Composition and Refinement in the B-Method

Marie-Laure Potet and Yann Rouzaud

LSR-IMAG, Grenoble, France

Laboratoire Logiciels Systémes Réseaux - Institut IMAG (UJF - INPG - CNRS)
BP 72, F-38402 Saint Martin d’Heres Cedex - Fax +33 4 76827287
Marie-Laure.Potet@imag.fr, Yann.Rouzaud@imag.fr

Abstract. In this paper, we propose a framework to study refinement
of abstract machines in the B-method. It allows us to properly deal with
shared variables, possibly introduced by composition primitives SEES and
IMPORTS. We exhibit local conditions on components which are sufficient
to ensure global correctness of a software system. Finally, we show how
restrictions on the architecture of software systems may guarantee these
conditions.

1 Introduction

Modularity is pointed out as a principle allowing to master the complexity of
software development or maintenance. A modular method must help designers to
produce software systems from autonomous components. Modularity must be of-
fered at each level of software development: programming as well as specification
and design.

In the framework of formal methods, modules or components correspond to
syntactic entities which can be combined by composition primitives. If a method
offers stepwise refinement, adding modularity requires to precisely define com-
position primitives and how they interact with the process of refinement. Mod-
ularity and refinement has been widely studied in the framework of algebraic
specifications [ST88]. In the framework of model oriented specifications, some
methods offer a concept of modularity (for instance B [Abr96], VDM [Gro94])
but problems appear when combining refinement and composition.

The work presented in this paper was initially motivated by an example
communicated by P. Behm, from Matra Transport International. This exam-
ple exhibits an incorrect B-development in which each component refinement
is locally correct. We aimed to extend the architectural conditions given in the
B-book (transitivity and circularity, p. 583), in order to detect such pathologi-
cal examples. So we developped a framework to define refinement of structured
components, in order to prove their correctness. This paper presents a simplified
version of this framework.

Section 2 presents the B-clauses which allows designers to build structured
development (in particular SEES and IMPORTS clauses), and we give a paradig-
matic example, illustrating the problem due to refinement composition (section
2.4). In section 3, we propose a semantics for structured components, in terms

of flat components. From this definition, we show that the proofs obligations
relative to each refinement step of structured components, as defined by the
B-method, are correct. Then, we introduce a notion of code component and we
exhibit sufficient conditions to prove its correctness. This amounts to study how
monotonicity and transitivity of the refinement relation interact. By a top-down
approach we propose several sufficient conditions. The last one is presented in
section 4. It is based on the dependency graph between components and it cor-
rects the conditions proposed in the B-Book.

1.1 Composition Primitives

Designing appropriate composition primitives for a specification language or
method 1s a non-trivial task. During the various phases of the software life cycle,
expected characteristics can differ. For instance, at the stage of system specifica-
tion, composition primitives must allow to easily combine pieces of specifications
and, if possible, their properties. At the architectural design stage, major sys-
tem components and their inter-relationships must be identified. So composition
primitives must favour the independence of coding activity. This duality 1s il-
lustrated by the open-closed principle [Mey88]. The open view means building
larger components by extension. The closed view means making a component
available for blind use by others components.

So a method should offer several styles of composition primitives, suitable
for the stages of specification, design or programming.

1.2 Composition and Refinement

In a method which offers stepwise refinement, the relationship between different
levels of specification is defined by a refinement relation. When specifications
use composition primitives, a way to refine such structured specifications must
be included. At the specification level, some structured specifications can be
interpreted as new “flattened” specifications. In this case, the new resulting
specification can be refined in any way. Otherwise, if the structure is inherent in
the specification, the refinement must preserve the global structure. For instance,
in the Z notation [Spi&§], a reference to a schema is interpreted as a local copy of
the schema text and the new schema may be refined in an independent way. On
the contrary, in the programming language Ada, links between packages which
are introduced at the specification level, are implicitly preserved in the body.

At the level of architectural design, the final structure of the system is elab-
orated and components will be implemented separately. This structure must be
kept by the latter steps of refinement. This is the property of compositional
refinement (also referenced as the property of horizontal refinement), which per-
mits to compose refinements to form a large composite refinement architecture.

Refinement composition abilities naturally depend on the relations between
components (see for instance discussions about inheritance in the object-oriented
approach [LW94]). Several cases can be considered:

1. Refinement composition is always valid. This is the case for instance if the
refinement relation is proved to be monotonic [BW90], for such compositions.

2. Global correctness depends on the semantics of the involved components.
In this case, a case-by-case proof is mandatory. For instance, if a specifica-
tion is built as an extension of another specification, the compositionality of
refinement depends on the form of this extension.

3. Global correctness depends on the global structure of the system. This is
generally the case when sharing is allowed.

Sharing occurs when the same object is used into several modules. In that
case, two main problems arise. First, semantics of sharing must be preserved
by the refinement process. For instance, if an abstract data type is duplicated,
conversion between the different representations must be insured. Secondly, cor-
rectness of each independent development does not necessarily guarantee cor-
rectness of the composition. Some possible interferences relative to the shared
part can break down refinement. This is the classical problem about aliasing
and side effects. This point is crucial in the method/language dealing with with
states, as we will see.

