
A Study onComponents and Assembly Primitives in BDidier Bert, Marie-Laure Potet, Yann RouzaudLSR-IMAG, Grenoble, FranceLaboratoire Logiciels Syst�emes R�eseaux - Institut IMAG (UJF - INPG - CNRS)BP 53, F-38041 Grenoble Cedex 9 - Tel + 33 4 76827214 - Fax + 33 4 76827287e-mail: Dider.Bert@Imag.fr, Marie-Laure.Potet@imag.fr, Yann.Rouzaud@imag.frAbstract. This paper is the result of a re
exion coming from the usage and learning of the languageB. It tries to better explain and understand the assembly primitives includes and uses of thelanguage. It presents a high-level notion of components and develops a \component algebra". Thisalgebra is specialized to deal with the B-components. The B assembly primitives are re-expressedin this basic formalism. Some problems about independence of concepts in the B methodology arepointed out and are discussed.1 IntroductionSpeci�cations, like programs, must be modular because very large formal texts are not understandable fora human being. So, the study of modules and modularization is one of the issues in software engineering.The three main objectives of modularization [BHK90] are : information hiding, compositionality of moduleoperations and reusability of modules. If the speci�cation methodology encompasses the need for formalproofs to ensure consistency, as it is the case in the B method, then modularity is also very crucial todecompose the proof process in many little steps, which are much more tractable than one very largeproof. However, even if a speci�cation language is \modular", it must be clear what is the basis of sucha concept (not uniquely a syntactic facility), what is its semantic meaning and, consequently, what is itsimpact on the speci�cation design.An answer to these questions is to try to de�ne a notion of component, as much as possible independentof any particular language and to have composition operations on the components at a semantic level.Then we can apply or instantiate the proposed model of components to a given speci�cation language.In this paper, we are interested in the notion of modularity in the B methodology. By some aspects,abstract machines can be considered as usual modules because they contain an internal state and exportoperations on this state. Interfaces of implemented abstract machines are layers and provide \services".A layer is opaque because one cannot (or does not want to) know how the machine runs, e.g. if it is asoftware or a hardware machine, and so on. But, at the level of speci�cation, i. e. machine construction,the notion of machine is not exactly the same. An analysis of the B language de�nition shows quicklythat abstract machines are also pieces of speci�cations which can be combined in several ways and mustbe re�ned, all things very di�erent from usual programming modules. Even a comparison with the objectmethodology fails with respect to several points, mainly on the point of the modular decomposition ofan application. So, a user can be bothered when (s)he has to design an application with the B method,or when (s)he wants to de�ne reusable abstract machines for further use.From a decomposition point of view, there are three main aspects of structuring in the B methodology.They are :1. Using ou reusing some machines (considered as pieces of speci�cations) to build new larger machines.The aim is to gather texts of machine speci�cations. Once the new machine is built, the initialsubmodules are no longer useful because they are \copied" in some sense in the new machine. Clausesinvolved for this assembly are : includes and uses. They can be considered as weak relations becausethey can be forgotten when considering the complete software.2. Drawing a re�nement development. This view concerns an initial abstract machine and the list ofre�nements of this machine until the implementation. Such a development must contain the decisionsabout the choices done in each re�nement step. This is the view of the development (and coding) of

a machine. It is re
ected by the primitive refines. It can be useful for the reviews. It is the maindocument for a safe maintenance activity and to replay developments in case of evolution of therequirements.3. Building a software architecture of modules. In this case, structuring clauses correspond to strongrelations because they are always visible in the �nal architecture. They connect machines whichremain as software components of the application. These clauses are, of course, sees and imports.One aim of this paper is to try to better understand the assembly principles of abstract machines.So, we address only the �rst point quoted just above. However, we do not intend to explain what is the\philosophy" of the B method or to give recipes for building sensible abstract machines. Rather, we wantto study what are the composition clauses of the B language and to formalize some parts of the assemblymechanisms. A key point is to study assembly clauses with respect to several properties like orthogonality(i.e. independence of constructions), reusability of parts of design, reusability of proofs, etc. Our approachstarts with the de�nition of a high-level notion of component. Basic operations to combine componentsare presented. Then, description of the components and assembly clauses of the B language is done interms of this general approach.In the �rst part (section 2), the notion of components is introduced and a set of composition operationson components (i.e. assembly primitives) is described. This framework is general enough to cover featuresof many modular speci�cation languages. In section 3, the B abstract machines are presented togetherwith the assembly clauses includes and uses. Some speci�c features of the abstract machine notation,like the rules of well-de�nedness of the machines are explained. The main di�erences between bothassembly clauses are given. We are reminded of the constraints associated to these clauses and a discussionabout their methodological impact on machine construction is initiated. Then in section 4, our notionof components is applied to the B language. The operations on components are specialized for B andveri�cation conditions are detailed in each case. The rest of the paper (section 5) is devoted to the(re)de�nition of the assembly clauses includes and uses in term of our basic primitives. Then, in theconclusion, we expose some remarks about the actual de�nition of the assembly clauses in B.2 Software Components and Assembly Operations2.1 What is a component ?To de�ne the word \component", we must start with the notion of modular language. In a modularlanguage, a module is a text which enjoys several properties. These properties are generally: separateparsing, separate compiling, information hiding, visibility rules to export a part of the content (notion ofinterface). The language provides assembly primitives to relate or to connect modules one each others.Modules used in another module can be called submodules. A component is de�ned in this paper as anentity associated with a module, if some well-de�nedness rules are satis�ed. This entity has a meaning byitself. This meaning is obtained from the content of a module and from the interpretation of the assemblyprimitives which are written in the module. Sometimes, the component of a module M is de�ned as a
attened module, i.e. a module containing the text of the (inductively)
attened submodules concatenatedwith the text of the own declarations of M . In that case, a component is a basic large module. In otherapproaches [SJ95] [Ori96], modules are seen as points in a categorical framework, where the assemblyprimitives are interpreted as morphisms, and a component is de�ned as the colimit of such a diagram ofspeci�cations. At last, the notion of components can be entirely a semantical notion (without concreterepresentation) like in [BG77], where the meaning of an assembly of modules is a theory and in [Wir86][ST88], where the meaning of a structured algebraic speci�cation is a class of algebras. Several viewsof components may coexist and can be related. This has been formalized between theories and classesof algebras (models) in the framework of the Institutions [GB90]. Other attempts connect
attenedspeci�cations and algebras [EFH83], but for complex structuring primitives, the correspondence betweenseveral semantical views of modules can only be partial [Fey88] [BE95].Because a component is an abstract notion, we can de�ne operations on components in a mathe-matical way (component algebra). Assembly clauses on modules (e.g. includes) must have a semanticinterpretation as operations on components. So, a language is more or less \modular" according to the

