
Composition and Re�nement in the B-MethodMarie-Laure Potet and Yann RouzaudLSR-IMAG, Grenoble, FranceLaboratoire Logiciels Syst�emes R�eseaux - Institut IMAG (UJF - INPG - CNRS)BP 72, F-38402 Saint Martin d'H�eres Cedex - Fax +33 4 76827287Marie-Laure.Potet@imag.fr, Yann.Rouzaud@imag.frAbstract. In this paper, we propose a framework to study re�nementof abstract machines in the B-method. It allows us to properly deal withshared variables, possibly introduced by composition primitives sees andimports. We exhibit local conditions on components which are su�cientto ensure global correctness of a software system. Finally, we show howrestrictions on the architecture of software systems may guarantee theseconditions.1 IntroductionModularity is pointed out as a principle allowing to master the complexity ofsoftware development or maintenance. A modular method must help designers toproduce software systems from autonomous components. Modularity must be of-fered at each level of software development: programming as well as speci�cationand design.In the framework of formal methods, modules or components correspond tosyntactic entities which can be combined by composition primitives. If a methodo�ers stepwise re�nement, adding modularity requires to precisely de�ne com-position primitives and how they interact with the process of re�nement. Mod-ularity and re�nement has been widely studied in the framework of algebraicspeci�cations [ST88]. In the framework of model oriented speci�cations, somemethods o�er a concept of modularity (for instance B [Abr96], VDM [Gro94])but problems appear when combining re�nement and composition.The work presented in this paper was initially motivated by an examplecommunicated by P. Behm, from Matra Transport International. This exam-ple exhibits an incorrect B-development in which each component re�nementis locally correct. We aimed to extend the architectural conditions given in theB-book (transitivity and circularity, p. 583), in order to detect such pathologi-cal examples. So we developped a framework to de�ne re�nement of structuredcomponents, in order to prove their correctness. This paper presents a simpli�edversion of this framework.Section 2 presents the B-clauses which allows designers to build structureddevelopment (in particular sees and imports clauses), and we give a paradig-matic example, illustrating the problem due to re�nement composition (section2.4). In section 3, we propose a semantics for structured components, in terms

of
at components. From this de�nition, we show that the proofs obligationsrelative to each re�nement step of structured components, as de�ned by theB-method, are correct. Then, we introduce a notion of code component and weexhibit su�cient conditions to prove its correctness. This amounts to study howmonotonicity and transitivity of the re�nement relation interact. By a top-downapproach we propose several su�cient conditions. The last one is presented insection 4. It is based on the dependency graph between components and it cor-rects the conditions proposed in the B-Book.1.1 Composition PrimitivesDesigning appropriate composition primitives for a speci�cation language ormethod is a non-trivial task. During the various phases of the software life cycle,expected characteristics can di�er. For instance, at the stage of system speci�ca-tion, composition primitives must allow to easily combine pieces of speci�cationsand, if possible, their properties. At the architectural design stage, major sys-tem components and their inter-relationships must be identi�ed. So compositionprimitives must favour the independence of coding activity. This duality is il-lustrated by the open-closed principle [Mey88]. The open view means buildinglarger components by extension. The closed view means making a componentavailable for blind use by others components.So a method should o�er several styles of composition primitives, suitablefor the stages of speci�cation, design or programming.1.2 Composition and Re�nementIn a method which o�ers stepwise re�nement, the relationship between di�erentlevels of speci�cation is de�ned by a re�nement relation. When speci�cationsuse composition primitives, a way to re�ne such structured speci�cations mustbe included. At the speci�cation level, some structured speci�cations can beinterpreted as new \
attened" speci�cations. In this case, the new resultingspeci�cation can be re�ned in any way. Otherwise, if the structure is inherent inthe speci�cation, the re�nement must preserve the global structure. For instance,in the Z notation [Spi88], a reference to a schema is interpreted as a local copy ofthe schema text and the new schema may be re�ned in an independent way. Onthe contrary, in the programming language Ada, links between packages whichare introduced at the speci�cation level, are implicitly preserved in the body.At the level of architectural design, the �nal structure of the system is elab-orated and components will be implemented separately. This structure must bekept by the latter steps of re�nement. This is the property of compositionalre�nement (also referenced as the property of horizontal re�nement), which per-mits to compose re�nements to form a large composite re�nement architecture.Re�nement composition abilities naturally depend on the relations betweencomponents (see for instance discussions about inheritance in the object-orientedapproach [LW94]). Several cases can be considered:

1. Re�nement composition is always valid. This is the case for instance if there�nement relation is proved to be monotonic [BW90], for such compositions.2. Global correctness depends on the semantics of the involved components.In this case, a case-by-case proof is mandatory. For instance, if a speci�ca-tion is built as an extension of another speci�cation, the compositionality ofre�nement depends on the form of this extension.3. Global correctness depends on the global structure of the system. This isgenerally the case when sharing is allowed.Sharing occurs when the same object is used into several modules. In thatcase, two main problems arise. First, semantics of sharing must be preservedby the re�nement process. For instance, if an abstract data type is duplicated,conversion between the di�erent representations must be insured. Secondly, cor-rectness of each independent development does not necessarily guarantee cor-rectness of the composition. Some possible interferences relative to the sharedpart can break down re�nement. This is the classical problem about aliasingand side e�ects. This point is crucial in the method/language dealing with withstates, as we will see.2 Component, Composition and Re�nement in B2.1 B-ComponentsIn the B-method, there are three kinds of component: abstract machines, re�ne-ments and implementations. Abstract machines are the visible part of speci�-cations. In particular, all composition primitives connect components with ab-stract machines. Re�nements are intermediary steps between interface (abstractmachines) and executable code (implementations). These components can beseen as traces of a development. Implementations are the last level of a devel-opment. Implementations are particular re�nements in which substitutions areexecutable, so they can be translated into code. Moreover, either variables areconcrete ones, or they come from other abstract machines, so they must be usedvia operation calls.The introduction of several kinds of component, linked to the di�erent stepsof the development process, is a particularity of the B-method. In other languagesor methods, there is generally only one kind of component, and some syntacticrestrictions characterize implementations. This distinction in the B-method isbased on the following arguments:1. Re�nements and implementations are not only speci�cations, but they alsocontain information about the re�nement (the gluing invariant, describingthe change of variables).2. Each kind of components has speci�c syntactic restrictions. For instance,sequencing cannot occur in an abstract machine, in order to favour the ab-straction at the �rst level of a development.3. The target of composition primitives is always an abstract machine. Thisrestriction favours the decomposition/composition criterion which permitsto develop pieces of speci�cation in an independent way.

2.2 B Composition PrimitivesThe B-method o�ers, at present, four composition primitives. Two of them (in-cludes and imports) exclude possibility of sharing and two of them (uses andsees) allow a controlled form of sharing.Includes/Imports. The includes primitive links abstract machines or re�ne-ments to abstract machines. This primitive can be seen as a schema inclusion inZ, without possibility of sharing: this primitive is interpreted as a local copy ofthe included machines. Due to some syntactic restrictions, the includes primi-tive permits to extend an abstract machine (enforcing and adding variables state,adding and hiding operations).The imports primitive links implementations to abstract machines. Thisprimitive corresponds to classical component primitives of programming lan-guages. It allows to build a layered software. This primitive can be seen as theclosed version of the includes primitive: use of imports encapsulates the stateof the imported abstract machines.Implementions are not re�nable in the B-method, so the imports primitiveis a �nal composition primitive. A composition using includes primitive, withits copy semantics, is not necessarily preserved during the re�nement process. Ifan abstract machine M is included in a component C, being either an abstractmachine or a re�nement, there are two possibilities:1. C is re�ned by its proper structure. In this case, the abstract machine Mwill be implemented only if it is imported in another implementation.2. C is implemented using a imports primitive on M . This possibility is notdirectly supported by the method, because re�nement does not exploit thepreservation of this kind of structure.C - Minc_I �����i C - Minc_IFig. 1. If a component C includes a machine M , an implementation I of C may ormay not import M .Uses/Sees. The uses primitive introduces a form of sharing between abstractmachines. In the B-method, sharing is introduced by a link on a component

entity. The use of this primitive permits to extend an abstract machine in mul-tiple ways. A �nal abstract machine must include all shared machines and theirextensions. For more explanations about this construction, see [BPR96].The sees primitive can appear in abstract machines, re�nements or imple-mentations. The use of this primitive allows to share sets, de�nitions and vari-ables in a very limited way: variables must not be modi�ed by the seing compo-nents, in any way. From the re�nement point of view, there are some restrictions:1. abstract machines containing a uses primitive are not considered as re�nablespeci�cations.2. if a sees primitive is introduced at a given level of a development, this prim-itive must be preserved in the lowest levels of the development, to guaranteethe unicity of the implementation of the shared part.C1 M2-s_I1 ���������1s _I2Fig. 2. A sees primitive must be preserved in a re�nement.The uses and includes primitives are only syntactic facilities. So in thestudy of re�nement composition, only the sees and imports primitives have tobe considered.Comparison between Sees and Imports. The sees and imports primitivesdi�er in their use, due to their proper restrictions, whose aim is to limit inter-ference between local re�nements. Some restrictions fall on local use of theseprimitives and some of them are relative to a development, taken as a whole.Local Restrictions. When an imports primitive is used, values of variablesare accessible only by operation calls. This restriction guarantees the invariantpreservation. Moreover, imported variables can occur in the invariant part. Thispossibility allows designers to constrain imported variables and use them torepresent abstract variables. In this way, a layered software is produced. Whena sees primitive is used, variables can be consulted (directly or via operationcalls), but cannot be modi�ed. Variables of the seen machine are not visible inthe invariant part of the seeing component. As a result, seen variables cannot beused in a re�nement to represent abstract variables.Global Restrictions. Abstract machines which are seen by other ones mustbe imported once, and only once, in the development. Abstract machines can beimported at most once in a development, so variables cannot be shared by this

