

10

n
u
m

b
e
r

o
f

o
cc

u
rr

e
n
ce

s

Group 0
Group 1
Group 2
Group 3
Group 4
Group 5

Figure: Fault count as a function of delay

Choose one delay

10 / 17

Iterative Phase: Fault in EEPROM
2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

Previous knowledge: None

11 / 17

Iterative Phase: Fault in EEPROM
2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

Previous knowledge: None

11 / 17

Iterative Phase: Results of Faults on EEPROM

2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

p where only EEPROM reads are perturbed. Perturbations are:
I 16 consecutive bytes are faulted to 0x00 or 0xFF
I The first perturbed address has always a 16-bytes alignment

Goal: True for data EEPROM read. Check that on code!

12 / 17

Iterative Phase: Effect on Code
2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

Previous knowledge:
I p where only EEPROM is faulted (no RAM or register faults)

Test:
I Instruction 0x00: movs r0, r0 is unchanged.

Program:
1 test_nop :
2 ; initialization
3 04: mov r0, IO ; r0 <- @IO
4 08: mov r4, IO_sentinel ; r4 <- @IO_sentinel
5 0c: mov r1, #10 ; r1 <- 10
6 10: mov r2, #20 ; r2 <- 20
7 18: str r1, [r4]; r1 -> @IO_sentinel
8 1c: str r2, [r4]; r2 -> @IO_sentinel
9 20: movs r0, r0 ; NOP

10 24: movs r0, r0 ; NOP
11 ; [...]
12 a0: movs r0, r0 ; NOP
13 ; check in memory
14 a4: str r1, [r0] ; r1 -> @IO
15 a8: str r2, [r0+4] ; r2 -> @IO

Diagnostic: Success
13 / 17

Iterative Phase: Offset Confirmation
2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

Previous knowledge:
I p where only EEPROM is faulted (no RAM or register faults)
I Instruction 0x00: movs r0, r0 is unchanged.

Test:
I Only aligned blocks of 16 consecutive addresses are affected.

Program:
1 test_align :
2 ; initialization
3 ; [...]
4 20: movs r0, r0 ; NOP
5 24: movs r0, r0 ; NOP
6 ; [...]
7 78: movs r0, r0 ; NOP
8 7c: adds r1, #1 ; r1 <- r1 + 1
9 80: adds r1, #1 , r1 <- r1 + 1

10 84: movs r0, r0 ; NOP
11 ; [...]
12 a0: movs r0, r0 ; NOP
13 ; check in memory
14 ; [...]

Diagnostic: Success
14 / 17

Generalization Phase: Final Extracted Model

2. Iterative
Construction1. Initialization

P0

H0

3. Gener-
alizationHfinal Md,e

Parameter Effect Probability
(d = d0 + kδ) 16 bytes: (ad → 0x00) 16%
(d = d0 + kδ) 16 bytes: (ad → 0xFF) 0.3%

15 / 17

Laser Fault Model

Figure: Cartography: 0xFF, 0x00

Parameter Effect Probability
(x = x0, y = y0, d = d0 + kδ) 16 bytes: (ad → 0x00) 21%
(x = x1, y = y1, d = d0 + kδ) 16 bytes: (ad → 0xFF) 69%

16 / 17

Conclusion on Fault Model Inference
I 4 inferred models

I On 3 cards (2 Cortex-M, 1 proprietary CISC)
I 2 with laser, 2 with EM

I High sensibility to equipment parameters
I New probabilistic aspect
I Fault Detection Programs in sequence to defeat the black-box effect
I Find model at the device level to reuse with various applications
I ad-hoc method... fault detection program database?

Fault Pr

a → 0 | a 6= 0 4.8%
a → b | a 6= 0 ∧ d(a, b) ≤ 1% 1.8%

a → b | a 6= 0 ∧ 1% < d(a, b) ≤ 20% 1.6%
a → b | a 6= 0 ∧ b 6= 0 ∧ d(a, b) > 20% 1.3%

(a → 0, a′ → 0) >| (a, a′) 6= 0 0.5%

Table: Card A, EM

Fault Pr

Bitreset of 1 byte:a → 0 | a 6= 0 4.32%
Bitreset of 2 bytes 2.93%
Bitreset of 3 bytes 3.13%
Bitreset of 4 bytes 2.98%
Bitreset of 5 bytes 6.56%
Bitreset of 6 bytes 2.48%

Table: Card B, laser

17 / 17