more or less strong properties of its components. For instance, the semantics of a language is a modularsemantics if the semantics of an assembly of modules is de�ned by a semantical operation applied to thecomponents associated with the submodules.Very generally, a component C is characterized by a set of identi�ers which are declared and con-stitute the visible signature of the component. These identi�ers are usually typed and can be functions,operations, variables, constants, etc. The notion of \type" in this introduction is left vague and should bemade precise for each particular language. The visible signature of a component C is a set of identi�ers(with their type) denoted by vis(C). Visible identi�ers are divided into parameters: par(C) and declaredidenti�ers: dec(C). In a component, a part of the information can be hidden, so it is sometimes neededto deal with a hidden signature, called hid(C).The second main part of a component is the body. Identi�ers are speci�ed in the body of the com-ponents either by their meaning or their properties (e.g. operations), or by their range or invariant (e.g.variables), or by their value (e.g. constants) or by something else (again, this de�nition remains intention-ally fuzzy). Parameters are speci�ed, but they have no speci�c value. Identi�ers and their speci�cationconstitute the local environment of a component. Some conditions (or constraints) can be explicitelystated on this environment like assertions, invariant, etc. All the information associated with the identi-�ers is called the body of the component. So, we shall use the expression \a �-body B" to speak of anenvironment B on the identi�ers �. Conditions of well-de�nedness of a component can be formalized inthis notation. They are validity or consistency conditions depending on the signature �.To summarize, in a component C, there are a signature sig(C), a body bod(C) and consistencyconditions coc(C). The set of the identi�ers known in C satisfy:sig(C) = vis(C) [hid(C) with vis(C) \ hid(C) = ;,and vis(C) = par(C) [dec(C) with par(C) \ dec(C) = ;.A component will be denoted by a pair (�;B) or to be more precise by a 4-tuple:C = (P; V;H;B)with P = par(C); V = dec(C); H = hid(C) and B is the (P[V [H)-body of C satisfying coc(P; V;H;B).The consistency conditions of C are not an element of the de�nition of the components, because wedo not want to include the semantical conditions (proof obligations) and their proofs in the language ofcomponents. For example, this has been done for algebraic speci�cations in [BL91].2.2 Auxiliary operationsOperations on signatures. Signatures essentially are sets of names. So the operations on sets (union,intersection, set di�erence, . . .) can be applied to signatures or to signature parts (visible, hidden, etc.).Let �1 be (P1; V1; H1) and �2 be (P2; V2; H2), then �1 [�2 denotes the pointwise union of signatureparts (P1 [P2; V1 [V2; H1 [H2).Moreover, given two signatures �1; �2, a signature mapping � 2 �1 �! �2 also denoted �1 ��! �2is a correspondence between the identi�ers of �1 and those of �2 which is compatible with their type.If the mapping is injective, (two di�erent identi�ers are not confused in the target signature) then it iscalled a renaming. The identity signature mapping is denoted by id(�) (names of the source signature� are not changed).Operations on bodies. Because the notion of \body" is not completely de�ned, then the operationsgiven here are only intuitively presented. In some sense, they are formal operations which must be availableto combine components.Let B1 be a �1-body and B2 be a �2-body, then we denote by B1
B2 the merge of the bodies. Theresult is a body on �1 [�2, where the speci�cations coming from both bodies on the same objects are\cumulated". In the case where �1 and �2 are disjoint, then the operation merge is equivalent to theunion of the two bodies, denoted B1 �B2. This union can be considered as the concatenation of the twobodies because they do not share any identi�ers.Again, let B1 be a �1-body and �1 � �2. Assume that B2 is a set of body information on �2, thenB1 � B2 is a �2-body where B1 is enriched by B2. The operation � on the bodies means that the right