way (if necessary, renaming, which produces a new copy of a machine, can beused). Another important property is the absence of cycle: an abstract machinecannot see or import itself, directly or indirectly.2.3 Re�nement of a Single B-ComponentRe�nement relates an \abstract" model of a B-component to a more \concrete"one. In the B-method, it is based on observational substitutivity: any behaviourof the re�ned speci�cation is one of the possible behaviours of the initial speci�ca-tion. More speci�cally, B-re�nement allows designers to reduce non-determinismof operations, to weaken their preconditions, and to change the variable space.In the following, we recall some results on B-re�nement (chapter 11 of theB-book).Re�nement Component. A re�nement component is de�ned as a di�erentialto be added to a component. A re�nement component can have proper variableswhich are linked to variables of the re�ned component by a gluing invariant.Moreover, re�ned operations must be stated on the new variables.machineM1variablesv1invariantL1initialisationU1operationsop =preP1thenS1endend
refinementR2refinesM1variablesv2invariantL2initialisationU2operationsop =preP2thenS2endend

machineM2variablesv2invariant9v1:(L1 ^ L2)initialisationU2operationsop =preP2 ^9v1:(L1 ^ L2 ^ P1)thenS2endendFig. 3. Re�nement R2 of M1, seen as an independant machine M2.Proof Obligations. The proof obligations for re�nement R2 of Fig. 3 are,provided that there are no common variables (B-book, p. 530):

1. Initialisation: [U2]:[U1]:L22. Operation op: L1 ^ L2 ^ P1) P2 ^ [S2]:[S1]:L2In the most general case, there is a chain of re�nements M1; R2; : : : ; Rn tobe considered. The proof obligation for an operation of Rn is, provided that M1and its re�nements have no common variables:L1 ^ L2 ^ : : :^ Ln ^ P1 ^ : : :^ Pn�1) Pn ^ [Sn]:[Sn�1]:Ln :2.4 Compositional Re�nementIn languages based on states, a major di�culty is relative to the sharing of states.In presence of sharing, we must prove that some local reasoning about values ofvariables are always valid in a global system. Such a problem appears in the Bre�nement process.Example 1. Let A, B, C be the following abstract machines:machineAvariablesxainvariantxa : 0..1initialisationxa := 0operationsrr val xa = rr := xa ;mod xa = xa := 1 - xaend
machineBoperationsopb =skipend machineCoperationsrr opc =rr := trueendNow, let CI be the following implementation of C:implementation CI refines C imports B sees Aoperationsrr opc =var v1, v2 inv1 val xa; opb; v2 val xa; rr := bool(v1=v2)endendThis re�nement is valid. Using B-de�nitions on substitutions, we have toprove that true=bool(xa=xa), which is true. Now machine B is implemented,with the help of D and DI , by BI :

implementationBIrefinesBseesDoperationsopb = opdend machineDoperationsopd = skipend implementationDIrefinesDimportsAoperationsopd = mod xaendThese two re�nements are also valid. But, despite the fact that proof obli-gations proposed by the B-method can be discharged, the code of the operationopc is not correct (see below).rr opc =var v1, v2 inv1 := xa ; xa := 1 - xa ; v2 := xa ; rr := bool(v1=v2)endThe resulting substitution is bool(xa=(1-xa)), which is false. Where is the
aw? When implementing the abstract machine C, we implicitly suppose thatthe operation opd of the machine D does not a�ect the variable xa. But thishypothesis is broken by the implementation DI (see Fig. 4).The B-method imposes conditions on architecture to eliminate some incorrectcases (B-book, p. 583): it is not possible for a machine, a re�nement or animplementation to see a machine that is one of its ancestors or descendantsthrough a chain of imports primitives. But the architecture of our exampledoes not �t this condition, because A is imported through a sees primitive.C A@@RsB ��	i D@@R ���s iFig. 4. Architecture of Example 1.The problem comes from two di�erent views on abstract machines. Whenabstract machines are combined, only modi�cations described in the abstractde�nition of operations are observable. So, we implicitly suppose that abstractmachines, and a fortiori their code, do not modify anything else. When abstractmachines are re�ned, new variables can be introduced. So we implicitly suppose