2 Component, Composition and Refinement in B

2.1 B-Components

In the B-method, there are three kinds of component: abstract machines, refine-
ments and implementations. Abstract machines are the visible part of specifi-
cations. In particular, all composition primitives connect components with ab-
stract machines. Refinements are intermediary steps between interface (abstract
machines) and executable code (implementations). These components can be
seen as traces of a development. Implementations are the last level of a devel-
opment. Implementations are particular refinements in which substitutions are
executable, so they can be translated into code. Moreover, either variables are
concrete ones, or they come from other abstract machines, so they must be used
via operation calls.

The introduction of several kinds of component, linked to the different steps
of the development process, is a particularity of the B-method. In other languages
or methods, there is generally only one kind of component, and some syntactic
restrictions characterize implementations. This distinction in the B-method is
based on the following arguments:

1. Refinements and implementations are not only specifications, but they also
contain information about the refinement (the gluing invariant, describing
the change of variables).

2. Each kind of components has specific syntactic restrictions. For instance,
sequencing cannot occur in an abstract machine, in order to favour the ab-
straction at the first level of a development.

3. The target of composition primitives is always an abstract machine. This
restriction favours the decomposition/composition criterion which permits
to develop pieces of specification in an independent way.

2.2 B Composition Primitives

The B-method offers, at present, four composition primitives. Two of them (IN-
CLUDES and IMPORTS) exclude possibility of sharing and two of them (UsEs and
SEES) allow a controlled form of sharing.

Includes/Imports. The INCLUDES primitive links abstract machines or refine-
ments to abstract machines. This primitive can be seen as a schema inclusion in
7, without possibility of sharing: this primitive is interpreted as a local copy of
the included machines. Due to some syntactic restrictions, the INCLUDES primi-
tive permits to extend an abstract machine (enforcing and adding variables state,
adding and hiding operations).

The IMPORTS primitive links implementations to abstract machines. This
primitive corresponds to classical component primitives of programming lan-
guages. It allows to build a layered software. This primitive can be seen as the
closed version of the INCLUDES primitive: use of IMPORTS encapsulates the state
of the imported abstract machines.

Implementions are not refinable in the B-method, so the IMPORTS primitive
is a final composition primitive. A composition using INCLUDES primitive, with
its copy semantics, 1s not necessarily preserved during the refinement process. If
an abstract machine M is included in a component (', being either an abstract
machine or a refinement, there are two possibilities:

1. C' is refined by its proper structure. In this case, the abstract machine M
will be implemented only if it is imported in another implementation.

2. C is implemented using a IMPORTS primitive on M. This possibility is not
directly supported by the method, because refinement does not exploit the
preservation of this kind of structure.

m/c{
7

Fig. 1. If a component C includes a machine M, an implementation I of C' may or
may not import M.

M

~ 0

~ 0
s
a

Uses/Sees. The USEs primitive introduces a form of sharing between abstract
machines. In the B-method, sharing is introduced by a link on a component

entity. The use of this primitive permits to extend an abstract machine in mul-
tiple ways. A final abstract machine must include all shared machines and their
extensions. For more explanations about this construction, see [BPR96].

The SEES primitive can appear in abstract machines, refinements or imple-
mentations. The use of this primitive allows to share sets, definitions and vari-
ables in a very limited way: variables must not be modified by the seing compo-
nents, in any way. From the refinement point of view, there are some restrictions:

1. abstract machines containing a USES primitive are not considered as refinable
specifications.

2. 1f a SEES primitive is introduced at a given level of a development, this prim-
itive must be preserved in the lowest levels of the development, to guarantee
the unicity of the implementation of the shared part.

Fig. 2. A SEES primitive must be preserved in a refinement.

The USES and INCLUDES primitives are only syntactic facilities. So in the
study of refinement composition, only the sEEs and IMPORTS primitives have to
be considered.

Comparison between Sees and Imports. The SEES and IMPORTS primitives
differ in their use, due to their proper restrictions, whose aim 1s to limit inter-
ference between local refinements. Some restrictions fall on local use of these
primitives and some of them are relative to a development, taken as a whole.

Local Restrictions. When an IMPORTS primitive is used, values of variables
are accessible only by operation calls. This restriction guarantees the invariant
preservation. Moreover, imported variables can occur in the invariant part. This
possibility allows designers to constrain imported variables and use them to
represent abstract variables. In this way, a layered software is produced. When
a SEES primitive is used, variables can be consulted (directly or via operation
calls), but cannot be modified. Variables of the seen machine are not visible in
the invariant part of the seeing component. As a result, seen variables cannot be
used in a refinement to represent abstract variables.

Global Restrictions. Abstract machines which are seen by other ones must
be imported once, and only once, in the development. Abstract machines can be
imported at most once in a development, so variables cannot be shared by this

way (if necessary, renaming, which produces a new copy of a machine, can be
used). Another important property is the absence of cycle: an abstract machine
cannot see or import itself, directly or indirectly.

