A Study on
Components and Assembly Primitives in B

Didier Bert, Marie-Laure Potet, Yann Rouzaud
LSR-IMAG, Grenoble, France

Laboratoire Logiciels Systémes Réseaux - Institut IMAG (UJF - INPG - CNRS)
BP 53, F-38041 Grenoble Cedex 9 - Tel + 33 4 76827214 - Fax + 33 4 76827287
e-mail: Dider.Bert@Imag.fr, Marie-Laure.Potet@Qimag.fr, Yann.Rouzaud@imag.fr

Abstract. This paper is the result of a reflexion coming from the usage and learning of the language
B. It tries to better explain and understand the assembly primitives INCLUDES and USES of the
language. It presents a high-level notion of components and develops a “component algebra”. This
algebra is specialized to deal with the B-components. The B assembly primitives are re-expressed
in this basic formalism. Some problems about independence of concepts in the B methodology are
pointed out and are discussed.

1 Introduction

Specifications, like programs, must be modular because very large formal texts are not understandable for
a human being. So, the study of modules and modularization is one of the issues in software engineering.
The three main objectives of modularization [BHK90] are : information hiding, compositionality of module
operations and reusability of modules. If the specification methodology encompasses the need for formal
proofs to ensure consistency, as it is the case in the B method, then modularity is also very crucial to
decompose the proof process in many little steps, which are much more tractable than one very large
proof. However, even if a specification language is “modular”, it must be clear what is the basis of such
a concept (not uniquely a syntactic facility), what is its semantic meaning and, consequently, what is its
impact on the specification design.

An answer to these questions is to try to define a notion of component, as much as possible independent
of any particular language and to have composition operations on the components at a semantic level.
Then we can apply or instantiate the proposed model of components to a given specification language.

In this paper, we are interested in the notion of modularity in the B methodology. By some aspects,
abstract machines can be considered as usual modules because they contain an internal state and export
operations on this state. Interfaces of implemented abstract machines are layers and provide “services”.
A layer is opaque because one cannot (or does not want to) know how the machine runs, e.g. if it is a
software or a hardware machine, and so on. But, at the level of specification, i. e. machine construction,
the notion of machine is not exactly the same. An analysis of the B language definition shows quickly
that abstract machines are also pieces of specifications which can be combined in several ways and must
be refined, all things very different from usual programming modules. Even a comparison with the object
methodology fails with respect to several points, mainly on the point of the modular decomposition of
an application. So, a user can be bothered when (s)he has to design an application with the B method,
or when (s)he wants to define reusable abstract machines for further use.

From a decomposition point of view, there are three main aspects of structuring in the B methodology.
They are :

1. Using ou reusing some machines (considered as pieces of specifications) to build new larger machines.
The aim is to gather texts of machine specifications. Once the new machine is built, the initial
submodules are no longer useful because they are “copied” in some sense in the new machine. Clauses
involved for this assembly are : INCLUDES and USES. They can be considered as weak relations because
they can be forgotten when considering the complete software.

2. Drawing a refinement development. This view concerns an initial abstract machine and the list of
refinements of this machine until the implementation. Such a development must contain the decisions
about the choices done in each refinement step. This is the view of the development (and coding) of

a machine. It is reflected by the primitive REFINES. It can be useful for the reviews. It is the main
document for a safe maintenance activity and to replay developments in case of evolution of the
requirements.

3. Building a software architecture of modules. In this case, structuring clauses correspond to strong
relations because they are always visible in the final architecture. They connect machines which
remain as software components of the application. These clauses are, of course, SEES and IMPORTS.

One aim of this paper is to try to better understand the assembly principles of abstract machines.
So, we address only the first point quoted just above. However, we do not intend to explain what is the
“philosophy” of the B method or to give recipes for building sensible abstract machines. Rather, we want
to study what are the composition clauses of the B language and to formalize some parts of the assembly
mechanisms. A key point is to study assembly clauses with respect to several properties like orthogonality
(i.e. independence of constructions), reusability of parts of design, reusability of proofs, etc. Our approach
starts with the definition of a high-level notion of component. Basic operations to combine components
are presented. Then, description of the components and assembly clauses of the B language is done in
terms of this general approach.

In the first part (section 2), the notion of components is introduced and a set of composition operations
on components (i.e. assembly primitives) is described. This framework is general enough to cover features
of many modular specification languages. In section 3, the B abstract machines are presented together
with the assembly clauses INCLUDES and USES. Some specific features of the abstract machine notation,
like the rules of well-definedness of the machines are explained. The main differences between both
assembly clauses are given. We are reminded of the constraints associated to these clauses and a discussion
about their methodological impact on machine construction is initiated. Then in section 4, our notion
of components is applied to the B language. The operations on components are specialized for B and
verification conditions are detailed in each case. The rest of the paper (section 5) is devoted to the
(re)definition of the assembly clauses INCLUDES and USES in term of our basic primitives. Then, in the
conclusion, we expose some remarks about the actual definition of the assembly clauses in B.