that operations can alter other variables, in a way compatible with the re�nementinvariant.If variables introduced by a re�nement are local to this re�nement, the com-position is valid. But if these variables can be referenced in other abstract ma-chines by composition, these two views can become inconsistent and some un-pleasant side e�ects can appear. New conditions are necessary to simultaneouslyadopt these two points of view.2.5 Notation, Operations and Properties on Re�nementsIn this paper, in order to highlight the essential part of a proof obligation, thenotation vL will be used, and gluing invariants of intermediate re�nements,as well as preconditions of their operations, will be omitted and considered ashidden hypotheses. We will also assume that the precondition of the re�ningoperation is already proved. So, in such an implicit context, the proof obligationof an operation op, re�ned in a chain of re�nements R1, . . . , Rn, will be writtenLn) opRn�1 vLn opRn , where Ln is the gluing invariant of Rn.De�nition 1. Re�nement Relation vL.Let L be a predicate, op1 � P1jS1 and op2 � P2jS2 be two operations withthe same signature. Then:op1 vL op2 � [S2]:[S1]:L :De�nition 2. Notation var and free.1. var(C) is the set of variables of the component C, in the variables clause.2. free(L) is the set of free variables of the predicate L.Renaming Common Variables. When a B-component C and its immediatere�nement R, with gluing invariant L, share some variables v, a renaming mustbe introduced, in order to properly deal with proof obligations. Let v0 be a setof fresh variables, related to v. Then v will be renamed by v0 in R (and in thechain of re�nements beginning with R), so the proof obligation for an operationop becomes: L ^ v = v0) opC vL^v=v0 [v := v0]opR :Translating a B-Re�nement into an Independant Machine. This oper-ation takes a re�nement Rn in a chain M1, R2, . . . , Rn, and delivers the corre-sponding independant abstract machine Mn, which looks like abstract machineM2 of Fig. 3. Main characteristic of this translation is that intermediate vari-ables are hidden by existential quanti�cation. Notice that renaming of commonvariables is prerequisite. Invariant of the resulting machine is:9x1; : : : ; xn�1 � (L1 ^ L2 ^ : : :^ Ln)and the precondition of an operation is:Pn ^ 9x1; : : : ; xn�1 � (L1 ^ L2 ^ : : :^ Ln ^ P1 ^ : : :^ Pn�1) :

Reducing a Chain of Re�nements. Reducing a chain of re�nements M1,R2, . . . , Rn consists in de�ning a direct re�nement R0n of abstract machine M1.Let Mn be the independant abstract machine, corresponding with Rn. Then R0nis the di�erential to be added toM1, in order to buildMn. Notice that renamingof common variables is prerequisite. Gluing invariant between M1 and R0n is:9x2; : : : ; xn�1 � (L2 ^ : : :^ Ln)and the precondition of an operation of R0n is:Pn ^ 9x1; : : : ; xn�1 � (L1 ^ : : :^ Ln ^ P1 ^ : : :^ Pn�1) :Invariant Splitting. In the following, the invariant splitting property will beused to establish su�cient conditions for a proof obligation of a re�nement, whenits gluing invariant L takes the form L1 ^ L2.Lemma 1. Let S be a substitution and P , Q be two predicates, such that Sdoes not modify the free variables of Q. We have:Q ^ :[S]:P) :[S]:(P ^Q):Proof: by structural induction on substitutions.Lemma 2. Let S1 and S2 be two substitutions, and A, B two predicates, suchthat S1 does not modify the free variables of B. We have:[S1]B ^ [S2]:[S1]:A) [S2]:[S1]:(A ^B)Notice that in general, we cannot deduce [S2]:[S1]:(A ^ B) from the hy-potheses [S2]:[S1]:A and [S2]:[S1]:B.Proof: by lemma 1, we have B ^ :[S1]:A) :[S1]:(A ^ B). By monotonic-ity of substitutions through implication (B-Book, p. 287), we obtain [S2](B ^:[S1]:A)) [S2]:[S1]:(A^B). The property is then established by distributiv-ity of substitutions through conjunction (B-Book, p. 287).Property 1. Invariant splitting.Let C be a B-component, R a re�nement of C, L � L1 ^ L2 the gluinginvariant of R, and opC an operation of C, whose re�nement is opR. PropertyopC vL opR holds if:1. opC does not modify the free variables of L2,2. [opR]L2,3. opC vL1 opR.Proof: direct application of lemma 2.

3 A framework for Compositional Re�nementWe call B-component a B-entity: an abstract machine, a re�nement or an im-plementation. A B-component is
at if it includes neither sees nor importsprimitive. Otherwise it is structured.First, we propose a semantics for structured components. Following the workpresented in [BPR96], the chosen semantics consists in interpreting such compo-nents as new \
attened" components. Thus re�nement of structured componentscan be reduced to re�nement of
at components. Finally, we use this frameworkto de�ne the last step of a development: how the code of an abstract machineis elaborated. Studying the correctness of this code comes down to study themonotonicity of the re�nement relation with respect to the structural sees andimports primitives. This form of monotonicity is not always valid (recall exam-ple 1), and some su�cient conditions will be pointed out.3.1 Flattening Structured B-ComponentsWe de�ne a
attening operation, denoted by F , which produces a new
atcomponent, in which all sees and imports primitives are expanded. In sucha
at component, the keywords machine, refinement, implementation arereplaced with component. If no refines clause appears in a component, itcomes from an abstract machine. Otherwise, it comes from a re�nement or animplementation. This change of keyword is done to underline that there is nosyntactic restriction on the allowed substitutions in our components.In the
attening operation, we only consider variables and clauses relatedto variables (initialisation, invariant and operations), because problems of re-�nement composition come from variables. The sees and imports primitiveswill be treated in the same way, because they have the same semantics (call ofoperations on an encapsulated state). The di�erence lays on the possibility ofsharing for the sees primitive: in this case some components F(Mi) can havesome variables in common, coming from seen machines.De�nition 3. The Flattening Operation.Let C be a B-component. If C is stand-alone, then F(C) is C, with the header\component F(C)". Otherwise, C has some sees or imports primitives onmachines M1, . . . , Mn. The
at component F(C) is de�ned as follows:1. Header of F(C) is \component F(C)".2. If C re�nes a B-component C0, then a clause \refines F(C0)" is introduced.3. Variables of F(C) are variables of C, F(M1), . . . , F(Mn). Because variablesof C, M1, . . . , Mn are distinct (a restriction imposed by the B-method),common variables may only come from the machines which are seen (severaltimes) and imported (almost once).4. Invariant of F(C) is the conjunction of invariant of C and invariants ofF(M1), . . . , F(Mn). For the same reason as above, invariants on sharedvariables are necessarily identical.

