Symmetry Breaking for Multi-Criteria Mapping and Scheduling on Multicores

Pranav Tendulkar Peter Poplavko Oded Maler

Verimag, FRANCE

August 2013
Motivation

Typical in parallel programming: spawn multiple identical tasks

- data parallelism
- obtain hyperperiod of a multi-periodic system
- duplicate tasks for fault-tolerance
Context

- Typical in parallel programming: spawn multiple identical tasks
 - data parallelism
 - obtain hyperperiod of a multi-periodic system
 - duplicate tasks for fault-tolerance
- Often the platform have multiple identical processors.
Typical in parallel programming: spawn multiple identical tasks
- data parallelism
- obtain hyperperiod of a multi-periodic system
- duplicate tasks for fault-tolerance

Often the platform have multiple identical processors.

Hence, symmetry in the solution space.
Multi-criteria Optimization

minimize latency using minimal number of processors
Multi-criteria Optimization

minimize latency using minimal number of processors
Motivation

Contribution

context:

static mapping and scheduling for programs with data-parallelism
multi-criteria optimization using SMT solvers
Motivation

Contribution

context:

static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors
Motivation

Contribution

context:

static mapping and scheduling for programs with data-parallelism

multi-criteria optimization using SMT solvers

symmetry breaking in solution space for identical tasks and processors

goal: increase the tractable problem size of SMT solvers

experiments: problem size increase from 20 to 50 tasks
Outline

1. Motivation
2. Application Model
3. Problem Formulation - SMT
4. Symmetry Breaking
5. Cost Space Exploration
6. Experiments and Results
7. Conclusions
Outline

1. Motivation
2. Application Model
3. Problem Formulation - SMT
4. Symmetry Breaking
5. Cost Space Exploration
6. Experiments and Results
7. Conclusions
Model of Computation

synchronous dataflow graphs (SDF)
 by E. Lee and D. Messerschmitt in 1987
 task graph + symbolic representation of data parallelism
 signal-processing, video-coding applications

a ‘standard’ in academic multicore compilers:
 StreamIt compiler of MIT
Model of Computation

synchronous dataflow graphs (SDF)

by E. Lee and D. Messerschmitt in 1987

task graph + symbolic representation of data parallelism

signal-processing, video-coding applications

a ‘standard’ in academic multicore compilers:

StreamIt compiler of MIT

we introduce split-join graphs : restriction of SDF

still covering perhaps 90% of use cases
Split-Join Graphs

a simple split-join graph example:

\[A \xrightarrow{\alpha} B \xrightarrow{1/\alpha} C \]

\(\alpha \): spawn and split

\(1/\alpha \): wait and join
Split-Join Graphs

Definition (Split-Join Graph)

\[S = (V, E, d, \alpha), (V, E) : \text{DAG}, \quad V: \text{actors}, \quad E: \text{channels} \]

\[d : V \rightarrow \mathbb{R}_+ : \text{actor execution time}, \]

\[\alpha : E \rightarrow \mathbb{Q} : \text{channel counter: split} (> 1), \text{join} (< 1) \text{ or neutral} (= 1) \]
Definition (Split-Join Graph)

\[S = (V, E, d, \alpha), (V, E) : \text{DAG}, \quad V: \text{actors}, \quad E: \text{channels} \]
\[d : V \rightarrow \mathbb{R}^+ : \text{actor execution time}, \]
\[\alpha : E \rightarrow \mathbb{Q} : \text{channel counter: split (> 1), join (< 1) or neutral (= 1)} \]
Definition (Split-Join Graph)

\[S = (V, E, d, \alpha), \ (V, E) : \text{DAG}, \ V: \text{actors}, \ E: \text{channels} \]

\[d : V \rightarrow \mathbb{R}_+ : \text{actor execution time}, \]

\[\alpha : E \rightarrow \mathbb{Q} : \text{channel counter: split} (> 1), \text{join} (< 1) \text{ or neutral} (= 1) \]
Well-behaved Graphs

Definition (Well-behaved)

\(S = (V, E, d, \alpha) \) is well-behaved if any complete path has balanced-parenthesis signature

Such a graph can be unfolded to a task graph.
Unfolding to Task Graph
Unfolding to Task Graph
Unfolding to Task Graph