2.3 Refinement of a Single B-Component

Refinement relates an “abstract” model of a B-component to a more “concrete”
one. In the B-method, it is based on observational substitutivity: any behaviour
of the refined specification is one of the possible behaviours of the initial specifica-
tion. More specifically, B-refinement allows designers to reduce non-determinism
of operations, to weaken their preconditions, and to change the variable space.
In the following, we recall some results on B-refinement (chapter 11 of the

B-book).

Refinement Component. A refinement component is defined as a differential
to be added to a component. A refinement component can have proper variables
which are linked to variables of the refined component by a gluing invariant.
Moreover, refined operations must be stated on the new variables.

MACHINE REFINEMENT MACHINE
Ml R2 M2
VARIABLES REFINES VARIABLES
U1 M, v2
INVARIANT VARIABLES INVARIANT
IR o ElUl.(Ll /\LQ)
INITIALISATION INVARIANT INITIALISATION
U, Lo Us
OPERATIONS INITIALISATION OPERATIONS
op = Uz op =
PRE OPERATIONS PRE
P1 op = P2 AN
THEN PRE dvy.(L1 A Lo A Py)
S1 P THEN
END THEN So
END So END
END END
END

Fig. 3. Refinement R, of M, seen as an independant machine M.

Proof Obligations. The proof obligations for refinement Ra of Fig. 3 are,
provided that there are no common variables (B-book, p. 530):

1. Initialisation: [Us]=[U1]— L2
2. Operation op: L1 A La A Py = Py A[S2]—[S1]— Lo

In the most general case, there is a chain of refinements M, Rs, ..., R, to
be considered. The proof obligation for an operation of R, is, provided that M,
and 1ts refinements have no common variables:

LiANLeA .. ALy APLA ... APy = Py ASu][Sn=1]"Ln -

2.4 Compositional Refinement

In languages based on states, a major difficulty 1s relative to the sharing of states.
In presence of sharing, we must prove that some local reasoning about values of
variables are always valid in a global system. Such a problem appears in the B
refinement process.

Example 1. Let A, B, C be the following abstract machines:

MACHINE MACHINE MACHINE
A B C
VARIABLES OPERATIONS OPERATIONS
xa opb = IT 4 opc =
INVARIANT skip rr := TRUE
xa : 0.1 END END
INITIALISATION
xa =0
OPERATIONS
rr val_xa = 1T := xa ;
mod_xa = xa :=1- xa
END

Now, let CI be the following implementation of C":

IMPLEMENTATION C/ REFINES C IMPORTS B SEES A
OPERATIONS
IT < OopCc =
VAR v1, v2 IN
vl « val_xa; opb; v2 « valxa; rr:= bool(vl=v2)
END
END

This refinement is valid. Using B-definitions on substitutions, we have to
prove that TRUE=bool(xa=xa), which is true. Now machine B is implemented,
with the help of D and DI, by BI:

IMPLEMENTATION MACHINE IMPLEMENTATION
BI D DI
REFINES OPERATIONS REFINES
B opd = skip D
SEES END IMPORTS
D A
OPERATIONS OPERATIONS
opb = opd opd = mod_xa
END END

These two refinements are also valid. But, despite the fact that proof obli-
gations proposed by the B-method can be discharged, the code of the operation
ope is not correct (see below).

IT & opc =
VAR V1, v2 IN
vl:=xa; xa:=1-xa; v2:=xa; rr:= bool(vl=v2)
END

The resulting substitution is bool(xa=(1-xa)), which is FALSE. Where is the
flaw? When implementing the abstract machine C', we implicitly suppose that
the operation opd of the machine D does not affect the variable za. But this
hypothesis is broken by the implementation DI (see Fig. 4).

The B-method imposes conditions on architecture to eliminate some incorrect
cases (B-book, p. 583): it is not possible for a machine, a refinement or an
implementation to see a machine that is one of its ancestors or descendants
through a chain of IMPORTS primitives. But the architecture of our example
does not fit this condition, because A is imported through a SEES primitive.

B /CXA
A

Fig. 4. Architecture of Example 1.

The problem comes from two different views on abstract machines. When
abstract machines are combined, only modifications described in the abstract
definition of operations are observable. So, we implicitly suppose that abstract
machines, and a fortior: their code, do not modify anything else. When abstract
machines are refined, new variables can be introduced. So we implicitly suppose

that operations can alter other variables, in a way compatible with the refinement
invariant.

If variables introduced by a refinement are local to this refinement, the com-
position is valid. But if these variables can be referenced in other abstract ma-
chines by composition, these two views can become inconsistent and some un-
pleasant side effects can appear. New conditions are necessary to simultaneously
adopt these two points of view.

2.5 Notation, Operations and Properties on Refinements

In this paper, in order to highlight the essential part of a proof obligation, the
notation Ty will be used, and gluing invariants of intermediate refinements,
as well as preconditions of their operations, will be omitted and considered as
hidden hypotheses. We will also assume that the precondition of the refining
operation is already proved. So, in such an implicit context, the proof obligation
of an operation op, refined in a chain of refinements Ry, ..., R,, will be written
Ly, = opr,_, Cr, opr,, where L, is the gluing invariant of R,.