part is added to the body given at the left part. A single body can be considered as an enrichment of theempty ;-body.At last, let � be a signature mapping �1 ��! �2 and B be a �1-body, then �(B) is a �2-bodyobtained by the application of the mapping � to the body B. The result of the application is that eachoccurrence of a name n in B such that n 2 dom(�) is replaced by its value �(n).2.3 Operations on ComponentsTo de�ne a set of operations on components, at this level of abstraction, we have taken into accountthree things: the information available in a component (signature, body, etc.), what we want to do withthis information (e.g. renaming the identi�ers) and what are the primitives usually found in speci�cationlanguages. So, many of the operations proposed below exist in modular languages under various forms.We choose to de�ne here very primitive operations, in order to keep their meaning clear, although ratherinformal. All these operations are de�ned if the resulting component is \valid", i.e. satisfy the consistencyconditions required by the language semantics. In case of B-components these consistency conditions willbe explicitely stated in section 4.Promotion. Promotion consists in making some hidden identi�ers visible in the signature of a compo-nent. Let C be a component (P; V;H;B) and E be a set of identi�ers such that E � H , then:promote E in C = (P; V [E;H �E;B)Hiding. Hiding is the operation symetric to the promotion. It consists in making some visible identi�ershidden in the signature of a component. Let C be a component (P; V;H;B) and E be a set of identi�erssuch that E � V , then: hide E in C = (P; V �E;H [E;B)Instantiation of parameters. A parametrized component can be instantiated, that is to say, param-eters are given a value (actual parameter) compatible with their type. The instantiation process can beexpressed as a substitution of actual values for formal names. Let C be a component (P; V;H;B) andlet � be a substitution of the form fxi 7! vig for i 2 [1::k], where dom(�) � P , and for each association(x 7! v), v is \compatible" with the type of x and v may only contain free variables of V , then:instantiate C by � = (P � dom(�); V;H; �(B))This de�nition allows us to take into account partial instantiation of the parameters of a component.Renaming. Renaming consists in changing consistently the name of some identi�ers in the signature.It is expressible by a substitution of names. A renaming �1 ��! �2, where �1 = (P1; V1; H1) and�2 = (P2; V2; H2) is the union of the three renamings P1 �p�! P2, V1 �v�! V2, H1 �h�! H2. This unionis well de�ned because the source sets are disjoint. It is needed that the mode (parameter, declared orhidden) is preserved in the target signature. Given a component C = (�1; B) and a renaming �1 ��! �2,then: rename C by � = (�2; �(B))Union with implicit sharing. The union consists in building a new component by putting togetherthe informations coming from two given components C1 and C2. If the two component have two (or more)names identical and if these identi�ers represent the same entity in such a way that only one occurrence ofthis entity is expected in the resulting component, then we have to do a union with sharing. In that case,we can do a set theoretic union of the identi�ers and this operation \identi�es" the identi�ers which areequal. However, speci�cation and constraints on these identi�ers coming from both components C1 andC2 are cumulated and must be compatible to ensure the validity of the resulting component. Moreover,

the shared identi�ers must belong respectively to the same part of the components (parameters, declaredor hidden). Let C1 be (�1; B1) and let C2 be (�2; B2), with �1 = (P1; V1; H1), �2 = (P2; V2; H2) suchthat P1 \ (V2 [H2) = ;, V1 \ (P2 [H2) = ;, H1 \ (P2 [V2) = ; and symetrically for the identi�ers of C2then: C1
 C2 = (�1 [�2; B1
B2)Now, assume that we want to take the union of two components where there are some names identicalin both components but not representing the same entity, from the point of view of the resulting machine.In that case, it is su�cient to rename one machine with fresh identi�ers, and then to do the unionoperation. In the resulting machine, the identi�ers will denote distinct entities. This method can be usedto duplicate a component, for example.If the signatures of the two components are disjoint, then the union with sharing becomes a simpleunion of the components noted �. In that case, we can use the union operation on bodies:�1 \�2 = ;) C1
 C2 = C1 � C2 = (�1 [�2; B1 �B2)Enrichment. The enrichment consists in adding new information to an \old" component. In terms ofour notations, this can be expressed as follows. Given a component C = (�1; B1) and �C = (�2; B2)with �1 = (P1; V1; H1) and �2 = (P2; V2; H2), �1 \ �2 = ; and B2 is a (P1 [P2; V1 [V2; H2)-body (orelements of such a body) then: enrich C by �C = (�1 [�2; B1 �B2)2.4 Component AlgebraDe�nition of basic operations on components is very useful for reasoning about assemblies of components.A composition of components can be written as a term which represents the structure of a construction.Some laws can be stated one for all and can be used to formally transform terms (i.e. speci�cationexpressions). A simple law example is the following rule:rename (rename C by �1) by �2 = rename C by �2 � �1Many other rules could be given. The goal of the paper is not to develop such an algebra, so we do notseek to �nd out rule sets nor to discuss properties like minimality, soundness and completeness of thesesets.Operations on components have been de�ned in several speci�cation languages. In algebraic speci�-cations, a formalism like ASL [Wir86] provides operations on speci�cations which could be expressed inthe framework presented in the section 2.3, at least if they are not too speci�c and do not depend on thealgebraic semantics of the components. The primitives of the language are: enrich, rename, union withimplicit sharing, instantiate, quotient (which can be represented by our enrich), etc. One can found acomplete study of meta-operations on algebraic speci�cations called \modules" in [BHK90].Model-oriented speci�cation formalisms provide examples of primitives to assemble speci�cations. TheZ language [Spi88] is modular, because all the schemas can be speci�ed separately. Bodies of componentare texts of speci�cation and can be obtained by replacement and copy of texts of the subcomponents.Useful operations to describe the assembly primitives in Z are rename, union with implicit sharing, enrich,etc.3 Assembly Clauses in B3.1 Modules in BIn the language B, abstract machines can be considered as modules, as explained in section 2.1. Thefollowing �gure shows a simple machine, with no assembly clauses. Some features have been simpli�ed1with respect to the full de�nition of machines given in the B-book [Abr96].1 In this paper, we do not describe all the elements of the abstract machines. Intentionally, we drop the partssets, constants, properties, and the conditions associated to the parameters (non emptyness and �nitenessof the sets, etc).