A 🍃 B 🍃 C 0 🍃 C 1 🍃 C 2 🍃 E 🍃 E 🍃 E

A 🍃 B 🍃 C 🍃 D 🍃 E 🍃 F 🍃 G

Symmetry Breaking for mapping/scheduling
Unfolding to Task Graph

Symmetry Breaking for mapping/scheduling
Unfolding to Task Graph

Diagram showing the unfolding of an application model into a task graph. The graph consists of nodes labeled A, B, C, D, E, F, and G, connected by directed edges with labels indicating dependencies and possibly resource requirements. The diagram illustrates the process of breaking symmetries in mapping and scheduling tasks in an application model.
Unfolding to Task Graph
Unfolding to Task Graph
Unfolding to Task Graph

A → B → C → D → E → F → G

Symmetry Breaking for mapping/scheduling
Unfolding to Task Graph
Actors, Tasks, Lexicographic Order

split-join graph: actors e.g., A, B, C
Actors, Tasks, Lexicographic Order

notation for actors: $v, v \in V$

![Diagram showing lexicographic order of actors and tasks with edges labeled with numbers and fractions indicating order.](image)
Actors, Tasks, Lexicographic Order

notation for actors: \(v, v \in V \)

unfolded task graph: tasks e.g., \(E_{0,1}, B, C_2 \)
Actors, Tasks, Lexicographic Order

notation for actors: \(v, v \in V \)

\[
\begin{align*}
A & \rightarrow B & 1 \\
B & \rightarrow C & 2 \\
B & \rightarrow D & 3 \\
C & \rightarrow E & 2 \\
D & \rightarrow E & 1/2 \\
E & \rightarrow F & 1/3 \\
E & \rightarrow G & 3 \\
\end{align*}
\]

notation for tasks: \(u \in U \)

\[
\begin{align*}
A & \rightarrow B & 0 \\
B & \rightarrow C & 1 \\
C & \rightarrow E & 1,0 \\
C & \rightarrow E & 0,0 \\
C & \rightarrow E & 0,1 \\
C & \rightarrow E & 1,1 \\
C & \rightarrow E & 2,0 \\
C & \rightarrow E & 2,1 \\
\end{align*}
\]
Actors, Tasks, Lexicographic Order

notation for actors: \(v, v \in V \)

\[
\begin{align*}
A &\rightarrow B \\
B &\rightarrow C \\
C &\rightarrow D \\
D &\rightarrow E \\
E &\rightarrow F \\
F &\rightarrow G
\end{align*}
\]

notation for tasks: \(u \in U \)

\(u = v_h, v \in V \) and \(h \) - hier. index, e.g., \(v_h = E_{0,1} \)
Actors, Tasks, Lexicographic Order

notation for actors: \(v, v \in V \)

\[
U_v = \{v_h\} : \text{lexicographically ordered (\(\ll\)) set of instances of } v
\]

\[
U_E : E_{0,0} \ll E_{0,1} \ll E_{1,0} \ll E_{1,1} \ll E_{2,0} \ll E_{2,1}
\]
Outline

1. Motivation
2. Application Model
3. Problem Formulation - SMT
4. Symmetry Breaking
5. Cost Space Exploration
6. Experiments and Results
7. Conclusions
Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:
Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph $T = (U, E, \delta)$
Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph $T = (U, E, \delta)$
3. Generate the mapping and scheduling constraints:
 - Precedence
 - Mutual Exclusion
 - Buffer Capacity
Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph $T = (U, \mathcal{E}, \delta)$
3. Generate the mapping and scheduling constraints:
 - Precedence
 - Mutual Exclusion
 - Buffer Capacity (Extended Problem - see the paper)
Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph $T = (U, E, \delta)$
3. Generate the mapping and scheduling constraints:
 - Precedence
 - Mutual Exclusion
 - Buffer Capacity (Extended Problem - see the paper)

Decision variables:
Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph $T = (U, E, \delta)$
3. Generate the mapping and scheduling constraints:
 - Precedence
 - Mutual Exclusion
 - Buffer Capacity (Extended Problem - see the paper)

Decision variables:

- $\mu(u), u \in U$ - the mapping: processor $(1,2,\ldots,M)$ for u
Multi-criteria Optimization Strategy