Definition 1. Refinement Relation Cyp,.
Let L be a predicate, op; = Pi|S1 and ops = P»|S2 be two operations with
the same signature. Then:

op1 Cr opz = [So]=[S1]-L .
Definition 2. Notation var and free.

1. var(C') is the set of variables of the component €', in the VARIABLES clause.
2. free(L) is the set of free variables of the predicate L.

Renaming Common Variables. When a B-component C' and its immediate
refinement R, with gluing invariant L, share some variables v, a renaming must
be introduced, in order to properly deal with proof obligations. Let v’ be a set
of fresh variables, related to v. Then v will be renamed by v' in R (and in the
chain of refinements beginning with R), so the proof obligation for an operation
op becomes:

LAv=1v = opc Crap=y [v:=v']opr .

Translating a B-Refinement into an Independant Machine. This oper-
ation takes a refinement R, in a chain My, Rs, ..., R,, and delivers the corre-
sponding independant abstract machine M,,, which looks like abstract machine
My of Fig. 3. Main characteristic of this translation is that intermediate vari-
ables are hidden by existential quantification. Notice that renaming of common
variables is prerequisite. Invariant of the resulting machine is:

E'l‘l,...,l‘n_l (L1 /\Lz/\/\Ln)
and the precondition of an operation 1s:

PnAal‘l,...,l‘n_l'(Ll/\Lz/\.../\Ln/\Pl/\.../\Pn_l) .

Reducing a Chain of Refinements. Reducing a chain of refinements M,
Rs, ..., R, consists in defining a direct refinement R!, of abstract machine M;.
Let M,, be the independant abstract machine, corresponding with R,,. Then R/,
is the differential to be added to My, in order to build M,,. Notice that renaming
of common variables is prerequisite. Gluing invariant between M; and R/ is:

E'l‘z,...,l‘n_1~(L2/\.../\Ln)
and the precondition of an operation of R, is:

Pn/\al‘l,...,l‘n_l'(Ll/\.../\Ln/\Pl/\.../\Pn_l) .

Invariant Splitting. In the following, the invariant splitting property will be
used to establish sufficient conditions for a proof obligation of a refinement, when
its gluing invariant L takes the form Ly A Ls.

Lemma 1. Let S be a substitution and P, @ be two predicates, such that S
does not modify the free variables of (). We have:

QA—[S]-P = —[S]=(P A Q).
Proof: by structural induction on substitutions.

Lemma 2. Let S; and Sy be two substitutions, and A, B two predicates, such
that S; does not modify the free variables of B. We have:

[Sl]B A [SQ]—'[Sl]—'A = [SQ]—'[Sl]—'(A A B)

Notice that in general, we cannot deduce [S2]—[S1]=(A A B) from the hy-
potheses [S2]-[S1]7A and [S2]—[S1]-B.

Proof: by lemma 1, we have B A =[S1]=A = —[S1]=(4 A B). By monotonic-
ity of substitutions through implication (B-Book, p. 287), we obtain [S3](B A
=[S1]7A) = [S2][S1]-(A A B). The property is then established by distributiv-
ity of substitutions through conjunction (B-Book, p. 287).

Property 1. Invariant splitting.

Let C be a B-component, R a refinement of C', L = Ly A Ly the gluing
invariant of R, and opc an operation of ', whose refinement is opg. Property
opc Cr opgr holds if:

1. ope does not modify the free variables of Lo,
2. [opr]L=,
3. opc Cr, opr.

Proof: direct application of lemma 2.

3 A framework for Compositional Refinement

We call B-component a B-entity: an abstract machine, a refinement or an im-
plementation. A B-component i1s flat if it includes neither SEES nor IMPORTS
primitive. Otherwise it is structured.

First, we propose a semantics for structured components. Following the work
presented in [BPR96], the chosen semantics consists in interpreting such compo-
nents as new “flattened” components. Thus refinement of structured components
can be reduced to refinement of flat components. Finally, we use this framework
to define the last step of a development: how the code of an abstract machine
is elaborated. Studying the correctness of this code comes down to study the
monotonicity of the refinement relation with respect to the structural sEEs and
IMPORTS primitives. This form of monotonicity is not always valid (recall exam-
ple 1), and some sufficient conditions will be pointed out.

3.1 Flattening Structured B-Components

We define a flattening operation, denoted by F, which produces a new flat
component, in which all sEEs and IMPORTS primitives are expanded. In such
a flat component, the keywords MACHINE, REFINEMENT, IMPLEMENTATION are
replaced with COMPONENT. If no REFINES clause appears in a component, it
comes from an abstract machine. Otherwise, it comes from a refinement or an
implementation. This change of keyword 1s done to underline that there is no
syntactic restriction on the allowed substitutions in our components.

In the flattening operation, we only consider variables and clauses related
to variables (initialisation, invariant and operations), because problems of re-
finement composition come from variables. The sEES and IMPORTS primitives
will be treated in the same way, because they have the same semantics (call of
operations on an encapsulated state). The difference lays on the possibility of
sharing for the SEEs primitive: in this case some components F(M;) can have
some variables in common, coming from seen machines.