5. Initialisation of F(C) is the substitution ((U1
 : : :
 Un) ;U), where eachUi is the initialisation of the component F(Mi) and U is the initialisationof M . The operator
 is the extension of the operator jj when variables areshared (see [BPR96] for more explanations).6. Operations of F(C) are expanded operations of C. Expansion consists inreplacing the calls to operations with their bodies, where formal parametersare replace with e�ective parameters (B-book, page 314). We suppose herethat operations are not recursive.Property 2. Invariant Preservation by an Operation Call.LetM be a component corresponding abstract machine and I be its invariant.It can be proved that I is preserved by a substitution S, calling operations ofM ,if these operations are called into their precondition. Such a condition is imposedby the B-method. In consequence, for a component C, seeing or importing acomponent M , each operation of F(C) preserves the invariant of M .Example 2. The
at component associated with implementationDI of Exam-ple 1 is: component F(DI) refines F(D)variables xainvariant xa : 0..1initialisation xa := 0operations opd = xa := 1 - xaend3.2 Structured Re�nementLet C be a B-component, seeing abstract machines M1; : : : ;Mk, and let R be aB-re�nement of C, seeing the same machines, and possibly seeing or importingother machinesMk+1; : : : ;Mn. We suppose here that common variables betweenF(C) and F(R) only come from seen machines, i.e. M1; : : : ;Mk (other commonvariables can be renamed, if necessary).To prove the correctness of this re�nement, we have to prove that F(C) isre�ned by F(R):1. By the
attening operation, invariant of F(R) is L^L1 : : :^Ln, where L isthe gluing invariant between C and R and each Li is the invariant of F(Mi).2. Because F(C) and F(R) have some common variables (variables of M1, . . . ,Mk), renaming must be done and the gluing invariant must be strengthened.Let vs be this set of variables and v0s be a set of corresponding fresh variables.We rename vs by v0s in the component F(R) and the new invariant becomesL ^L1 : : :^ Ln ^ vs = v0s. Thus we must establish, for each operation of C:L ^ L1 : : :^Ln ^ vs = v0s) opF(C) vL^L1:::^Ln^vs=v0s [vs := v0s]opF(R)

3. Two applications of the splitting invariant property will simplify this for-mula:(a) Splitting into L1 ^ : : :^ Lk ^ vs = v0s and L ^ Lk+1 ^ : : :^ Ln.i. opF(C) does not modify variables of L1^: : :^Lk^vs = v0s: variables v0sare fresh variables, and, for variables vs, only consulting operationscan be called in opF(C).ii. With similar arguments about opF(R), [[vs := v0s]opF(R)](L1 ^ : : : ^Lk^vs = v0s) can be reduced to L1^ : : :^Lk^vs = v0s, which belongsto hypotheses.iii. So it remains to prove L ^ L1 ^ : : :^ Ln ^ vs = v0s)opF(C) vL^Lk+1^:::^Ln [vs := v0s]opF(R), which is equivalent to L ^L1 ^ : : :^ Ln) opF(C) vL^Lk+1^:::^Ln opF(R) (proof by structuralinduction on substitutions).(b) Splitting into L and Lk+1 ^ : : :^ Ln.i. The operations opF(C) do not modify variables of Lk+1; : : : ; Ln be-cause variables of these machines are not accessible from C.ii. By property 2, L ^ L1 ^ : : :^ Ln) [opF(R)]Li holds for each i.iii. So it remains to prove L ^ L1 ^ : : :^ Ln) opF(C) vL opF(R):In conclusion, the �nal condition is L ^ L1 ^ : : :^ Ln) opF(C) vL opF(R),which is the one proposed by Atelier-B [AtB] in presence of sees or importsprimitives.3.3 Code ComponentsIn this section, we introduce the notion of code component, in order to build thecode attached to abstract machines. Code components are
at components inwhich references to abstract machines, introduced by sees or imports clauses,are replaced by the code associated with these abstract machines. In the follow-ing, we de�ne two kinds of code component:1. C(I) is the code component re�ning F(I), if I is an implementation.2. C(M) is the code component re�ning F(M), if M is an abstract machine. Itis obtained from C(I) by reducing the re�nement chain F(M), F(I), C(I).For simplicity reasons, we suppose that variables of an implementation canonly come from seen and imported machines (dealing with local concrete vari-ables should not be a problem).De�nition 4. Code Component Operation C.1. Let I be a B-implementation and let I0 be I, without its gluing invariantand with the clause \refines F(I)".(a) If I has neither sees nor imports primitive, I has no variables (seeabove), and C(I) is I 0.