2 Software Components and Assembly Operations

2.1 What is a component ?

To define the word “component”, we must start with the notion of modular language. In a modular
language, a module is a text which enjoys several properties. These properties are generally: separate
parsing, separate compiling, information hiding, visibility rules to export a part of the content (notion of
interface). The language provides assembly primitives to relate or to connect modules one each others.
Modules used in another module can be called submodules. A component is defined in this paper as an
entity associated with a module, if some well-definedness rules are satisfied. This entity has a meaning by
itself. This meaning is obtained from the content of a module and from the interpretation of the assembly
primitives which are written in the module. Sometimes, the component of a module M is defined as a
flattened module, i.e. a module containing the text of the (inductively) flattened submodules concatenated
with the text of the own declarations of M. In that case, a component is a basic large module. In other
approaches [SJ95] [Ori96], modules are seen as points in a categorical framework, where the assembly
primitives are interpreted as morphisms, and a component is defined as the colimit of such a diagram of
specifications. At last, the notion of components can be entirely a semantical notion (without concrete
representation) like in [BG77], where the meaning of an assembly of modules is a theory and in [Wir86]
[ST88], where the meaning of a structured algebraic specification is a class of algebras. Several views
of components may coexist and can be related. This has been formalized between theories and classes
of algebras (models) in the framework of the Institutions [GB90]. Other attempts connect flattened
specifications and algebras [EFH83], but for complex structuring primitives, the correspondence between
several semantical views of modules can only be partial [Fey88] [BE95].

Because a component is an abstract notion, we can define operations on components in a mathe-
matical way (component algebra). Assembly clauses on modules (e.g. INCLUDES) must have a semantic
interpretation as operations on components. So, a language is more or less “modular” according to the

more or less strong properties of its components. For instance, the semantics of a language is a modular
semantics if the semantics of an assembly of modules is defined by a semantical operation applied to the
components associated with the submodules.

Very generally, a component C' is characterized by a set of identifiers which are declared and con-
stitute the visible signature of the component. These identifiers are usually typed and can be functions,
operations, variables, constants, etc. The notion of “type” in this introduction is left vague and should be
made precise for each particular language. The visible signature of a component C' is a set of identifiers
(with their type) denoted by vis(C). Visible identifiers are divided into parameters: par(C) and declared
identifiers: dec(C). In a component, a part of the information can be hidden, so it is sometimes needed
to deal with a hidden signature, called hid(C).

The second main part of a component is the body. Identifiers are specified in the body of the com-
ponents either by their meaning or their properties (e.g. operations), or by their range or invariant (e.g.
variables), or by their value (e.g. constants) or by something else (again, this definition remains intention-
ally fuzzy). Parameters are specified, but they have no specific value. Identifiers and their specification
constitute the local environment of a component. Some conditions (or constraints) can be explicitely
stated on this environment like assertions, invariant, etc. All the information associated with the identi-
fiers is called the body of the component. So, we shall use the expression “a X-body B” to speak of an
environment B on the identifiers X'. Conditions of well-definedness of a component can be formalized in
this notation. They are validity or consistency conditions depending on the signature X

To summarize, in a component C, there are a signature sig(C), a body bod(C) and consistency
conditions coc(C'). The set of the identifiers known in C satisfy:

sig(C) = vis(C) U hid(C) with vis(C) N hid(C) = 0,
and vis(C) = par(C) U dec(C) with par(C) Ndec(C) = 0.

A component will be denoted by a pair (X, B) or to be more precise by a 4-tuple:
C = (P,V,H,B)

with P = par(C), V = dec(C), H = hid(C) and B is the (PUV UH)-body of C satisfying coc(P,V, H, B).

The consistency conditions of C' are not an element of the definition of the components, because we
do not want to include the semantical conditions (proof obligations) and their proofs in the language of
components. For example, this has been done for algebraic specifications in [BL91].

2.2 Auxiliary operations

Operations on signatures. Signatures essentially are sets of names. So the operations on sets (union,
intersection, set difference, ...) can be applied to signatures or to signature parts (visible, hidden, etc.).
Let Xy be (P1,Vi,Hy) and X5 be (P2, Vs, Hs), then X U X5 denotes the pointwise union of signature
parts (P1 U PQ, V1 U V2,H1 U H2)

Moreover, given two signatures X, X, a signature mapping o € X — X5 also denoted X} 25 5,
is a correspondence between the identifiers of Xy and those of X5 which is compatible with their type.
If the mapping is injective, (two different identifiers are not confused in the target signature) then it is
called a renaming. The identity signature mapping is denoted by id(X) (names of the source signature
X are not changed).

Operations on bodies. Because the notion of “body” is not completely defined, then the operations
given here are only intuitively presented. In some sense, they are formal operations which must be available
to combine components.

Let By be a X;-body and B> be a Xs-body, then we denote by B; ® Bs the merge of the bodies. The
result is a body on X; U X5, where the specifications coming from both bodies on the same objects are
“cumulated”. In the case where Y and X> are disjoint, then the operation merge is equivalent to the
union of the two bodies, denoted B; @ Bs. This union can be considered as the concatenation of the two
bodies because they do not share any identifiers.

Again, let By be a X;-body and X; C ¥5. Assume that Bs is a set of body information on X5, then
By > Bs is a Xy-body where B is enriched by Bs. The operation > on the bodies means that the right

part is added to the body given at the left part. A single body can be considered as an enrichment of the
empty 0-body.

At last, let o be a signature mapping X; - X, and B be a ¥;-body, then o(B) is a Yo-body
obtained by the application of the mapping o to the body B. The result of the application is that each
occurrence of a name n in B such that n € dom(o) is replaced by its value o(n).