Definition 3. The Flattening Operation.

Let C' be a B-component. If C'is stand-alone, then F(C) is C', with the header
“cOMPONENT F(C)”. Otherwise, C' has some SEES or IMPORTS primitives on
machines My, ..., M,. The flat component F(C') is defined as follows:

1. Header of F(C') is “coMPONENT F(C)”.

2. If C refines a B-component C”, then a clause “REFINEs F(C”)” is introduced.

3. Variables of F(C') are variables of C', F(My), ..., F(M,). Because variables
of C, My, ..., M, are distinct (a restriction imposed by the B-method),
common variables may only come from the machines which are seen (several
times) and imported (almost once).

4. Invariant of F(C') is the conjunction of invariant of C' and invariants of
F(My), ..., F(My). For the same reason as above, invariants on shared
variables are necessarily identical.

5. Initialisation of F(C) is the substitution (U1 ® ...® U,) ;U), where each
U; is the initialisation of the component F(M;) and U is the initialisation
of M. The operator @ is the extension of the operator || when variables are
shared (see [BPR96] for more explanations).

6. Operations of F(C) are expanded operations of C'. Expansion consists in
replacing the calls to operations with their bodies, where formal parameters
are replace with effective parameters (B-book, page 314). We suppose here
that operations are not recursive.

Property 2. Invariant Preservation by an Operation Call.

Let M be a component corresponding abstract machine and I be its invariant.
It can be proved that I is preserved by a substitution .S, calling operations of M,
if these operations are called into their precondition. Such a condition is imposed
by the B-method. In consequence, for a component C, seeing or importing a
component M, each operation of F(C') preserves the invariant of M.

Example 2. The flat component associated with implementation DI of Exam-
ple 1 is:

COMPONENT F(DI) REFINES F(D)
VARIABLES Xxa

INVARIANT xa : 0..1

INITTIALISATION xa := 0
OPERATIONS opd = xa :=1 - xa
END

3.2 Structured Refinement

Let C' be a B-component, seeing abstract machines My, ..., My, and let R be a
B-refinement of C'| seeing the same machines, and possibly seeing or importing
other machines My 41, ..., M,. We suppose here that common variables between
F(C) and F(R) only come from seen machines, i.e. My, ..., M (other common
variables can be renamed, if necessary).

To prove the correctness of this refinement, we have to prove that F(C) is

refined by F(R):

1. By the flattening operation, invariant of F(R)is LA Ly ... A Ly, where L is
the gluing invariant between C' and R and each L; is the invariant of F(M;).
2. Because F(C) and F(R) have some common variables (variables of My, ...,
M), renaming must be done and the gluing invariant must be strengthened.
Let vs be this set of variables and v/, be a set of corresponding fresh variables.
We rename v, by v, in the component F(R) and the new invariant becomes
LALy...NL, Avs = v, Thus we must establish, for each operation of C":

LALy ... N Ly Nvs = vy = 0pF(c) CLAL, . AL, Av.=v! [Us 1= V,]0PF(R)

3. Two applications of the splitting invariant property will simplify this for-
mula:
(a) Splitting into Ly A...A Ly Avs = v, and LA Lggi A .. A Ly.

1. OPF(C) does not modify variables of L1 A.. . ALy Avs = v}: variables v/,
are fresh variables, and, for variables v,, only consulting operations
can be called in opr(c).

ii. With similar arguments about opr(g), [[vs := vi]opr(r)](L1 A ... A
Ly Avs = v%) can be reduced to L1 A...ALp Avs = !, which belongs
to hypotheses.

iii. So it remains to prove LALi A... AL, Avs = vl =
0PpF(C) CLALiyr A AL, [Vs = Vi]opF(r), Which is equivalent to L A
LiN. . ALy = opricy ELAL j1A. AL, OPF(R) (proof by structural
induction on substitutions).
(b) Splitting into L and Lgy1 A ... A Ly.

1. The operations opr(c) do not modify variables of Lyi1,..., L, be-
cause variables of these machines are not accessible from C.

ii. By property 2, LA Ly A...A Ly = [opr(r)lLi holds for each .

lii. So it remains to prove LA L1 A... A Lp = opr(c) CL opF(r)-

In conclusion, the final condition is L A L1 A... A Ln = opr(cy EL opr(r),
which is the one proposed by Atelier-B [AtB] in presence of SEES or IMPORTS
primitives.

3.3 Code Components

In this section, we introduce the notion of code component, in order to build the
code attached to abstract machines. Code components are flat components in
which references to abstract machines, introduced by SEES or IMPORTS clauses,
are replaced by the code associated with these abstract machines. In the follow-
ing, we define two kinds of code component:

1. C(I) is the code component refining F([I), if I is an implementation.
2. C(M) is the code component refining F(M), if M is an abstract machine. It
is obtained from C(I) by reducing the refinement chain F(M), F(I), C(I).

For simplicity reasons, we suppose that variables of an implementation can
only come from seen and imported machines (dealing with local concrete vari-
ables should not be a problem).