machineM(P)constraintsKvariablesXinvariantIinitialisationUoperationsOend
Name and parameters of the machine (list of identi�ers).De�nition of constraints on the parameters (predicate).De�nition of the variables describing the state (list of identi�ers).De�nition of the invariant on X (predicate).Initialisation of the variables X (generalized substitution).De�nition of operations, of the general form : o = pre Q then S end,where Q is a predicate and S is a generalized substitution.We note dom(O) the set of operation names.An abstract machine is consistent if, and only if the following conditions (called \proof obligations")hold:1- initialisation sets up the invariant: K) [U]I2- operations preserve the invariant: K ^ I ^ Q) [S]I for each operation o 2 dom(O)(to be more precise, initialisation must set up all the variables of the machine; this is a syntactic restrictionwhich will be used in the next sections).Some assembly clauses are o�ered in order to compose abstract machines, together with their proofobligations. These clauses can only appear inside abstract machines : they are not operations of modulecomposition. At the level of abstract machines, the two assembly clauses uses and includes allow usto elaborate union of abstract machines, combined with enrichments: the clause includes creates localcopies of instantiated abstract machines, whereas the clause uses prepares some sharing. For instance ifwe want to share a machine M1 by two others machines M2 and M3 the construction will be:
M1
M4M2 M3uses usesincludes includesincludes?ZZZ~ ���=���= ZZZ~ M4 includes machines M2 and M3which share the abstract machine M1.M1 must be explicitly included in M4 too.The machine M2 and M3 extend, in some sense, the machine M1 knowing that the machine M1 willbe shared. In the last step, machines using M1 must be included together with M1, in one machine M4.We call this construction a closure of a uses construction. At the end of this construction, a new abstractmachine with copies of M1, M2, M3 is obtained, in which the local copy of M1 is shared.In the next sections, we brie
y describe the e�ect of the clause includes when no clause uses appearsin the included machines, then the e�ect of the clause uses and the treatement of the closure.3.2 Description of the clause INCLUDES e�ectA machine with a clause includes can easily be interpreted as an equivalent machine, without assemblyclauses. Thus the consistency of this new construction can be stated in terms of the consistency of theresulting machine. For instance, consider the following construction where:{ I 01 and U 01 stand for formulae obtained from I1 and U1 after substitution of P1 by E1;{ o01 are de�nitions of the promoted operations o1, after substitution of P1 by E1.{ O02 stands for O2 after substitution of calls of the M1 operations by their de�nition. This substitutionis possible because no recursive de�nition is allowed in B. Generalized substitutions with calls can bealways expanded in generalized substitutions without call.

machineM1(P1)constraintsK1variablesX1invariantI1initialisationU1operationsO1end
M1 isincludedin M2: machineM2(P2)includesM1(E1)promoteso1/* operations of M1 whichbecome operations of M2 */constraintsK2variablesX2invariantI2initialisationU2operationsO2end

The resultingabstract machineequivalent to M2 is: machineM2(P2)constraintsK2variablesX2; X1invariantI2 ^ I 01initialisationU 01;U2operationsO02; o01end
In order to reuse proof obligations the clause includes also imposes some syntactic restrictions:{ signatures must be disjoint;{ the operations of the including machine do not directly modify the variables of the included machines;{ the calls of operations of the included machines must be controlled: in a S1jjS2 substitution, S1 andS2 do not both contain a call of operations which modify some variables de�ned in a same includedmachine2.In the above construction the syntactic restrictions ensure that operations in dom(O2) preserve theinvariant I1, and a fortiori I 01. Thus the local proofs are restricted to show that operations o�ered by themachine M2, i.e. dom(O2) [o1, preserve I2.Example 1.machineMa1variablesx; yinvariantx 2 NAT ^ y 2 NAT ^ x < yinitialisationx; y := 0; 1operationsop1 = S1; op2 = S2end

Ma1 is includedin Ma2 : machineMa2includesMa1promotesop1variableszinvariantz 2 NAT ^ z = x + yinitialisationz := x+ yoperationsop3 = S3endIn this example we indicate what are the validity constraints on each operation, but we do not wantto detail the substitutions S1, S2 et S3. In terms of consistency, at the end of this construction, we have:2 S1jjS2 is well-de�ned if, and only if, the sets of variables modifyed by S1 and S2 are disjoint.

{ op1 and op3 preserve the formula x 2 NAT ^ y 2 NAT ^ x < y ^ z 2 NAT ^ z = x + y;{ op2 preserves the formula x 2 NAT ^ y 2 NAT ^ x < y.3.3 Description of the clause USES e�ectThe construction uses is more complex. No interpretation, in terms of new abstract machines, can begiven. This clause really takes a sense in the �nal closure of the sharing construction. Let M1 and M2 bethe following abstract machines:machineM1(P1)constraintsK1variablesX1invariantI1initialisationU1operationsO1end
M1 is usedby M2 : machineM2(P2)usesM1constraintsK2variablesX2invariantI2initialisationU2operationsO2end

There is no resultingabstract machineequivalent to M2.