2.3 Operations on Components

To define a set of operations on components, at this level of abstraction, we have taken into account
three things: the information available in a component (signature, body, etc.), what we want to do with
this information (e.g. renaming the identifiers) and what are the primitives usually found in specification
languages. So, many of the operations proposed below exist in modular languages under various forms.
We choose to define here very primitive operations, in order to keep their meaning clear, although rather
informal. All these operations are defined if the resulting component is “valid”, i.e. satisfy the consistency
conditions required by the language semantics. In case of B-components these consistency conditions will
be explicitely stated in section 4.

Promotion. Promotion consists in making some hidden identifiers visible in the signature of a compo-
nent. Let C' be a component (P,V, H, B) and E be a set of identifiers such that £ C H, then:

promote £ in C = (P,VUE,H — E,B)

Hiding. Hiding is the operation symetric to the promotion. It consists in making some visible identifiers
hidden in the signature of a component. Let C' be a component (P,V, H, B) and E be a set of identifiers
such that £ C V', then:

hide Ein C = (P,V — E,HUE,B)

Instantiation of parameters. A parametrized component can be instantiated, that is to say, param-
eters are given a value (actual parameter) compatible with their type. The instantiation process can be
expressed as a substitution of actual values for formal names. Let C' be a component (P,V, H, B) and
let o be a substitution of the form {z; — v;} for i € [1..k], where dom (o) C P, and for each association
(x — v), v is “compatible” with the type of and v may only contain free variables of V', then:

instantiate C' by 0 = (P —dom(o),V,H,o(B))

This definition allows us to take into account partial instantiation of the parameters of a component.

Renaming. Renaming consists in changing consistently the name of some identifiers in the signature.
It is expressible by a substitution of names. A renaming ¥, -2+ X, where ¥ = (P,Vi, H;) and
Yy = (P2, Va2, Hs) is the union of the three renamings Py LN Py, Vi =5 Vs, Hi 2% H,. This union
is well defined because the source sets are disjoint. It is needed that the mode (parameter, declared or
hidden) is preserved in the target signature. Given a component C' = (X, B) and a renaming ¥; 25 X,
then:

rename C by 0 = (X,,0(B))

Union with implicit sharing. The union consists in building a new component by putting together
the informations coming from two given components Cy and C. If the two component have two (or more)
names identical and if these identifiers represent the same entity in such a way that only one occurrence of
this entity is expected in the resulting component, then we have to do a union with sharing. In that case,
we can do a set theoretic union of the identifiers and this operation “identifies” the identifiers which are
equal. However, specification and constraints on these identifiers coming from both components C; and
C5 are cumulated and must be compatible to ensure the validity of the resulting component. Moreover,

the shared identifiers must belong respectively to the same part of the components (parameters, declared
or hldden) Let Cl be (El,Bl) and let CQ be (EQ,BQ), with 21 = (Pl,‘/i,Hl), 22 = (PQ,‘/Q,HQ) such
that PL N (VoUHs) =0, ViN(P2UHy) =0, H N (P UV,) = 0 and symetrically for the identifiers of Cy
then:

CreCy =(X1UX, B ®By)

Now, assume that we want to take the union of two components where there are some names identical
in both components but not representing the same entity, from the point of view of the resulting machine.
In that case, it is sufficient to rename one machine with fresh identifiers, and then to do the union
operation. In the resulting machine, the identifiers will denote distinct entities. This method can be used
to duplicate a component, for example.

If the signatures of the two components are disjoint, then the union with sharing becomes a simple
union of the components noted . In that case, we can use the union operation on bodies:

INY =0= C1®C = Ci®Cy= (X1UX:, B @ B>)

Enrichment. The enrichment consists in adding new information to an “old” component. In terms of
our notations, this can be expressed as follows. Given a component C = (X, By) and AC = (X, Bs)
with 21 = (Pl,‘/i,Hl) and 22 = (PQ,‘/Q,HQ), 21 N 22 = @ and BQ is a (P1 U PQ,‘/I U %,HQ)—bOdy (or
elements of such a body) then:

enrich C by AC = (X, U X5, B; > Bs)

2.4 Component Algebra

Definition of basic operations on components is very useful for reasoning about assemblies of components.
A composition of components can be written as a term which represents the structure of a construction.
Some laws can be stated one for all and can be used to formally transform terms (i.e. specification
expressions). A simple law example is the following rule:

rename (rename C by 01) by 02 = rename C by o3 0 0y

Many other rules could be given. The goal of the paper is not to develop such an algebra, so we do not
seek to find out rule sets nor to discuss properties like minimality, soundness and completeness of these
sets.

Operations on components have been defined in several specification languages. In algebraic specifi-
cations, a formalism like ASL [Wir86] provides operations on specifications which could be expressed in
the framework presented in the section 2.3, at least if they are not too specific and do not depend on the
algebraic semantics of the components. The primitives of the language are: enrich, rename, union with
implicit sharing, instantiate, quotient (which can be represented by our enrich), etc. One can found a
complete study of meta-operations on algebraic specifications called “modules” in [BHK90].

Model-oriented specification formalisms provide examples of primitives to assemble specifications. The
Z language [Spi88] is modular, because all the schemas can be specified separately. Bodies of component
are texts of specification and can be obtained by replacement and copy of texts of the subcomponents.
Useful operations to describe the assembly primitives in Z are rename, union with implicit sharing, enrich,
etc.

3 Assembly Clauses in B

3.1 Modules in B

In the language B, abstract machines can be considered as modules, as explained in section 2.1. The
following figure shows a simple machine, with no assembly clauses. Some features have been simplified!
with respect to the full definition of machines given in the B-book [Abr96].