(b) If I is a structured B-implementation with sees or imports primitiveson components M1; : : : ;Mn, C(I) is obtained by
attening together I0and the code components C(M1); : : :C(Mn). The resulting invariant ofC(I) is L1 ^ : : :^ Ln, where each Li is the invariant of C(Mi).2. Let M be a B-abstract machine.(a) If M is a basic machine, C(M) is obtained from F(M) by adding theclause \refines F(M)", by renaming its variables v with fresh variablesv0, then by adding to its invariant the gluing invariant v = v0. Recall thata basic machine has no B-implementation.(b) If M has the implementation I, C(M) is obtained by reducing the re-�nement chain F(M), F(I), C(I), as de�ned in section 2.5.Property 3. Code Component Variables.1. Let C be a B-component, then variables of its code C(C) only come from thecode of basic machines: var (C(C)) � Sfvar(C(M)) :M is a basic machineg.2. Let I a B-implementation. Since variables of the code of basic machines arefresh variables, var (F(I)) \ var(C(I)) = ;.Property 4. Variables of Gluing Invariants of Code Components. Let L be thegluing invariant of a code component C(M), where M is an abstract machine;we have: free(L) = var(F(M)) [var(C(M)).Example 3. We suppose here that the abstract machine A of example 1 is abasic machine. So the code components C(D) and C(DI), respectively associatedwith components F(D) and F(DI) are:componentC(D)refinesF(D)variablesxa'invariant9 xa . (xa : 0..1 ^ xa' : 0..1 ^ xa = xa')initialisationxa' := 0operationsopd =xa' := 1 - xa'end
componentC(DI)refinesF(DI)variablesxa'invariantxa' : 0..1 ^ xa = xa'initialisationxa' := 0operationsopd =xa' := 1 - xa'end3.4 Code CorrectnessNow we have to prove that F(I) is re�ned by C(I). If I has neither sees norimports primitive, the proof is obvious. Otherwise, the condition is:

Condition 1. A Compositional Proof Obligation.If F(I) has been obtained from a structured B-implementation with somesees or imports primitives on components M1; : : : ;Mn, it su�ces to prove :L1 ^ : : :^ Ln) opF(I) vL1^:::^Ln opC(I)where each Li denotes the invariant of C(Mi), i.e. the gluing invariant betweenC(Mi) and F(Mi).3.5 A Su�cient ConditionCondition 1 cannot be directly reduced using the splitting invariant property, sowe now inspect the structure of operations.This analysis only works when sees primitives only occur at the level ofimplementations. In this case, we have var (F(M)) = var (M), for any machineM . A complete analysis, giving the same results, will be published later.1. Because operations in F(I) and C(I) only di�er in the expansion of theoperations which are called in I, the property of monotonicity of re�nementcan be used (B-Book, p. 504). Thus, operations of C(I) re�ne operations ofF(I) if we can prove that, for each i, L1 ^ : : : ^ Ln) opF(Mi) vL1^:::^LnopC(Mi). This use of monotonicity amounts to prove that gluing invariantsLj are also veri�ed by operations opMi and their re�nements.2. Now the invariant splitting property can be used:(a) Operations opF(Mi) cannot modify variables in free(Lj) for i 6= j, be-cause, by property 4, free(Lj) = var(F(Mj)) [var(C(Mj)): variables ofabstract machines are supposed to be disjoint (after renaming if nec-essary), variables of a code are fresh variables, and opMi can only callconsulting operations.(b) L1 ^ : : :^Ln) opF(Mi) vLi opC(Mi) is a consequence of the re�nementproof obligation on Mi, which is Li) opF(Mi) vLi opC(Mi).(c) Then it su�ces to prove L1 ^ : : :^ Ln) [opC(Mi)](Vj 6=i Lj).3. Using distributivity of substitution through conjonction, we obtain the fol-lowing su�cient condition:Condition 2. A su�cient condition.If F(I) has been obtained from a structured B-implementation with somesees or imports primitives on components M1; : : : ;Mn, a su�cient conditionis, for each i and j with i 6= j:L1 ^ : : :^ Ln) [opC(Mi)]Ljwhere each Li denotes the invariant of C(Mi), i.e. the gluing invariant betweenC(Mi) and F(Mi).

