Time-Triggered Mixed-Critical Scheduler on Single- and Multi-processor Platforms

Dario Socci, Peter Poplavko, Saddek Bensalem and Marius Bozga

Verimag - Université Joseph Fourier - Grenoble

HPCC 2015

1The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 288175 [Certainty] and by ESA Project MoSaTT-CMP, Contract No. 4000111814/14/NL/MH
Multi-cores and Many-cores Systems

The introduction of multi-cores and many-cores is leading to an increasing trend towards integrating multiple subsystems upon a single chip.

Effects of integration:
- Increase efficiency
- Reduce device count
- Reduced Size, Weight and Power consumption
- Increase design cost
- Increase certification complexity
Mixed Critical Systems

The certification problem

- In some domain (avionics, automotive) systems must pass certification test issued by Certification Authorities
- Applications at different levels of criticality interact and co-exist

Avionic **DO-178B**

defines 5 levels of criticality, based on the effect of a failure:
A (Catastrophic), B (Hazardous), C (Major), D (Minor) and E (No Effect).

Unmanned Air Vehicles (**UAVs**)

defines two levels: flight-critical and mission-critical
 - both levels are critical and hard real-time
 - Only flight-critical needs to be certified by a certification authority!
Vestal Model (S. Vestal, 2007) in Dual Critical Systems

Scheduling in Mixed Criticality System

very pessimistic estimation of WCET for jobs that undergo certification

- risk of very low processor usage
- solution: interleaving the execution of jobs of different criticality levels
Vestal Model \((S. \text{ Vestal, 2007})\) in Dual Critical Systems

Scheduling in Mixed Criticality System

very pessimistic estimation of WCET for jobs that undergo certification
- risk of very low processor usage
- solution: interleaving the execution of jobs of different criticality levels

Vestal Model for finite set of jobs in dual critical systems

- every job is classified as hi-critical (HI) or lo-critical (LO)
- every job is labeled with two Worst Case Execution Times:
 - \(C(LO)\) computed with industrial standard tools
 (realistic estimation)
 - \(C(HI)\) computed with tools compliant to certification authority standards
 (very pessimistic estimation)
Schedulability conditions of Mixed Criticality System in Vestal Model

a set of jobs is correctly scheduled if:

Condition 1
If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline.

Condition 2
If at least one job's execution time exceeds its LO WCET, then all HI jobs must complete before their deadline, whereas LO jobs may be even dropped.
Schedulability conditions of Mixed Criticality System in Vestal Model

a set of jobs is correctly scheduled if:

Condition 1
If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline.
a set of jobs is correctly scheduled if:

Condition 1
If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline. *(VALIDATION)*
Schedulability conditions of Mixed Criticality System in Vestal Model

a set of jobs is correctly scheduled if:

Condition 1
If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline. *(VALIDATION)*

Condition 2
If at least one job's execution time exceeds its LO WCET, then all HI jobs must complete before their deadline, whereas LO jobs may be even dropped.
Schedulability conditions of Mixed Criticality System in Vestal Model

a set of jobs is correctly scheduled if:

Condition 1
If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline. *(VALIDATION)*

Condition 2
If at least one job's execution time exceeds its LO WCET, then all HI jobs must complete before their deadline, whereas LO jobs may be even dropped. *(CERTIFICATION)*
a set of jobs is correctly scheduled if:

Condition 1
If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline. *(VALIDATION)*

Condition 2
If at least one job’s execution time exceeds its LO WCET, then all HI jobs must complete before their deadline, whereas LO jobs may be even dropped. *(CERTIFICATION)*

the scheduling problem is NP-complete
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Example of scheduling problem

- Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>(\chi)</th>
<th>(C(LO))</th>
<th>(C(HI))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- EDF
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

EDF

Criticality Monotonic

priority order = 1-3-2
Example of scheduling problem

- Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- EDF

- VALIDATED
Example of scheduling problem

- Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- **EDF**

- **VALIDATED**
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

EDF

LO

HI

VALIDATED

NOT CERTIFIED
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- EDF
- Criticality Monotonic
- VALIDATED
- NOT CERTIFIED
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- EDF
- Criticality Monotonic

VALIDATED

NOT CERTIFIED
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>$C(LO)$</th>
<th>$C(HI)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

EDF

![EDF Scheduling Diagram]

Criticality Monotonic

![Criticality Monotonic Scheduling Diagram]

- **VALIDATED**
- **NOT CERTIFIED**
- **NOT VALIDATED**
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
</tr>
</tbody>
</table>