! In this paper, we do not describe all the elements of the abstract machines. Intentionally, we drop the parts
SETS, CONSTANTS, PROPERTIES, and the conditions associated to the parameters (non emptyness and finiteness
of the sets, etc).

MACHINE

M(P) Name and parameters of the machine (list of identifiers).
CONSTRAINTS

K Definition of constraints on the parameters (predicate).
VARIABLES

X Definition of the variables describing the state (list of identifiers).
INVARIANT

I Definition of the invariant on X (predicate).
INITIALISATION

U Initialisation of the variables X (generalized substitution).
OPERATIONS

0 Definition of operations, of the general form : 0 = PRE () THEN S END,

where @ is a predicate and S is a generalized substitution.

END We note dom(O) the set of operation names.

An abstract machine is consistent if, and only if the following conditions (called “proof obligations”)
hold:

1- initialisation sets up the invariant: K = [U]I

2- operations preserve the invariant: K A I A @ = [S]I for each operation o € dom(O)

(to be more precise, initialisation must set up all the variables of the machine; this is a syntactic restriction
which will be used in the next sections).

Some assembly clauses are offered in order to compose abstract machines, together with their proof
obligations. These clauses can only appear inside abstract machines : they are not operations of module
composition. At the level of abstract machines, the two assembly clauses USES and INCLUDES allow us
to elaborate union of abstract machines, combined with enrichments: the clause INCLUDES creates local
copies of instantiated abstract machines, whereas the clause USES prepares some sharing. For instance if
we want to share a machine M; by two others machines My and M3 the construction will be:

My
includes | includes . .
includes My includes machines M> and M3
M, M

which share the abstract machine M;.

M; must be explicitly included in My too.
u&‘ ‘%es

M,y
The machine M> and M3 extend, in some sense, the machine M; knowing that the machine M; will
be shared. In the last step, machines using M; must be included together with M, in one machine My.
We call this construction a closure of a USES construction. At the end of this construction, a new abstract
machine with copies of M7, My, M3 is obtained, in which the local copy of M; is shared.
In the next sections, we briefly describe the effect of the clause INCLUDES when no clause USES appears
in the included machines, then the effect of the clause USES and the treatement of the closure.

3.2 Description of the clause INCLUDES effect

A machine with a clause INCLUDES can easily be interpreted as an equivalent machine, without assembly
clauses. Thus the consistency of this new construction can be stated in terms of the consistency of the
resulting machine. For instance, consider the following construction where:

— I] and U] stand for formulae obtained from I; and U after substitution of P; by Ej;

— o} are definitions of the promoted operations o1, after substitution of P; by Ej.

— O), stands for O, after substitution of calls of the M; operations by their definition. This substitution
is possible because no recursive definition is allowed in B. Generalized substitutions with calls can be
always expanded in generalized substitutions without call.

MACHINE M is MACHINE The resulting MACHINE
My (Pr) included M(P) abstract machine M (P)
CONSTRAINTS in My: INCLUDES equivalent to M, is: | CONSTRAINTS
K, M, (E) K,
VARIABLES PROMOTES VARIABLES
X1 01 XQ, X1
INVARIANT /* operations of M, which INVARIANT
I become operations of My */ LA
INITIALISATION CONSTRAINTS INITIALISATION
U1 KQ U{, U2
OPERATIONS VARIABLES OPERATIONS
01 XQ OIQ, 011
END INVARIANT END
L
INITIALISATION
Us
OPERATIONS
Os
END

In order to reuse proof obligations the clause INCLUDES also imposes some syntactic restrictions:

— signatures must be disjoint;

— the operations of the including machine do not directly modify the variables of the included machines;

— the calls of operations of the included machines must be controlled: in a S;||S2 substitution, S; and
S do not both contain a call of operations which modify some variables defined in a same included
machine?.

In the above construction the syntactic restrictions ensure that operations in dom(0O,) preserve the
invariant I1, and a fortiori I]. Thus the local proofs are restricted to show that operations offered by the
machine Mo, i.e. dom(O2) U o1, preserve Is.

Ezample 1.
MACHINE Ma; is included | MACHINE
Ma, in May : May
VARIABLES INCLUDES
T,y Mal
INVARIANT PROMOTES
r € NATAy e NATAx <y op1
INITTALISATION VARIABLES
z,y:=0,1 z
OPERATIONS INVARIANT
opy = S1;0p2 = S z€NATAz=x+y
END INITTALISATION
z:=x+y
OPERATIONS
op3 = S3
END

In this example we indicate what are the validity constraints on each operation, but we do not want
to detail the substitutions S, S et S3. In terms of consistency, at the end of this construction, we have:

2 81]|S> is well-defined if, and only if, the sets of variables modifyed by Si and S» are disjoint.

— op1 and ops preserve the formula x € NAT Ay e NATAx<yAz€NATAz=x+y;
— ops preserves the formula z € NATAy e NATAx <.