Definition 4. Code Component Operation C.

1. Let I be a B-implementation and let I’ be I, without its gluing invariant
and with the clause “REFINES F(I)”.

(a) Tf T has neither SEES nor IMPORTS primitive, [has no variables (see
above), and C(T) is I'.

(b) If I is a structured B-implementation with SEES or IMPORTS primitives
on components My, ..., M,, C(I) is obtained by flattening together I’
and the code components C(My),...C(M,). The resulting invariant of
C(I)is Ly A...A Ly, where each L; is the invariant of C(M;).

2. Let M be a B-abstract machine.

(a) If M is a basic machine, C(M) is obtained from F(M) by adding the
clause “REFINES F(M)”, by renaming its variables v with fresh variables
v’, then by adding to its invariant the gluing invariant v = v’. Recall that
a basic machine has no B-implementation.

(b) If M has the implementation I, C(M) is obtained by reducing the re-
finement chain F(M), F(I), C(I), as defined in section 2.5.

Property 3. Code Component Variables.

1. Let C be a B-component, then variables of its code C(C) only come from the
code of basic machines: var(C(C)) C |J{var(C(M)) : M is a basic machine}.
2. Let I a B-implementation. Since variables of the code of basic machines are

fresh variables, var(F(I)) Nvar(C(I)) = 0.

Property 4. Variables of Gluing Invariants of Code Components. Let L be the
gluing invariant of a code component C(M), where M is an abstract machine;

we have: free(L) = var(F(M)) U var(C(M)).

Example 3. We suppose here that the abstract machine A of example 1 is a
basic machine. So the code components C(D) and C(D1T), respectively associated
with components F(D) and F(DI) are:

3.4

Now we have to prove that F(I) is refined by C(I). If T has neither SEEs nor

COMPONENT COMPONENT

C(D) C(DI)
REFINES REFINES

F(D) F(DI)
VARIABLES VARIABLES

xa’ xa’
INVARIANT INVARIANT

dxa.(xa:0.1 Axa”:0..1 Axa=xa) xa’ :0..1 A xa =xa’
INITIALISATION INITIALISATION

xa ;=0 xa =0
OPERATIONS OPERATIONS

Opd = opd =

xa’ :=1-xa’ xa :=1-xa’

END END

Code Correctness

IMPORTS primitive, the proof is obvious. Otherwise, the condition is:

Condition 1. A Compositional Proof Obligation.
If F(I) has been obtained from a structured B-implementation with some
SEES or IMPORTS primitives on components My, ..., M, , it suffices to prove :

Ly Noo oA Lp = oprry ELyn..aL, OPc(r)

where each L; denotes the invariant of C(M;), i.e. the gluing invariant between

3.5 A Sufficient Condition

Condition 1 cannot be directly reduced using the splitting invariant property, so
we now inspect the structure of operations.

This analysis only works when SEES primitives only occur at the level of
implementations. In this case, we have var(F(M)) = var(M), for any machine
M. A complete analysis, giving the same results, will be published later.

1. Because operations in F(I) and C(I) only differ in the expansion of the
operations which are called in 7, the property of monotonicity of refinement
can be used (B-Book, p. 504). Thus, operations of C(I) refine operations of
F(I) if we can prove that, for each i, L1 A... A Ly = oprm,) Crin. AL,
ope(m;y- This use of monotonicity amounts to prove that gluing invariants
L; are also verified by operations opas, and their refinements.

2. Now the invariant splitting property can be used:

(a) Operations opr(ar,) cannot modify variables in free(L;) for i # j, be-
cause, by property 4, free(L;) = var(F(M;)) U var(C(M;)): variables of
abstract machines are supposed to be disjoint (after renaming if nec-
essary), variables of a code are fresh variables, and opps, can only call
consulting operations.

(b) Li Ao oA Lp = oprm,) EL, ope(ur,) is a consequence of the refinement
proof obligation on M;, which is L; = opr s,y EL, ope(;)-

(c) Then it suffices to prove Ly A ... A Ly = [opear)) (A2 Lj)-

3. Using distributivity of substitution through conjonction, we obtain the fol-
lowing sufficient condition:

Condition 2. A sufficient condition.

If F(I) has been obtained from a structured B-implementation with some
SEES or IMPORTS primitives on components My, ..., M, , a sufficient condition
is, for each ¢ and j with ¢ # j:

Li Ao oA Ly = [ope(a)) L

where each L; denotes the invariant of C(M;), i.e. the gluing invariant between

4 An Architectural Condition

The sufficient condition stated above preserves, in some sense, the composition
of refinement because proof obligations of each local refinement are reused. But
new proofs are necessary. Less fine sufficient conditions can be stated on the
architecture of developments, in order to guarantee that no potentially incorrect
configuration appears. For that purpose, first we define some dependency rela-
tions between abstract machines. Secondly a finer analysis of gluing invariants of
code components is proposed, using a restriction on the SEES primitive. Finally,
we examine the sufficient condition in terms of easily checkable conditions on
dependencies.

Definition 5. Dependency relations.