4 An Architectural ConditionThe su�cient condition stated above preserves, in some sense, the compositionof re�nement because proof obligations of each local re�nement are reused. Butnew proofs are necessary. Less �ne su�cient conditions can be stated on thearchitecture of developments, in order to guarantee that no potentially incorrectcon�guration appears. For that purpose, �rst we de�ne some dependency rela-tions between abstract machines. Secondly a �ner analysis of gluing invariants ofcode components is proposed, using a restriction on the sees primitive. Finally,we examine the su�cient condition in terms of easily checkable conditions ondependencies.De�nition 5. Dependency relations.1. M1 seesM2 i� the implementation of M1 sees the machine M2.2. M1 importsM2 i� the implementation of M1 imports the machine M2.3. M1 depends onM2 i� the code of M1 is built by using M2: depends on =(sees [imports)+.4. M1 can consultM2 i� the code of M1 can consult the variables of the codeof M2: can consult = (depends on�; sees).5. M1 can alterM2 i� the code of M1 can modify the variables of the code ofM2: can alter = (depends on�; imports).Relational notation is the one of the B-method: transitive closure (+), re
ex-ive and transitive closure (�) and composition (;).4.1 Variables and Dependency RelationsTo ensure the su�cient condition [opC(Mi)]Lj in terms of dependency relations, acondition is the following: variables which both appear in opC(Mi) and in Lj can-not be modi�ed by opC(Mi). To state this condition, var(C), the set of variablesof a component C must be analyzed, in the case of a code component.Property 5. Variables of Code Components.1. For a basic machine M , var(C(M)) is the set of variables obtained fromvar(M) by renaming variables v by v0.2. For a non-basic machine M , var(C(M)) is the set of the variables of thecode of an abstract machine which is in the dependency graph of C(M), i.e.:var(C(M)) = Sfvar(C(N)) : N 2 depends on [fMg]g.Now we come back to the su�cient condition. Variables of opC(Mi) which canbe modi�ed come from code of machines in the set can alter [fMig]. On the otherhand, by properties 4 and 5, free variables of Lj come from machines or theircode in the set fMjg[depends on [fMjg]. Because fMjg � depends on � [fMjg],condition 2 is ensured if for each i and j, with j 6= i:can alter [fMig] \ depends on�[fMjg] = ; :

This structural condition is too restrictive, because it rejects too many ar-chitectures. For instance, architecture of Fig. 5 does not �t this condition butcan be proved correct if re�nements are locally correct:M1 M3@@RiM2 ��	i M4@@R ��	s iFig. 5. A correct architecture.4.2 Using Restrictions on ClausesIn this section, a �ner analysis of the gluing invariant of code components ismade, using a restriction speci�c to the sees primitive: variables coming from aseen machine cannot be referenced into gluing invariants of seing components.In consequence, a continuous chain of imports primitives is needed to altervariables of an abstract machine: it explains why architecture of Fig. 5 is correct.Property 6. Form of the Gluing Invariant of Code Components.Let L be the gluing invariant of C(M), where M is an abstract machine withno sees primitive, then L takes the form A ^B, with:1. free(A) = Sfvar(C(Ni)) : Ni 2 can consult [fMg]g. In this case, A � VAi,where each Ai is the invariant of the independant abstract machine corre-sponding to C(Ni) (section 2.5).2. If M is a basic machine free(B) = var(M) [var(C(M)).3. Otherwise free(B) = var(F(M)) [Sfvar(C(N)) : N 2 imports+[fMg]g.Proof by induction. In the case of a basic machine M , A is true and B is thegluing invariant of C(M).Now we analyse the inductive step on a simpli�ed case (with no loss ofgenerality). Let M be an abstract machine and I be its implementation, seeinga machine Ms and importing a machine Mi. Then we have:1. Invariant of C(Ms) takes the form As ^Bs.2. Invariant of C(Mi) takes the form Ai ^Bi.3. As and Ai are conjuctions of invariants of independant machines.4. imports+[fMg] = fMig [imports+[fMig].5. can consult+[fMg] = fMsg [can consult+[fMig][can consult+[fMsg].

6. Invariant of C(M), as de�ned in section 3.3, is:9vs; vi � (L ^As ^Bs ^Ai ^Bi ^ Ls ^ Li)where L is the gluing invariant between F(I) and F(M), Ls is the invariantof Ms, and Li is the invariant of Mi.7. (a) vs 62 free(L) because a seen variable cannot occur into gluing invariants.(b) vs 62 free(Ai ^Bi) and vi 62 free(As ^Bs), thanks to property 5.(c) vs 62 free(Li) and vi 62 free(Ls) because machines have disjoint variables(after renaming if necessary).(d) vs 62 free(As) and vi 62 free(Ai), by inductive hypothesis.(e) So invariant of C(M) becomes, after putting some subformulae out ofthe scope of the quanti�ers:9vs � (As ^Bs ^ Ls) ^Ai ^ 9vi � (L ^Bi ^ Li) :8. A � 9vs � (As ^Bs ^ Ls) ^Ai and 9vs � (As ^Bs ^Ls) is the invariant of theindependant machine corresponding to C(Ms).9. B � 9vi � (L ^Bi ^ Li).4.3 An Architectural Su�cient ConditionRecall that we want to ensure condition [opC(Mi)]Lj for each i and j, with i 6= j,where M1, . . . , Mn are seen or imported in the implementation I of machineM ,and L1, . . . , Ln are respectively the gluing invariants of [opC(M1)], . . . , [opC(Mn)].We suppose that M has no sees primitive.1. Using property 6 and distributivity of substitution through conjonction, Ljtakes the form Aj ^Bj and condition 2 becomes:(a) L1 : : :^ Ln) [opC(Mi)]Aj(b) L1 : : :^ Ln) [opC(Mi)]BjFirst formula holds, due to property 2 and to the fact that Aj is a conjonctionof invariants of independant machines. So a su�cient condition is secondformula.2. By property 6, free variables of Bj come from machines or their code inthe set fMjg [imports+[fMjg]. So it su�ces to prove that opC(Mi) cannotmodify variables of Bj :can alter [fMig] \ (fMjg [imports+[fMjg]) = ; :3. Using the fact that an abstract machine is imported once only, we obtain:can alter[fMig]\ fMjg = ; :4. Next step consists in stating this condition in terms of machine M .(a) If Mj is imported by I then Mi cannot import Mj , so condition holds.