3.3 Description of the clause USES effect

The construction USES is more complex. No interpretation, in terms of new abstract machines, can be
given. This clause really takes a sense in the final closure of the sharing construction. Let M; and M> be
the following abstract machines:

MACHINE M, is used | MACHINE There is no resulting
My (Py) by M> : My (Ps) abstract machine
CONSTRAINTS USES equivalent to Ms.
K My
VARIABLES CONSTRAINTS
X1 K,
INVARIANT VARTIABLES
L Xo
INITIALISATION INVARIANT
U1 I2
OPERATIONS INITIALISATION
O1 Us
END OPERATIONS
O
END

Proofs obligations associated with the machine M; consist in ensuring that the operations defined
in O, preserve the part of the invariant I which is independent of variables X;. Thus some proofs
are delayed until the elaboration of the final closure if it turns out that they are needed: these proof
obligations are relative to the preservation of the shared part of the final invariant for operations which
will be promoted in the final closure. Some syntactic restrictions are also imposed by the method B:

— all signatures must be disjoint.
— the operations of the using machine can only read variables of the used machines.

The last point implies that operations of M, preserve the invariant I;, variables X; being never
modified. Moreover, because operations of machine M do not modify in any way X7, operations of M,
and M; can be put in parallel in the final closure, as it is accepted in a clause INCLUDES for different
machines.

Ezample 2.
MACHINE Ma, and Mag are | MACHINE
Mas included Ma,
VARIABLES into May : INCLUDES
z Ma;, Mags
USES PROMOTES
Ma1 Oop1, 0p3
INVARIANT END
z€NATAz=x+y
INITTALISATION
z:=x+y
OPERATIONS
ops = S3
END

In terms of consistency we have:

— in machine Ma;, op; and opy preserve the formula x € NAT Ay € NATAx <.

— In machine Mag, ops preserves the formula x € NAT Ay € NAT Ax < yAz € NAT. Locally, required
proofs consist in showing that ops preserves z € NAT.

— In machine Ma,, op; and ops preserve the formula z € NATAy € NATAx < yAz € NAT Az =x+1y.
Locally, required proofs consist in showing that op; and ops preserve z = x + y.

Notice that, if ops is not promoted in Ma,, it is never proved that ops preserves the formula z = z + y.

3.4 Assembly clauses are not component operations

A machine with a clause USES must be seen as an intermediary step of a structured construction, without
real semantical content. From a methodological point of view some remarks can be stated:

— The text of a machine with a clause USES does not reflect a well-defined notion of consistency.
Some parts of the invariant are not proved. From a methodological point of view, some intermediary
constructions, which seem well-defined, can be called into question. For instance in Example 2, when
ops is promoted, we have to prove that this operation preserves the second part of the invariant,
z = x + y, asserted in the same machine in which it is defined.

— Some compositions of the USES and INCLUDES clauses are not allowed. For instance, machine Mag
cannot, be included in another machine without Ma;. We cannot delay the inclusion of an used
machine in another level of inclusion.

— Proofs obligations of the INCLUDES construction are not managed in the same way, if it is a simple
construction or a closure construction (proof obligations delayed).

— Because some proofs can be delayed, they can be proved several times if the intermediary construction
is reused. In fact a clause USES is only a piece of text which cannot be seen as an independent
specification.

— If we want to consider an architecture as a term, in order to reason about it, we have to deal with
two levels of granularity: simple machines and constructions of sharing closure.

4 B Components

In the last part of this paper we define a notion of B-component in order to revisite the clauses USES and
INCLUDES as component operations. A comparaison, from the proof obligations point of view and from
the methodological point of view will be done.

4.1 Definition of B components

We give in the following figure the composition of each field of a B-component and the nature of the
information. It is intended that an operator name is associated with an arity (its “type”) and the arity
contains the names of the parameters and results. So, these names do not appear as identifiers in a
component, but are accessible in meta-operations that involve operator names.

|Name of the ﬁe1d| Content | Comment |

Parameters P List of the parameters names.

Visible names (Vi Vo) The meta-variables V,, and H, mean B-variable names
Hidden names (H.,H,) |whereas V, and H, represent B-operation names.
Body (K,I,U,O)|K is the predicate which constrains P,

I is the B-invariant predicate,

U is the B-substitution of initialisation,

O maps V, U H, to generalized substitutions:

O = {o— PRE () THEN S END}

Hidden variables and operations may occur as a result of assembly clauses USES and INCLUDES,
essentially to ensure visibility rules, and to “mark” the shareable part of the component. Please note that
since hidden variables may occur in the body, the invariant may reference them. Furthermore, operations
may “call” other operations (visible or hidden). The consistency of a B-component is defined by the proof
obligations of a B-machine, namely:

1- initialisation sets up the invariant K = [U]]
2- operations preserve the invariant KA I A @ = [S]I for each 0 €V,
where O(0) = PRE () THEN S END

Remind you that initialisation must set up all the variables. Note also that there is no proof obligation
for hidden operations.

4.2 Abstract Machines and B-components

Let us examine a simple machine (without any relations with other machines), like the one of subsection
3.1. Such a syntactic module is mapped in a component. Component of M is constituted of the following
elements (very obviously):

M = (P, (X,O),(@,@),(Kala UaO>)

Conversely, any valid B-component, where the set of hidden variables is empty, can be “decompiled”
into a simple abstract machine (this can be a criterion to decide if an assembly of machines is complete
or not): hidden operations are eliminated by replacing their name with the right part of their definition
in the specification of visible operations.