Proofs obligations associated with the machine M2 consist in ensuring that the operations de�nedin O2 preserve the part of the invariant I2 which is independent of variables X1. Thus some proofsare delayed until the elaboration of the �nal closure if it turns out that they are needed: these proofobligations are relative to the preservation of the shared part of the �nal invariant for operations whichwill be promoted in the �nal closure. Some syntactic restrictions are also imposed by the method B:{ all signatures must be disjoint.{ the operations of the using machine can only read variables of the used machines.The last point implies that operations of M2 preserve the invariant I1, variables X1 being nevermodi�ed. Moreover, because operations of machine M2 do not modify in any way X1, operations of M2and M1 can be put in parallel in the �nal closure, as it is accepted in a clause includes for di�erentmachines.Example 2. machineMa3variableszusesMa1invariantz 2 NAT ^ z = x + yinitialisationz := x+ yoperationsop3 = S3end
Ma1 and Ma3 areincludedinto Ma4 : machineMa4includesMa1 , Ma3promotesop1; op3end

In terms of consistency we have:{ in machine Ma1 , op1 and op2 preserve the formula x 2 NAT ^ y 2 NAT ^ x < y.{ In machine Ma3 , op3 preserves the formula x 2 NAT^y 2 NAT^x < y^z 2 NAT. Locally, requiredproofs consist in showing that op3 preserves z 2 NAT.{ In machineMa4 , op1 and op3 preserve the formula x 2 NAT^y 2 NAT^x < y^z 2 NAT^z = x+y.Locally, required proofs consist in showing that op1 and op3 preserve z = x+ y.Notice that, if op3 is not promoted in Ma4 , it is never proved that op3 preserves the formula z = x+ y.3.4 Assembly clauses are not component operationsA machine with a clause uses must be seen as an intermediary step of a structured construction, withoutreal semantical content. From a methodological point of view some remarks can be stated:{ The text of a machine with a clause uses does not re
ect a well-de�ned notion of consistency.Some parts of the invariant are not proved. From a methodological point of view, some intermediaryconstructions, which seem well-de�ned, can be called into question. For instance in Example 2, whenop3 is promoted, we have to prove that this operation preserves the second part of the invariant,z = x+ y, asserted in the same machine in which it is de�ned.{ Some compositions of the uses and includes clauses are not allowed. For instance, machine Ma3cannot be included in another machine without Ma1 . We cannot delay the inclusion of an usedmachine in another level of inclusion.{ Proofs obligations of the includes construction are not managed in the same way, if it is a simpleconstruction or a closure construction (proof obligations delayed).{ Because some proofs can be delayed, they can be proved several times if the intermediary constructionis reused. In fact a clause uses is only a piece of text which cannot be seen as an independentspeci�cation.{ If we want to consider an architecture as a term, in order to reason about it, we have to deal withtwo levels of granularity: simple machines and constructions of sharing closure.4 B ComponentsIn the last part of this paper we de�ne a notion of B-component in order to revisite the clauses uses andincludes as component operations. A comparaison, from the proof obligations point of view and fromthe methodological point of view will be done.4.1 De�nition of B componentsWe give in the following �gure the composition of each �eld of a B-component and the nature of theinformation. It is intended that an operator name is associated with an arity (its \type") and the aritycontains the names of the parameters and results. So, these names do not appear as identi�ers in acomponent, but are accessible in meta-operations that involve operator names.Name of the �eld Content CommentParameters P List of the parameters names.Visible names hVx; Voi The meta-variables Vx and Hx mean B-variable namesHidden names hHx; Hoi whereas Vo and Ho represent B-operation names.Body hK; I; U;Oi K is the predicate which constrains P ,I is the B-invariant predicate,U is the B-substitution of initialisation,O maps Vo [Ho to generalized substitutions:O = fo 7! pre Q then S endg

Hidden variables and operations may occur as a result of assembly clauses uses and includes,essentially to ensure visibility rules, and to \mark" the shareable part of the component. Please note thatsince hidden variables may occur in the body, the invariant may reference them. Furthermore, operationsmay \call" other operations (visible or hidden). The consistency of a B-component is de�ned by the proofobligations of a B-machine, namely:1- initialisation sets up the invariant K) [U]I2- operations preserve the invariant K ^ I ^ Q) [S]I for each o 2 Vowhere O(o) = pre Q then S endRemind you that initialisation must set up all the variables. Note also that there is no proof obligationfor hidden operations.4.2 Abstract Machines and B-componentsLet us examine a simple machine (without any relations with other machines), like the one of subsection3.1. Such a syntactic module is mapped in a component. Component of M is constituted of the followingelements (very obviously): M = (P; hX; oi; h;; ;i; hK; I; U;Oi)Conversely, any valid B-component, where the set of hidden variables is empty, can be \decompiled"into a simple abstract machine (this can be a criterion to decide if an assembly of machines is completeor not): hidden operations are eliminated by replacing their name with the right part of their de�nitionin the speci�cation of visible operations.4.3 Operations on B-components and their proof obligationsThroughout this section, we shall use the following notations, where B, B1, B2 denote bodies, C, C1, C2denote valid components, and �C a tuple of component information:B hK; I; U;OiB1 hK1; I1; U1; O1iB2 hK2; I2; U2; O2iC (P; hVx; Voi; hHx; Hoi; B)C1 (P1; hVx1 ; Vo1i; hHx1 ; Ho1i; B1)C2 (P2; hVx2 ; Vo2i; hHx2 ; Ho2i; B2)�C (P2; hVx2 ; Vo2i; hHx2 ; Ho2i; B2)
: a new composition of substitutions. For the de�nition of union with implicit sharing of bodies,one needs to compose two operations with the same name. Let S1 and S2 be two substitutions, respectivelymodifying (without loss of generality) variables x; x1 and x; x2. S1
S2 must denote a substitution workingon x; x1; x2, such that the e�ects on x1 and x2 are those of S1 and S2, just like a parallel composition ofsubstitutions. Furthermore, its e�ect on the common variable x must be compatible with the e�ects onx of S1 and S2. Following the B-book, we de�ne S1
 S2 by its termination and before-after predicates:trm(S1
 S2) = trm(S1) ^ trm(S2)prdx;x1;x2(S1
 S2) = prdx;x1(S1) ^ prdx;x2(S2)So the normalized form of S1
 S2 is:S1
 S2 = trm(S1) ^ trm(S2)j@x0; x01; x02:(prdx;x1(S1) ^ prdx;x2(S2) =) x; x1; x2 := x0; x01; x02)