(b) The remaining case is when Mi is seen by I. So condition becomes:can alter[fMg]\ sees[fMg] = ; :5. Now, considering the global architecture of developments, we obtain:Condition 3. An Architectural Condition.An architecture of developpements, where sees primitives only occur at thelevel of implementations, is correct if all components are proved and if:can alter \ sees = ;The B-Book (p. 583) and the Atelier-B (up to version 3.2) propose architec-tural conditions which can be translated, in terms of our relations, into:(imports+ [(sees ; imports+)) \ sees = ; :This condition is not su�cient, because it does not consider can alter . So the in-correct architecture of example 1, which does not respect condition 3, is acceptedby the B-method.5 ConclusionA practical issue of our work results in a set of conditions to guarantee thecorrectness of re�nements in the presence of sees and imports primitives, whensees primitives only occur at the level of implementations1. Translation of sees and imports primitives in terms of
at componentshas given condition 1 which consists in proving that re�nements can becombined.2. Use of monotonicity has given stronger condition 2, which exploits the factthat a sees primitive only allows calls of consulting operations. This condi-tion is simpler to verify than condition 1.3. Proper restrictions on the clauses sees and imports, which can be seen asthe impossibility to represent two independent abstract states on the sameimplementation, have given the �nal condition 3 on the dependency graph.A complete analysis, with no restriction on sees primitive, is under develop-ment and it will be published later. Under reasonable assumptions about chainsof sees primitives, it gives the same su�cient conditions.Under this analysis, it is possible to consider several levels of checkings. Forinstance, if condition 3 is not valid, we can try to verify condition 2 or 1, be-fore reconsidering the global development, in order to eliminate the undesirablesharing.The second issue is, following [BPR96], a framework for dealing with struc-tured components in the B-method, in order to study how proofs of invariantproperties and proofs of re�nement can be combined. Within this framework,

extensions of B-method primitives can be proposed. Structural clauses o�eredby the B-method have some restricting conditions which could be removed. Ifsemantics of new structural clauses can be de�ned in terms of
at components,then a proper analysis of their properties of compositional re�nement can bedone in a rigourous way. For instance, the compositionality of some forms ofincludes or uses can be studied, resulting in a more
exible form of sharing.Following [MQR95], it seems to us that sharing must be introduced at the spec-i�cation level and must be strictly controlled in the re�nement process. In thatcase, �ne reasoning about sharing is possible. The problem met in the B-methodcomes from the fact that reasoning is done at the level of abstract machines, inwhich sharing is not always speci�ed.References[Abr96] J-R. Abrial, The B-Book, Cambridge University Press, 1996.[AtB] Steria M�editerran�ee, Le Langage B. Manuel de r�ef�erence version 1.5 , S.A.V.Steria, BP 16000, 13791 Aix-en-Provence cedex 3, France.[BPR96] D. Bert, M-L. Potet, Y. Rouzaud, A Study on Components and AssemblyPrimitives in B, In First Conference on the B Method, 47{62, H. Habrias,editor, 1996.[BW90] R. J. R. Back, J. von Wright, Re�nement calculus I: Sequential Nondeter-ministic Programs, In Stepwise Re�nement of Distributed Systems, J. W.deBakker, W. P. deRoever, and G. Rozenberg, editors, LNCS 430, 42{66,Springer-Verlag, 1990.[Gro94] The VDM-SL Tool Group, User's Manual for the IFAD VDM-SL Toolbox,IFAD, Forskerparken 10, 5230 Odense M, Denmark, 1994.[LW94] B. Liskov, J. Wing, A Behavioural Notion of Subtyping, ACM Transactionson Programming Languages and Systems, 16(6), 1811{1841, 1994.[Mey88] B. Meyer, Object-Oriented Construction, Prentice-Hall, 1988.[MQR95] M. Moriconi, X. Qian, R. A. Riemenschneider, Correct Architecture Re�ne-ment, IEEE Transactions on Software engineering, 21(4), 356{372, 1995.[Spi88] M. Spivey, Understanding Z: a Speci�cation Language and its Formal Seman-tics, Cambridge University Press, 1988.[ST88] D. Sannella, A. Tarlecki, Towards Formal Development of Programs fromAlgebraic Speci�cations: Implementations Revisited, Acta Informatica, 25,233{281, 1988.[Wir86] M. Wirsing, Structured Algebraic Speci�cations: A Kernel Language, Theo-retical Computer Science, 42, 123{249, 1986.