4.3 Operations on B-components and their proof obligations

Throughout this section, we shall use the following notations, where B, By, By denote bodies, C', C, Cs
denote valid components, and AC' a tuple of component information:

B (K,1,U,0)

By (K1,11,U1,01)

B2 <K2yI2>U2702>

c (Pa <Vw;Vo>:<Hx,Ho>aB)
Ci (Pla(VI1)V01>7<HZ1)H01>7B1)
O (P2v (Vx27V02>7 <H$27H02>vB2)
AC (P27 (Vftz)V02>7 (sz)H02>7B2)

®: a new composition of substitutions. For the definition of union with implicit sharing of bodies,
one needs to compose two operations with the same name. Let S; and Sy be two substitutions, respectively
modifying (without loss of generality) variables z, x; and z, z2. S; ®S2 must denote a substitution working
on x,x1, s, such that the effects on z; and z» are those of S; and S5, just like a parallel composition of
substitutions. Furthermore, its effect on the common variable x must be compatible with the effects on
z of S1 and Ss. Following the B-book, we define S; ® Ss by its termination and before-after predicates:

trm(S; ® S2) = trm(S1) A trm(Sz)
prd:t,:tl,:tg (Sl ® 52) = prdm,ml (Sl) A prdx,xg (52)

So the normalized form of S; ® S» is:

S1® Sy = trm(S1) A trm(S2)|Qx’, x], xh.(prdy o, (S1) A prdg o, (S2) = z, 21,22 == ',], z)

Examples: 1- (v :€ {1,2,3}) ® (v :€ {2,3,4}) = (v :€ {2,3})
2-(v=1)®@w:=2)=(w:E€D
(v :€ {) is an unfeasible substitution)
3- (PRE v < w THEN v := v + 1 END) ® (PRE v < w THEN w := w — 1 END)
= (PRE v < w THEN v,w := v + 1,w — 1 END)

When S; and S work on distinct variables (it is the case for disjoint union), termination and before-
after predicates become exactly those of parallel composition: S; ® S = S1[|S2.

Lastly, an essential property of ® is the following one. Let S; and S be substitutions, P; and P»
be predicates such that free variables of P; are set up by S, and those of P, by S, respectively. Then
[Sl]Pl A [52]P2 = [Sl ® Sz](Pl A P2) holds.

Operations on bodies. Operations on bodies are defined as follows, where o is a substitution and
01 ® Oy means the union of the two maps on operations, with merge (by ®) of operations with the same
name:

|Operation] Result |
o(B) (o0(K),a(I),0(U),a(0))
Bi ® By (Kl ANKs, I /\IQ,U1®U2,01®02>
B; @& B, <K1 ANKy, Iy /\IQ,U1||U2,01U02>
B> By | (Ky ANKs, I N1>,Uy;Us, 01 U Os)

Notice that for enrichment, the initialisation Us and the operations O may use and modify the variables
Ve, U Hyy, so Uy must be performed before Us: the initialisation of the resulting body is the sequential
composition of U; and Us.

Operations on components. Operations on components are defined as follows (the last column indi-
cates the presence of proof obligations):

| Component | Signature | Body [P.O/]
promote E, in C (P,(V, U Ex, V0> (Hy — Ey, H,)) B no
promote E, in C (P,(Vy,V,UE,),(Hy,H, — E,)) B yes

hide E, in C (P, (V, — Vo), (Hy U Ey, H,)) B no
hide E, in C (P,(Vy,V, — E,),(Hy, H, U E,)) B no
instanciate C by o (P — dom() (Ve Vo), (Hy, Hy)) o(B) | yes
rename O by 0 G CUARTUARGEARGIA)) 2(B) [no
Ci ®Cy (P1UP2,<VI1 U‘/vﬂcz,vvolU‘/v2>,<.H—glcl UHmz,HolUH@)) B; ® Bs| yes

Ci 9 Cy (P1UP2,<Vm1UVx2,V01UV >,< H, UH,,,H, UH,, >) Bi1 & Bs| no
enrich Cy by AC |(PyU Py, (Vy, UVy,, Vo, UVo,), (Hyy U Hy,y, Hyy U H,,))| By > Ba| yes

Proof obligation of: promote E, in C'. Promoving an operation requires that it preserves the invariant:

KA I AN Q= I[S|I for each 0 € E, where O(0) = PRE) THEN S END

Proof obligation of: instanciate C by . The instanciation of parameters must satisfy the constraints:

o(K)

Proof obligations of: C ® Cs.

I-KfANEKOANLLNLAQ =[S, for each 0 € V,,, =V,
2-K\NKxs NN AQ = S| for each 0 € V,,, — V5,
SKiNKeANLALAQ = [S](Il A IQ) for each o € V01 N Vo2

where O(0) = PRE () THEN S END

There is no proof obligation that initialisation sets up the invariant, because K; = [U;|I1, K2 = [Us]l>
(initialisations come from consistent components), and all free variables of I; are set up by U; and those
of Iy by Us, therefore K; A Ky = [Uy ® Us](I1 A I) holds, thanks to the main property of ®.

The first and second proof obligations take into account that independent operations are defined in
consistent components, so they preserve their invariants.

The third proof obligation is mandatory. For instance, let I; and I> be v < w, O1(0) = PRE v < w
THEN v := v + 1 END, O2(0) = PRE v < w THEN w := w — 1 END. Each operation preserves its invariant,
but not their merge.

Proof obligations of enrich C; by AC.

1-KiNKy = [Ul;UQ](Il /\IQ)
2-KiNKaN L1 NIy N Q= [S]]> for each 0 € V,,,
3KiNKoN [NI, N Q= [S](Il /\IQ) for each o € Voo,
where O(0) = PRE) THEN S END

5 B Assembly Clauses Revisited

In this section, the effect of clauses USES and INCLUDES as component operations is described as a com-
position of primitive operations. So a consistent B-component is obtained for each possible construction.
However, by this way, some restrictions are introduced and some valid constructions in the B method are
no more representable in this formalism.