- **EDF**
 - VALIDATED
 - NOT CERTIFIED

- **Criticality Monotonic**
 - NOT VALIDATED

D. Socci et al. (UJF / Verimag)
Example of scheduling problem

- Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- **EDF**
 - LO
 - 1
 - 2
 - 3
 - HI
 - 1
 - 2
 - 3

- **Criticality Monotonic**
 - LO
 - 3
 - 1
 - 2
 - HI
 - 1
 - 2
 - 3

- **VALIDATED**
- **NOT CERTIFIED**
- **NOT VALIDATED**
- **CERTIFIED**
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- **EDF**
 - priority order = 1-3-2

- **Criticality Monotonic**

- **VALIDATED**
- **NOT CERTIFIED**

- **NOT VALIDATED**
- **CERTIFIED**
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- **EDF**
 - Criticality Monotonic
 - priority order = 1-3-2

- **VALIDATED**
- **NOT CERTIFIED**
- **NOT VALIDATED**
- **CERTIFIED**
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- **EDF**
 - **VALIDATED**
 - **NOT CERTIFIED**

- **Criticality Monotonic**
 - **NOT VALIDATED**
 - **CERTIFIED**

- **priority order = 1-3-2**
 - **VALIDATED**
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- **EDF**
 - **LO**
 - 1
 - 2
 - 3
 - **HI**
 - 3

- **Criticality Monotonic**
 - **LO**
 - 3
 - 1
 - 2
 - **HI**
 - 3
 - 1
 - 2

- **priority order = 1-3-2**
 - **LO**
 - 1
 - 3
 - 2
 - **HI**
 - 1
 - 3
 - 2

- **VALIDATED**
- **NOT CERTIFIED**
- **NOT VALIDATED**
- **CERTIFIED**
- **VALIDATED**
Example of scheduling problem

Let us apply different scheduling to the instance:

<table>
<thead>
<tr>
<th>Job</th>
<th>A</th>
<th>D</th>
<th>χ</th>
<th>C(LO)</th>
<th>C(HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>LO</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>HI</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- **EDF**
 - Criticality Monotonic
 - priority order = 1-3-2

- **VALIDATED**
- **NOT CERTIFIED**
- **NOT VALIDATED**
- **CERTIFIED**
- **VALIDATED**
- **CERTIFIED**
Time Triggered scheduler approach

Time Triggered (TT) Schedulers

- the most used in real safety-critical system
- the scheduler intervals are statically precomputed
 - interference analysis is easier
 - certification is easier
Single Time Table per Mode (STTM)

- extends TT to mixed-critical Systems (*Baruah and Fohler, 2011*)
- two tables: LO table and HI table

![Diagram of STTM](chart.png)

- normally execute LO table, jump to HI table when $C(LO)$ is violated
- one must ensure that each HI jobs gets at least $C(HI)$ time to execute
- scheduling on 2 tables is not trivial!
 In general, for n jobs $O(n)$ tables are needed! (*Baruah et al., 2012*)
Our solution

- numerous solutions have been proposed in literature for the MCS scheduling problem
 - mainly priority based

- solutions considering STTM approach are a few and make restrictive assumptions
Our solution

- Numerous solutions have been proposed in literature for the MCS scheduling problem
 - Mainly priority based

- Solutions considering STTM approach are few and make restrictive assumptions

- We propose an algorithm that can map memoryless mixed critical scheduling solutions to a STTM one

Proposed Algorithm

INPUT: MCS scheduling solution
OUTPUT: STTM scheduling: TT table \(\text{LO} \) and \(\text{HI} \)
The algorithm

- generate **LO** by simulating the execution when all jobs runs for $C(LO)$
- generate **HI** by simulation of **HI** jobs under the following conditions:
 - each job executes for $C(HI)$ time units
 - a job J runs at time t if it is enabled by the input scheduling and one of the following *rules* is true:
 1. J is terminated in **LO**
 2. J has executed in **LO** more then it has in **HI**
 3. J has executed in **LO** as much as it has in **HI**, and it is running in **LO**

- Rules 2 and 3 assure that J will not run in **HI** for more time than in **LO** before it terminates in **LO**
- once J is terminated in **LO**, Rule 1 permanently enables it
Single processor correctness

on single processor systems the following holds:

Theorem

If the input policy is correct (i.e., meets all deadlines), then the output STTM policy is a correct as well.
Multiprocessor Experiments

on multi processors experiment were performed:

Experiments

1. generate random instances for different values of
 \(s = \text{Stress}(\text{LO}) = \text{Stress}(\text{HI}) \)

2. find solution using priority based algorithm MCEDF

3. translate the solutions using our methodology

we use \text{Stress} (utilization metric) to measure the “hardness” of an instance

\[
\text{Stress}(\text{LO}) = \max_{0 \leq t_1 < t_2} \left\{ \frac{m}{\min\{1, |J'|\}} \cdot \sum_{J'=J_i \mid t_1 \leq A_i \wedge D_i \leq t_2} \frac{C_i(\text{LO})}{t_2 - t_1} \right\}
\]

\[
\text{Stress}(\text{HI}) = \max_{0 \leq t_1 < t_2} \left\{ \frac{m}{\min\{1, |J'|\}} \cdot \sum_{J'=J_i \mid \chi_i = \text{HI} \wedge t_1 \leq A_i \wedge D_i \leq t_2} \frac{C_i(\text{HI})}{t_2 - t_1} \right\}
\]
Experimental Results

- on horizontal axes, $s = Stress(LO) = Stress(HI)$
Conclusions

- we proposed an algorithm to translate MCS scheduling solutions into STTM ones
- the algorithm is optimal for the single processor case
- on multicores, we have a very low failure rate
Conclusions

- we proposed an algorithm to translate MCS scheduling solutions into STTM ones
- the algorithm is optimal for the single processor case
- on multicores, we have a very low failure rate

Future work

- support dependencies
- implement bus and cache interference analysis
- more criticality levels
Thanks for the attention!
Example

\[\text{PT}_{HI} = J_2 \succ J_3 \succ J_1 \]

\[T_{j}^{LO}(t) = C_{j}(LO) \quad (1) \]

\[T_{j}^{HI*}(t) < T_{j}^{LO}(t) \quad (2) \]

\[T_{j}^{HI*}(t) = T_{j}^{LO}(t) \land E^{LO}(t) = J_j \quad (3) \]
Conclusions

Example

\[PT_{HI} = J_2 \succ J_3 \succ J_1 \]

\[T_{j}^{LO}(t) = C_{j}(LO) \quad (1) \]
\[T_{j}^{HI}(t) < T_{j}^{LO}(t) \quad (2) \]
\[T_{j}^{HI}(t) = T_{j}^{LO}(t) \land E^{LO}(t) = J_{j} \quad (3) \]

\[t = 0 \quad E^{LO}(t) = J_{1} \]

<table>
<thead>
<tr>
<th>Job</th>
<th>STATUS</th>
<th>(T^{HI}(t))</th>
<th>(T^{LO}(t))</th>
<th>(C(LO))</th>
<th>(C(HI))</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enabled</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

\[PT_{HI} = J_2 \succ J_3 \succ J_1 \]

\[T_{j}^{LO}(t) = C_{j}(LO) \quad (1) \]
\[T_{j}^{HI*}(t) < T_{j}^{LO}(t) \quad (2) \]
\[T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j} \quad (3) \]

<table>
<thead>
<tr>
<th>Job</th>
<th>STATUS</th>
<th>(T_{j}^{HI*}(t))</th>
<th>(T_{j}^{LO}(t))</th>
<th>C(LO)</th>
<th>C(HI)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disabled</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

\[PT_{HI} = J_2 \succ J_3 \succ J_1 \]

\[T_j^{LO}(t) = C_j(LO) \quad (1) \]
\[T_j^{HI^*}(t) < T_j^{LO}(t) \quad (2) \]
\[T_j^{HI^*}(t) = T_j^{LO}(t) \land E^{LO}(t) = J_j \quad (3) \]

<table>
<thead>
<tr>
<th>Job</th>
<th>STATUS</th>
<th>(T_j^{HI^*}(t))</th>
<th>(T_j^{LO}(t))</th>
<th>(C(LO))</th>
<th>(C(HI))</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enabled</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(t = 2 \)
\(E^{LO}(t) = J_1 \)
Example

\[PT_{HI} = J_2 \succ J_3 \succ J_1 \]

\[T_{j}^{LO}(t) = C_{j}(LO) \quad (1) \]

\[T_{j}^{HI*}(t) < T_{j}^{LO}(t) \quad (2) \]

\[T_{j}^{HI*}(t) = T_{j}^{LO}(t) \land E^{LO}(t) = J_{j} \quad (3) \]