1. Mj sees M iff the implementation of M; sees the machine Ms.

2. My imports M iff the implementation of M7 imports the machine M.

3. M; depends_on My iff the code of M; is built by using Ms: depends_on =
(sees U imports) ™.

4. My can_consult Mo iff the code of M; can consult the variables of the code
of My: can_consult = (depends_on™; sees).

5. M can_alter M5 iff the code of M; can modify the variables of the code of
Ma: can_alter = (depends_on™; imports).

Relational notation is the one of the B-method: transitive closure (), reflex-
ive and transitive closure (*) and composition (;).

4.1 Variables and Dependency Relations

To ensure the sufficient condition [op¢(ar,)]L; in terms of dependency relations, a
condition is the following: variables which both appear in opc(as,) and in L; can-
not be modified by ope(ar,y. To state this condition, var(C), the set of variables
of a component C must be analyzed, in the case of a code component.

Property 5. Variables of Code Components.

1. For a basic machine M, var(C(M)) is the set of variables obtained from
var(M) by renaming variables v by ¢’.

2. For a non-basic machine M, var(C(M)) is the set of the variables of the
code of an abstract machine which is in the dependency graph of C(M), i.e.:
var(C(M)) = U{var(C(N)) : N € depends_on[{M}]}.

Now we come back to the sufficient condition. Variables of opc(as,) which can
be modified come from code of machines in the set can_alter[{M;}]. On the other
hand, by properties 4 and 5, free variables of L; come from machines or their
code in the set {M; } U depends_on[{M;}]. Because {M;} C depends_onx*[{M;}],
condition 2 is ensured if for each ¢ and j, with j #

can_alter[{M;}] N depends_on™[{M;}] =0 .

This structural condition is too restrictive, because it rejects too many ar-
chitectures. For instance, architecture of Fig. 5 does not fit this condition but
can be proved correct if refinements are locally correct:

M,
N
M2 M3
M,

Fig.5. A correct architecture.

4.2 Using Restrictions on Clauses

In this section, a finer analysis of the gluing invariant of code components is
made, using a restriction specific to the SEES primitive: variables coming from a
seen machine cannot be referenced into gluing invariants of seing components.
In consequence, a continuous chain of IMPORTS primitives is needed to alter
variables of an abstract machine: it explains why architecture of Fig. 5 is correct.

Property 6. Form of the Gluing Invariant of Code Components.
Let L be the gluing invariant of C(M), where M is an abstract machine with
no SEES primitive, then L takes the form A A B, with:

1. free(A) = U{var(C(N;)) : Ni € can_consult[{M }]}. In this case, A = A A;,
where each A; is the invariant of the independant abstract machine corre-
sponding to C(N;) (section 2.5).

2. If M is a basic machine free(B) = var(M) U var(C(M)).

3. Otherwise free(B) = var(F(M)) U J{var(C(N)) : N € importst[{M}]}.

Proof by induction. In the case of a basic machine M, A 1s true and B is the
gluing invariant of C(M).

Now we analyse the inductive step on a simplified case (with no loss of
generality). Let M be an abstract machine and I be its implementation, seeing
a machine My and importing a machine M;. Then we have:

Invariant of C(Mjg) takes the form As A Bs.

Invariant of C(M;) takes the form A; A B;.

Ag and A; are conjuctions of invariants of independant machines.
importsT[{M}] = {M;} U importst[{M,;}].

can_consult V[{M}] = {M,} U can_consult [{ M; }] U can_consult* [{ M}].

U W N =

6.

8.

9.

Invariant of C(M), as defined in section 3.3, is:
Jug, vy - (LA As A Bs AAi A By A Lg A L)

where L is the gluing invariant between F(I) and F(M), Lg is the invariant

of My, and L; is the invariant of M.

(a) wvs & free(L) because a seen variable cannot occur into gluing invariants.

(b) vs & free(Ai A By) and v & free(As A Bs), thanks to property 5.

(c) vs & free(L;) and v; € free(Ls) because machines have disjoint variables
(after renaming if necessary).

(d) vs & free(Aq) and v; & free(A;), by inductive hypothesis.

(e) So invariant of C(M) becomes, after putting some subformulae out of
the scope of the quantifiers:

Hvs~(As/\Bs/\Ls)/\Ai/\E|vi~(L/\Bi/\Li) .
A=3Tug- (As A Bs A Ls) A Aj and Jug - (Ag A Bs A Lg) is the invariant of the

independant machine corresponding to C(Mj).
BEHvi~(L/\Bi/\Li).

4.3 An Architectural Sufficient Condition

Recall that we want to ensure condition [ope(ar,)] 1 for each i and j, with i # j,
where My, ..., M, are seen or imported in the implementation I of machine M,
and Ly, ..., L, are respectively the gluing invariants of [ope(ar)], - - -, [ope(a,)]-
We suppose that M has no SEES primitive.

1.

Using property 6 and distributivity of substitution through conjonction, L;
takes the form A; A B; and condition 2 becomes:

(a) Li.. NL, = [OpC(M,)]Aj

(b) Li.. NL, = [OpC(M,)]Bj

First formula holds, due to property 2 and to the fact that A; is a conjonction
of invariants of independant machines. So a sufficient condition is second
formula.