5.1 Clause USES seen as a component operation.

Consider the following USES construction:

MACHINE

M(P)
USES

Ni, ...N,
CONSTRAINTS

K
VARIABLES

X
INVARIANT

I
INITIALISATION

U
OPERATIONS

0
END

Let C; = (P, (Vaui, Vo,), (Hayy Ho, Y, (K, I;, Ui, O;)) be the components associated with machines N,
with P NJ,<;<,, Pi = 0. If it is not the case P can be renamed. The construction of the component
associated with the machine M can be built by the following sequence of basic component operations:

1. hide each visible operation of component C;. By this way, operations of the used machines cannot
be referenced in the local enrichment of the using machine.

2. build the union of the used components. In this step, union is not disjoint because used components
can already share some variables. The resulting component is now parametrized by all parameters of
C;.

3. enrich the obtained component with the local declarations of the using machine.

4. hide the visible variables of the used components. This step describes the non-transitivity of the USES
clause.

Thus we obtain:

(1) for each C; do C;1 = hide V,, in C; no proof obligation
(2) A= (11 ®...0Ch

(3) B = enrich A4 by (P, (X, dom(0)),{0,0),(K,I,U,0))

(4) C = hide J,;,,Va; iIn B no proof obligation

In step 2 no proof obligation is needed because no operation is visible. In step 3 proof obligations are
limited to show that all operations defined in O preserve I, because they do not modify shared variables
and thus A, .,.,, I; is preserved.

The proof obligations resulting from this component elaboration are different from the method B ones:
B-component consistency imposes that all operations in dom(O) verify the invariants A, ,.,, I; and also
I. For instance in machine Mags of example 2, a new proof obligation is added: ops must preserve the
formula z =z 4+ y.

The resulting proof obligations, imposed by this construction, are comparable with those of an IN-
CLUDES construction in which included machines are not instantiated and no operation is promoted.
Moreover the parameters of the using machine are extended by the parameters of the used machines. In
this sense we bring the gap between the clauses USES and INCLUDES.

The modification proposed here is not insignificant: it does not only consist in proving some formulae
sooner, but it constrains to prove them independently of the final instantiations of the used machine.
Thus some valid constructions in the B method are, here, rejected. But from a methodological point of
view, such a restriction seems a good one: why would we locally define an operation which is only correct
for some instantiations 7 Why could not we delay the definition of this operation in the context of its
complete validation ?

5.2 INCLUDES primitive and component operations.

Consider the following INCLUDES construction:

MACHINE
M(P)
INCLUDES
Ni(Ey), ... Ny (E,)
PROMOTES
o [*oC U1gign 0; */
CONSTRAINTS
K
VARIABLES
X
INVARIANT
I
INITTALISATION
U
OPERATIONS
(@]
END

Let C; = (P, (Va,, Vo, Y, (Hayy Hy,), (K, I, Ui, O;)) be the components associated with machines N,
and PU ﬂ1gign P; = (). In the language B only two cases of construction are valid:

— (1) each C; are simple components, i.e components without hidden variables.

— (2) the construction is a closure, i.e. all hidden variables are visible in another component:

U #H.c U W

1<i<n 1<j<n
The first case is a subcase of (2). The resulting component is obtained in the following way:

1. parametrize all components C; by P.

2. instantiate each obtained component by o¢;, which corresponds to the instantiation of parameters
of N; by E;. We suppose that the sets dom(o;) are disjoint, (if it is not the case we may apply a
renaming substitution).

3. instantiate each resulting component by o} with :

— 0 =Ui<i<n s

— of = o N (id(P;) — dom(o;)).
Because some parameters of C; come from used components, o} is necessary to obtain the right
instantiation.
hide operations of included components which are not promoted in the current construction.
promote the hidden variables.
build the union of instantiated components. By this operation shared variables are merged.

enrich the obtained component with the local declarations of the including machine.

N o Ot

This construction is described by the following components elaboration:
(1) for each C; do (1 = enrich C; by (P, (0, 0),(0,0), (K, true, skip, 0))
(2) for each C;; do C; 2 = instantiate C;; by o;
(3) for each C; 2 do C; 3 = instantiate C; » by o}
(4) for each C; 3 do C;4 =hide V,;, —0in C; 3
(5) for each C; 4 do C;5 = promote |J;;.,, Hy, in C; 4
(6) B= (15®...0Chs
(7) C = enrich B by (®7<X7 dom(O)),((/),[])),(K,I,U, OI))
where O stands for O with calls of operations replaced by their definition.

In step 2, proofs obligations correspond to those of the instantiation operations. Let us consider the case
of a simple INCLUDES construction:

— step 6: the shared part is restricted to the parameter P. Because variables are disjoint, so proof
obligations are not needed.

— step 7: if we consider the syntactic restrictions of the B method, proof obligations are restricted to
show that operations in dom(O) U o preserve I. By hypothesis, o preserve A\, ,.,, I;, and operations
in dom(O) also preserve this invariant, because they modify variables of the included machines in a
controlled way (syntactic restrictions).