Examples: 1- (v :2 f1; 2; 3g)
 (v :2 f2; 3; 4g) � (v :2 f2; 3g)2- (v := 1)
 (v := 2) � (v :2 ;)(v :2 ; is an unfeasible substitution)3- (pre v < w then v := v + 1 end)
 (pre v < w then w := w � 1 end)� (pre v < w then v; w := v + 1; w � 1 end)When S1 and S2 work on distinct variables (it is the case for disjoint union), termination and before-after predicates become exactly those of parallel composition: S1
 S2 = S1jjS2.Lastly, an essential property of
 is the following one. Let S1 and S2 be substitutions, P1 and P2be predicates such that free variables of P1 are set up by S1, and those of P2 by S2 respectively. Then[S1]P1 ^ [S2]P2) [S1
 S2](P1 ^ P2) holds.Operations on bodies. Operations on bodies are de�ned as follows, where � is a substitution andO1
O2 means the union of the two maps on operations, with merge (by
) of operations with the samename: Operation Result�(B) h�(K); �(I); �(U); �(O)iB1
B2 hK1 ^K2; I1 ^ I2; U1
 U2; O1
O2iB1 �B2 hK1 ^K2; I1 ^ I2; U1jjU2; O1 [O2iB1 �B2 hK1 ^K2; I1 ^ I2; U1;U2; O1 [O2iNotice that for enrichment, the initialisation U2 and the operations O2 may use and modify the variablesVx1 [Hx1 , so U1 must be performed before U2: the initialisation of the resulting body is the sequentialcomposition of U1 and U2.Operations on components. Operations on components are de�ned as follows (the last column indi-cates the presence of proof obligations):Component Signature Body P.O.promote Ex in C (P; hVx [Ex; Voi; hHx �Ex; Hoi) B nopromote Eo in C (P; hVx; Vo [Eoi; hHx; Ho �Eoi) B yeshide Ex in C (P; hVx �Ex; Voi; hHx [Ex; Hoi) B nohide Eo in C (P; hVx; Vo �Eoi; hHx; Ho [Eoi) B noinstanciate C by � (P � dom(�); hVx; Voi; hHx; Hoi) �(B) yesrename C by � (�(P); h�(Vx); �(Vo)i; h�(Hx); �(Ho)i) �(B) noC1
 C2 (P1 [P2; hVx1 [Vx2 ; Vo1 [Vo2i; hHx1 [Hx2 ; Ho1 [Ho2i) B1
B2 yesC1 � C2 (P1 [P2; hVx1 [Vx2 ; Vo1 [Vo2i; hHx1 [Hx2 ; Ho1 [Ho2i) B1 �B2 noenrich C1 by �C (P1 [P2; hVx1 [Vx2 ; Vo1 [Vo2i; hHx1 [Hx2 ; Ho1 [Ho2i) B1 �B2 yesProof obligation of: promoteEo in C. Promoving an operation requires that it preserves the invariant:K ^ I ^ Q) [S]I for each o 2 Eo where O(o) = pre Q then S endProof obligation of: instanciate C by �. The instanciation of parameters must satisfy the constraints:�(K)Proof obligations of: C1
 C2.1- K1 ^K2 ^ I1 ^ I2 ^Q) [S]I2 for each o 2 Vo1 � Vo22- K1 ^K2 ^ I1 ^ I2 ^Q) [S]I1 for each o 2 Vo2 � Vo13- K1 ^K2 ^ I1 ^ I2 ^Q) [S](I1 ^ I2) for each o 2 Vo1 \ Vo2where O(o) = pre Q then S end