By property 6, free variables of B; come from machines or their code in
the set {M;} U imports™ [{M;}]. So it suffices to prove that opc(pr,) cannot
modify variables of B;:

can_alter[{M; }] 0 ({M;} U importsT[{M;}]) = 0 .
Using the fact that an abstract machine 1s imported once only, we obtain:
can_alter[{M;] N{M;} =0 .

Next step consists in stating this condition in terms of machine M.
(a) If M; is imported by I then M; cannot import M;, so condition holds.

(b) The remaining case is when M; is seen by I. So condition becomes:
can_alter[{ M} N sees[{M }] =0 .
5. Now, considering the global architecture of developments, we obtain:

Condition 3. An Architectural Condition.
An architecture of developpements, where SEES primitives only occur at the
level of implementations, is correct if all components are proved and if:

can_alter N sees = ()

The B-Book (p. 583) and the Atelier-B (up to version 3.2) propose architec-
tural conditions which can be translated, in terms of our relations, into:

(importst U (sees; importst)) N sees =0 .

This condition is not sufficient, because it does not consider can_alter. So the in-
correct architecture of example 1, which does not respect condition 3, is accepted
by the B-method.

5 Conclusion

A practical issue of our work results in a set of conditions to guarantee the
correctness of refinements in the presence of SEES and IMPORTS primitives, when
SEES primitives only occur at the level of implementations

1. Translation of SEES and IMPORTS primitives in terms of flat components
has given condition 1 which consists in proving that refinements can be
combined.

2. Use of monotonicity has given stronger condition 2, which exploits the fact
that a SEES primitive only allows calls of consulting operations. This condi-
tion is simpler to verify than condition 1.

3. Proper restrictions on the clauses SEES and IMPORTS, which can be seen as
the impossibility to represent two independent abstract states on the same
implementation, have given the final condition 3 on the dependency graph.

A complete analysis, with no restriction on SEES primitive, is under develop-
ment and it will be published later. Under reasonable assumptions about chains
of SEES primitives, it gives the same sufficient conditions.

Under this analysis, it is possible to consider several levels of checkings. For
instance, if condition 3 is not valid, we can try to verify condition 2 or 1, be-
fore reconsidering the global development, in order to eliminate the undesirable
sharing.

The second issue is, following [BPR96], a framework for dealing with struc-
tured components in the B-method, in order to study how proofs of invariant
properties and proofs of refinement can be combined. Within this framework,

extensions of B-method primitives can be proposed. Structural clauses offered
by the B-method have some restricting conditions which could be removed. If
semantics of new structural clauses can be defined in terms of flat components,
then a proper analysis of their properties of compositional refinement can be
done in a rigourous way. For instance, the compositionality of some forms of
INCLUDES or USES can be studied, resulting in a more flexible form of sharing.
Following [MQR95], it seems to us that sharing must be introduced at the spec-
ification level and must be strictly controlled in the refinement process. In that
case, fine reasoning about sharing is possible. The problem met in the B-method
comes from the fact that reasoning is done at the level of abstract machines, in
which sharing is not always specified.

References

[Abro6] J-R. Abrial, The B-Book, Cambridge University Press, 1996.

[AtB] Steria Méditerranée, Le Langage B. Manuel de référence version 1.5, S.A.V.
Steria, BP 16000, 13791 Aix-en-Provence cedex 3, France.

[BPR96] D. Bert, M-L. Potet, Y. Rouzaud, A Study on Components and Assembly
Primitives in B, In First Conference on the B Method, 47-62, H. Habrias,
editor, 1996.

[BW90] R. J. R. Back, J. von Wright, Refinement calculus I: Sequential Nondeter-
menestic Programs, In Stepwise Refinement of Distributed Systems, J. W.
deBakker, W. P. deRoever, and G. Rozenberg, editors, LNCS 430, 42-66,
Springer-Verlag, 1990.

[Gro94] The VDM-SL Tool Group, User’s Manual for the IFAD VDM-SL Toolbox,
IFAD, Forskerparken 10, 5230 Odense M, Denmark, 1994.

[LW94] B. Liskov, J. Wing, A Behavioural Notion of Subtyping, ACM Transactions
on Programming Languages and Systems, 16(6), 1811-1841, 1994.

[Mey88] B. Meyer, Object-Oriented Construction, Prentice-Hall, 1988.

[MQRI5] M. Moriconi, X. Qian, R. A. Riemenschneider, Correct Architecture Refine-
ment, IEEE Transactions on Software engineering, 21(4), 356-372, 1995.

[Spi88] M. Spivey, Understanding Z: a Specification Language and its Formal Seman-
tics, Cambridge University Press, 1988.

[ST88] D. Sannella, A. Tarlecki, Towards Formal Development of Programs from
Algebraic Specifications: Implementations Revisited, Acta Informatica, 25,
233-281, 1988.

[Wir86] M. Wirsing, Structured Algebraic Specifications: A Kernel Language, Theo-
retical Computer Science, 42, 123-249, 1986.