In this case proof obligations are the same as in the B method. Now, in the case of a closure construction,
proof obligations are:

— step 6: because variables of the same name are shared, all operations which modify some of these
variables must be proved again. These operations can be defined only in the shared machines in
which these variables are introduced. Thus only operations coming from used machines must be
proved again.

— step 7: no simplification arises. All promoted and locally defined operations must verify the invariants

Iand A\, ;) Li-

In this case we obtain fewer proof obligations than in the B method. Some proofs which are delayed
in the B method are now proved when the USES construction takes place.

6 Conclusion

In conclusion, we want to discuss the lessons learnt in using component primitives to define assembly
clauses of the B language. A major point of the work is that we have tried to perform altogether incre-
mental machine construction and proofs of consistency of the elaborated machines. By this way, each
intermediary step is a reusable component and a further usage of a component does not depend on the
subcomponents construction. When considering the B assembly clauses, we founded that they are not
“orthogonal” with this respect. Actually, there are three situations in an assembly of machines. They are:

— a machine INCLUDES independent machines (independent INCLUDES).
— a machine INCLUDES a closure of shared machines (sharing INCLUDES).
— a machine USES another machine (using).

These three cases can be compared following three aspects. The first one is the ability to build the
text of a new simple machine “equivalent” to the assembly of machines (regularity); the second one is
the fact that the proofs done at the level of a machine ensure the soundness of this machine in any valid
context (integrity); and the last one concerns the fact that auxiliary proofs are not needed to validate the
accesses to some submachines (locality). For instance, in the INCLUDES of independent machines, locality
is ensured by syntactic restrictions (modification of submachine variables by operation calls only and no
call of operations of the same machine in both parts of a parallel substitution). The regularity aspect
is satisfied only in the case of the simple independent INCLUDES clause, or when including a closure of
shared machines. We have seen that a machine containing a USES clause cannot be equivalent to a simple
machine. With respect to integrity, a using machine can be proved as preserving its own invariant in some
closure and not preserving it in another one, depending on the operations which are promoted in the final
step. So, a using machine does not satisfy the integrity criterion. One can notice that if the meaning of
an assembly of machines is defined by a flat (simple) machine and if the consistency conditions of the
assembly clauses imply the consistency of the resulting machine, then integrity of machine assemblies is
equivalent to integrity of simple machines. Moreover, integrity and locality are related, because if all the
constructions satisfy the integrity criterion, then it is not needed to do non local proofs somewhere to
ensure consistency of the whole. For a specification language, the aim is that any complex construction of
modules is sound. This aim can be achieved by syntactic restrictions which preserve integrity of subparts
(like it is done for an independent INCLUDES). But if a more flexible strategy and a better expressiveness
is prefered, then integrity can be not preserved and soundness is only guaranteed by some non local
proofs. In summary, the assembly constructions of B satisfy:

regularity | integrity | locality
independent INCLUDES yes yes yes
sharing INCLUDES yes yes no
using no no yes

Our revisited INCLUDES and USES primitives tend to satisfy regularity and integrity conditions. The
price to be paid is that some constructs which are valid in the B method will be rejected in our approach
because consistency conditions of a using machine are stronger in this paper than in the B language.

At last, we hope that the study initiated in this paper can help to understand some subtle aspects of
the assembly clauses of the B language.

References

[Abr96] J. R. Abrial. B Book. Cambridge University Press, 1996.

[BE95] D. Bert and R. Echahed. Multiparadigm logic programming : the case of the language LPG. Technical
report, IMAG-LGI, 1995.

[BG77] R. M. Burstall and J. A. Goguen. Putting theories together to make specifications. In Proc. of 5th Int.
Joint Conference on Artificial Intelligence, Cambridge, Mass., pages 1045-1052, 1977.

[BHK90] J. A. Bergstra, J. Heering, and P. Klint. Module algebra. J. ACM, 37(2):335-372, 1990.

[BL91] D. Bert and Ch. Lafontaine. Integration of semantical verification conditions in a specification langage
definition. In Proc. of the 2nd Conf. on Algebraic Methodology and Software Technology (AMAST-91),
pages 467-477. Springer-Verlag, 1991.

[EFH83] H. Ehrig, W. Fey, and H. Hansen. ACT ONE: an algebraic specification language with two levels of

[Fey88]

[GB90]

[Ori96]
[SJ95]

[Spiss]
[STSS]

[Wirs6]

semantics. Technical report 83-03, TU Berlin, 1983.

W. Fey. Pragmatics, Concepts, Syntax, Semantics and Correctness Notions of ACT TWO: an algebraic
module specification and interconnection language. Technical report 88-26, TU Berlin, 1988.

J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Specification and Program-
ming. Research Report ECS-LFCS-90-106, Lab. for Foundations of Computer Science, Univ. of Edin-
burgh, Jan. 1990.

C. Oriat. Etude des spécifications modulaires : constructions de colimites finies, diagrammes, isomor-
phismes. Doctorat d’Université, INPG, Grenoble, Janvier 1996.

Y. V. Srinivas and R. Jillig. SPECWARE: Formal support for composing software. In Proc. of the
Conf. on Mathematics of Program Construction, 1995.

M. Spivey. Understanding Z : a specification language and its formal semantics. Cambridge University
Press, 1988.

D. Sannella and A. Tarlecki. Towards formal development of programs from algebraic specifications :
Implementations revisited. Acta Informatica, 25:233-281, 1988.

M. Wirsing. Structured Algebraic Specifications: A Kernel Language. Theoretical Computer Science,
42:123-249, 1986.