There is no proof obligation that initialisation sets up the invariant, because K1) [U1]I1, K2) [U2]I2(initialisations come from consistent components), and all free variables of I1 are set up by U1 and thoseof I2 by U2, therefore K1 ^K2) [U1
 U2](I1 ^ I2) holds, thanks to the main property of
.The �rst and second proof obligations take into account that independent operations are de�ned inconsistent components, so they preserve their invariants.The third proof obligation is mandatory. For instance, let I1 and I2 be v � w, O1(o) = pre v < wthen v := v +1 end, O2(o) = pre v < w then w := w� 1 end. Each operation preserves its invariant,but not their merge.Proof obligations of enrich C1 by �C.1- K1 ^K2) [U1;U2](I1 ^ I2)2- K1 ^K2 ^ I1 ^ I2 ^ Q) [S]I2 for each o 2 Vo13- K1 ^K2 ^ I1 ^ I2 ^ Q) [S](I1 ^ I2) for each o 2 Vo2where O(o) = pre Q then S end5 B Assembly Clauses RevisitedIn this section, the e�ect of clauses uses and includes as component operations is described as a com-position of primitive operations. So a consistent B-component is obtained for each possible construction.However, by this way, some restrictions are introduced and some valid constructions in the B method areno more representable in this formalism.5.1 Clause USES seen as a component operation.Consider the following uses construction: machineM(P)usesN1, . . .NnconstraintsKvariablesXinvariantIinitialisationUoperationsOendLet Ci = (Pi; hVxi; Voii; hHxi ; Hoii; hKi; Ii; Ui; Oii) be the components associated with machines Ni,with P \ S1�i�n Pi = ;. If it is not the case P can be renamed. The construction of the componentassociated with the machine M can be built by the following sequence of basic component operations:1. hide each visible operation of component Ci. By this way, operations of the used machines cannotbe referenced in the local enrichment of the using machine.2. build the union of the used components. In this step, union is not disjoint because used componentscan already share some variables. The resulting component is now parametrized by all parameters ofCi.3. enrich the obtained component with the local declarations of the using machine.

4. hide the visible variables of the used components. This step describes the non-transitivity of the usesclause.Thus we obtain:(1) for each Ci do Ci;1 = hide Voi in Ci no proof obligation(2) A = C1;1
 : : :
 Cn;1(3) B = enrich A by (P; hX; dom(O)i; h;; ;i; hK; I; U;Oi)(4) C = hide S1�i�n Vxi in B no proof obligationIn step 2 no proof obligation is needed because no operation is visible. In step 3 proof obligations arelimited to show that all operations de�ned in O preserve I , because they do not modify shared variablesand thus V1�i�n Ii is preserved.The proof obligations resulting from this component elaboration are di�erent from the method B ones:B-component consistency imposes that all operations in dom(O) verify the invariants V1�i�n Ii and alsoI . For instance in machine Ma3 of example 2, a new proof obligation is added: op3 must preserve theformula z = x+ y.The resulting proof obligations, imposed by this construction, are comparable with those of an in-cludes construction in which included machines are not instantiated and no operation is promoted.Moreover the parameters of the using machine are extended by the parameters of the used machines. Inthis sense we bring the gap between the clauses uses and includes.The modi�cation proposed here is not insigni�cant: it does not only consist in proving some formulaesooner, but it constrains to prove them independently of the �nal instantiations of the used machine.Thus some valid constructions in the B method are, here, rejected. But from a methodological point ofview, such a restriction seems a good one: why would we locally de�ne an operation which is only correctfor some instantiations ? Why could not we delay the de�nition of this operation in the context of itscomplete validation ?5.2 INCLUDES primitive and component operations.Consider the following includes construction:machineM(P)includesN1(E1), . . .Nn(En)promoteso /* o � S1�i�n Oi */constraintsKvariablesXinvariantIinitialisationUoperationsOendLet Ci = (Pi; hVxi ; Voii; hHxi ; Hoii; hKi; Ii; Ui; Oii) be the components associated with machines Ni,and P [T1�i�n Pi = ;. In the language B only two cases of construction are valid:{ (1) each Ci are simple components, i.e components without hidden variables.

{ (2) the construction is a closure, i.e. all hidden variables are visible in another component:[1�i�nHxi � [1�j�n VxjThe �rst case is a subcase of (2). The resulting component is obtained in the following way:1. parametrize all components Ci by P .2. instantiate each obtained component by �i, which corresponds to the instantiation of parametersof Ni by Ei. We suppose that the sets dom(�i) are disjoint, (if it is not the case we may apply arenaming substitution).3. instantiate each resulting component by �0i with :{ � = S1�i�n �i,{ �0i = � \ (id(Pi)� dom(�i)).Because some parameters of Ci come from used components, �0i is necessary to obtain the rightinstantiation.4. hide operations of included components which are not promoted in the current construction.5. promote the hidden variables.6. build the union of instantiated components. By this operation shared variables are merged.7. enrich the obtained component with the local declarations of the including machine.This construction is described by the following components elaboration:(1) for each Ci do Ci;1 = enrich Ci by (P; h;; ;i; h;; ;i; hK; true; skip; ;i)(2) for each Ci;1 do Ci;2 = instantiate Ci;1 by �i(3) for each Ci;2 do Ci;3 = instantiate Ci;2 by �0i(4) for each Ci;3 do Ci;4 = hide Voi � o in Ci;3(5) for each Ci;4 do Ci;5 = promote S1�i�nHxi in Ci;4(6) B = C1;5
 : : :
 Cn;5(7) C = enrich B by (;; hX; dom(O)i; h;; ;i; hK; I; U;O0i)where O0 stands for O with calls of operations replaced by their de�nition.In step 2, proofs obligations correspond to those of the instantiation operations. Let us consider the caseof a simple includes construction:{ step 6: the shared part is restricted to the parameter P . Because variables are disjoint, so proofobligations are not needed.{ step 7: if we consider the syntactic restrictions of the B method, proof obligations are restricted toshow that operations in dom(O) [o preserve I . By hypothesis, o preserve V1�i�n Ii, and operationsin dom(O) also preserve this invariant, because they modify variables of the included machines in acontrolled way (syntactic restrictions).In this case proof obligations are the same as in the B method. Now, in the case of a closure construction,proof obligations are:{ step 6: because variables of the same name are shared, all operations which modify some of thesevariables must be proved again. These operations can be de�ned only in the shared machines inwhich these variables are introduced. Thus only operations coming from used machines must beproved again.{ step 7: no simpli�cation arises. All promoted and locally de�ned operations must verify the invariantsI and V1�i�n Ii.In this case we obtain fewer proof obligations than in the B method. Some proofs which are delayedin the B method are now proved when the uses construction takes place.