<table>
<thead>
<tr>
<th>Job</th>
<th>STATUS</th>
<th>(T^{HI*}(t))</th>
<th>(T^{LO}(t))</th>
<th>C(LO)</th>
<th>C(HI)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enabled</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Term.</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(t = 3 \quad E^{LO}(t) = J_1 \)
Example

\[PT_{HI} = J_2 > J_3 > J_1 \]

\[
T_j^{LO}(t) = C_j(LO) \quad (1) \\
T_j^{HI*}(t) < T_j^{LO}(t) \quad (2) \\
T_j^{HI*}(t) = T_j^{LO}(t) \land E^{LO}(t) = J_j \quad (3)
\]

<table>
<thead>
<tr>
<th>Job</th>
<th>STATUS</th>
<th>(T_{HI*}(t))</th>
<th>(T_{LO}(t))</th>
<th>(C(LO))</th>
<th>(C(HI))</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enabled</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Term.</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(t = 5 \) \quad \(E^{LO}(t) = \bot \)
Example

\[PT_{HI} = J_2 \succ J_3 \succ J_1 \]

\begin{align*}
T_j^{LO}(t) &= C_j(LO) \quad (1) \\
T_j^{HI*}(t) &< T_j^{LO}(t) \quad (2) \\
T_j^{HI*}(t) &= T_j^{LO}(t) \land E^{LO}(t) = J_j \quad (3)
\end{align*}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Job & STATUS & \(T^{HI*}(t) \) & \(T^{LO}(t) \) & \(C(LO) \) & \(C(HI) \) & \((1) \) \((2) \) \((3) \) \\
\hline
1 & Enabled & 4 & 3 & 3 & 5 & ✓ \\
2 & Term. & 2 & 1 & 1 & 2 & & \\
3 & Enabled & 0 & 0 & 2 & 4 & ✓ \\
\hline
\end{tabular}

\(t = 6 \)

\(E^{LO}(t) = J_3 \)
Example

\[PT_{HI} = J_2 \succ J_3 \succ J_1 \]

\[T_{jLO}(t) = C_j(LO) \quad (1) \]
\[T_{jHI*}(t) < T_{jLO}(t) \quad (2) \]
\[T_{jHI*}(t) = T_{jLO}(t) \land E^{LO}(t) = J_j \quad (3) \]

\[t = 7 \quad E^{LO}(t) = J_4 \]

<table>
<thead>
<tr>
<th>Job</th>
<th>STATUS</th>
<th>(T_{HI*}^{HI}(t))</th>
<th>(T_{LO}^{LO}(t))</th>
<th>C(LO)</th>
<th>C(HI)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enabled</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Term.</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Disabled</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

\[PT_{HI} = J_2 \succ J_3 \succ J_1 \]

\[T_j^{LO}(t) = C_j(LO) \quad (1) \]

\[T_j^{HI*}(t) < T_j^{LO}(t) \quad (2) \]

\[T_j^{HI*}(t) = T_j^{LO}(t) \land E^{LO}(t) = J_j \quad (3) \]
Example

\[PT_{HI} = J_2 \succ J_3 \succ J_1 \]

\[T_{j_{LO}}(t) = C_j(LO) \quad (1) \]
\[T_{j_{HI}^*}(t) < T_{j_{LO}}(t) \quad (2) \]
\[T_{j_{HI}^*}(t) = T_{j_{LO}}(t) \land E_{LO}(t) = J_j \quad (3) \]

<table>
<thead>
<tr>
<th>Job</th>
<th>STATUS</th>
<th>(T_{HI}^*(t))</th>
<th>(T_{LO}(t))</th>
<th>(C(LO))</th>
<th>(C(HI))</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Term.</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Term.</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Enabled</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

\[PT_{HI} = J_2 \succ J_3 \succ J_1 \]

\[T_{HI}^L(t) = C_{j}(LO) \quad (1) \]
\[T_{HI}^H(t) < T_{LO}^L(t) \quad (2) \]
\[T_{HI}^H(t) = T_{LO}^L(t) \wedge E_{LO}^L(t) = J_j \quad (3) \]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Job} & \text{STATUS} & T_{HI}^H(t) & T_{LO}^L(t) & C(LO) & C(HI) & (1) & (2) & (3) \\
\hline
1 & \text{Term.} & 5 & 3 & 3 & 5 & & & \\
2 & \text{Term.} & 2 & 1 & 1 & 2 & & & \\
3 & \text{Term.} & 4 & 1 & 2 & 4 & & & \\
\hline
\end{array}
\]

\[t = 11 \quad E_{LO}^L(t) = \bot \]