6 ConclusionIn conclusion, we want to discuss the lessons learnt in using component primitives to de�ne assemblyclauses of the B language. A major point of the work is that we have tried to perform altogether incre-mental machine construction and proofs of consistency of the elaborated machines. By this way, eachintermediary step is a reusable component and a further usage of a component does not depend on thesubcomponents construction. When considering the B assembly clauses, we founded that they are not\orthogonal" with this respect. Actually, there are three situations in an assembly of machines. They are:{ a machine includes independent machines (independent includes).{ a machine includes a closure of shared machines (sharing includes).{ a machine uses another machine (using).These three cases can be compared following three aspects. The �rst one is the ability to build thetext of a new simple machine \equivalent" to the assembly of machines (regularity); the second one isthe fact that the proofs done at the level of a machine ensure the soundness of this machine in any validcontext (integrity); and the last one concerns the fact that auxiliary proofs are not needed to validate theaccesses to some submachines (locality). For instance, in the includes of independent machines, localityis ensured by syntactic restrictions (modi�cation of submachine variables by operation calls only and nocall of operations of the same machine in both parts of a parallel substitution). The regularity aspectis satis�ed only in the case of the simple independent includes clause, or when including a closure ofshared machines. We have seen that a machine containing a uses clause cannot be equivalent to a simplemachine. With respect to integrity, a using machine can be proved as preserving its own invariant in someclosure and not preserving it in another one, depending on the operations which are promoted in the �nalstep. So, a using machine does not satisfy the integrity criterion. One can notice that if the meaning ofan assembly of machines is de�ned by a
at (simple) machine and if the consistency conditions of theassembly clauses imply the consistency of the resulting machine, then integrity of machine assemblies isequivalent to integrity of simple machines. Moreover, integrity and locality are related, because if all theconstructions satisfy the integrity criterion, then it is not needed to do non local proofs somewhere toensure consistency of the whole. For a speci�cation language, the aim is that any complex construction ofmodules is sound. This aim can be achieved by syntactic restrictions which preserve integrity of subparts(like it is done for an independent includes). But if a more
exible strategy and a better expressivenessis prefered, then integrity can be not preserved and soundness is only guaranteed by some non localproofs. In summary, the assembly constructions of B satisfy:regularity integrity localityindependent includes yes yes yessharing includes yes yes nousing no no yesOur revisited includes and uses primitives tend to satisfy regularity and integrity conditions. Theprice to be paid is that some constructs which are valid in the B method will be rejected in our approachbecause consistency conditions of a using machine are stronger in this paper than in the B language.At last, we hope that the study initiated in this paper can help to understand some subtle aspects ofthe assembly clauses of the B language.References[Abr96] J. R. Abrial. B Book. Cambridge University Press, 1996.[BE95] D. Bert and R. Echahed. Multiparadigm logic programming : the case of the language LPG. Technicalreport, IMAG-LGI, 1995.[BG77] R. M. Burstall and J. A. Goguen. Putting theories together to make speci�cations. In Proc. of 5th Int.Joint Conference on Arti�cial Intelligence, Cambridge, Mass., pages 1045{1052, 1977.[BHK90] J. A. Bergstra, J. Heering, and P. Klint. Module algebra. J. ACM, 37(2):335{372, 1990.[BL91] D. Bert and Ch. Lafontaine. Integration of semantical veri�cation conditions in a speci�cation langagede�nition. In Proc. of the 2nd Conf. on Algebraic Methodology and Software Technology (AMAST-91),pages 467{477. Springer-Verlag, 1991.

[EFH83] H. Ehrig, W. Fey, and H. Hansen. ACT ONE: an algebraic speci�cation language with two levels ofsemantics. Technical report 83-03, TU Berlin, 1983.[Fey88] W. Fey. Pragmatics, Concepts, Syntax, Semantics and Correctness Notions of ACT TWO: an algebraicmodule speci�cation and interconnection language. Technical report 88-26, TU Berlin, 1988.[GB90] J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Speci�cation and Program-ming. Research Report ECS-LFCS-90-106, Lab. for Foundations of Computer Science, Univ. of Edin-burgh, Jan. 1990.[Ori96] C. Oriat. Etude des sp�eci�cations modulaires : constructions de colimites �nies, diagrammes, isomor-phismes. Doctorat d'Universit�e, INPG, Grenoble, Janvier 1996.[SJ95] Y. V. Srinivas and R. J�ullig. SPECWARE: Formal support for composing software. In Proc. of theConf. on Mathematics of Program Construction, 1995.[Spi88] M. Spivey. Understanding Z : a speci�cation language and its formal semantics. Cambridge UniversityPress, 1988.[ST88] D. Sannella and A. Tarlecki. Towards formal development of programs from algebraic speci�cations :Implementations revisited. Acta Informatica, 25:233{281, 1988.[Wir86] M. Wirsing. Structured Algebraic Speci�cations: A Kernel Language. Theoretical Computer Science,42:123{249, 1986.