Given a split-join graph S, we perform the following steps:

1. Check whether S is well-behaved
2. Unfold S into task graph $T = (U, E, \delta)$
3. Generate the mapping and scheduling constraints:
 - Precedence
 - Mutual Exclusion
 - Buffer Capacity (Extended Problem - see the paper)

Decision variables:
- $\mu(u), u \in U$ - the mapping: processor $(1,2,\ldots,M)$ for u
- $s(u)$ - the schedule: start time of u
Problem Formulation - SMT

Constraints

Predicate $\varphi(u, u')$:

Task u' starts after the completion of task u

$$\varphi(u, u') : s(u') \geq s(u) + \delta(u)$$
Constraints

Predicate $\varphi(u, u')$:

Task u' starts after the completion of task u

$$\varphi(u, u') : s(u') \geq s(u) + \delta(u)$$

Precedence:

$$\bigwedge_{(u, u') \in \mathcal{E}} \varphi(u, u')$$
Constraints

Predicate $\varphi(u, u')$:

Task u' starts after the completion of task u

$$
\varphi(u, u') : s(u') \geq s(u) + \delta(u)
$$

Precedence:

$$
\bigwedge_{(u, u') \in \mathcal{E}} \varphi(u, u')
$$

Mutual exclusion:

$$
\bigwedge_{u \neq u' \in \mathcal{U}} (\mu(u) = \mu(u')) \Rightarrow \varphi(u, u') \lor \varphi(u', u)
$$
Outline

1. Motivation
2. Application Model
3. Problem Formulation - SMT
4. Symmetry Breaking
5. Cost Space Exploration
6. Experiments and Results
7. Conclusions
Task Symmetry

- all instances of given actor v are similar (symmetric)
Task Symmetry

- all instances of given actor \(v \) are similar (symmetric)

Tendulkar, Poplavko, Maler
Task Symmetry

- all instances of given actor v are similar (symmetric)
- permutation of symmetric tasks does not change the latency,
 ...but extends the solution space exponentially
Task Symmetry

- Task graph

- Enforce the schedule to be compatible with lexicographic order:
 \[s(C_{00}) \leq s(C_{01}) \leq s(C_{10}) \leq s(C_{11}) \]
Task Symmetry

enforce the schedule to be compatible with lexicographic order:

\[s(C_{00}) \leq s(C_{01}) \leq s(C_{10}) \leq s(C_{11}) \]
Task Symmetry

- Task graph

enforce the schedule to be **compatible** with lexicographic order:

\[s(C_{00}) \leq s(C_{01}) \leq s(C_{10}) \leq s(C_{11}) \]

Theorem: adding constraints \(s(u) \leq s(u') \) for \(u \ll u' \) does not eliminate optimality
Symmetry Breaking

Proof Sketch

modify a feasible schedule such that:
\[s(v_0) \leq s(v_1) \leq s(v_2) \leq ... \]
prove that precedence constraints are satisfied

here: for neutral channels (\(\alpha = 1 \)), unfolded to (\(v_h, v'_h \))

lexicographic order

start-time compatible

new hier. index;
new precedence relation
Symmetry Breaking

Proof Sketch

modify a feasible schedule such that:
\[s(v_0) \leq s(v_1) \leq s(v_2) \leq \ldots \]
prove that precedence constraints are satisfied
here: for neutral channels (\(\alpha = 1 \)), unfolded to (\(v_h, v'_h \))

lecxicographic order

start-time compatible

new hier. index;
new precedence relation
Proof Sketch

by definition there exist \(j \) same or earlier successors their original predecessors finish before successor \(j \):

predecessor \(j \) finishes before successor \(j \):

take successor \([j]\)
Symmetry Breaking

Proof Sketch

take successor $[j]$
Proof Sketch

take successor \([j] \)

by definition there exist \(j + 1 \) same or earlier successors
Proof Sketch

take successor $[j]\]

by definition there exist $j + 1$ same or earlier successors
Proof Sketch

take successor $[j]$

by definition there exist $j + 1$ same or earlier successors

their original predecessors finish before successor $[j]$:
Proof Sketch

take successor $[j]$

by definition there exist $j+1$ same or earlier successors

their original predecessors finish before successor $[j]$:
Proof Sketch

take successor $[j]$
by definition there exist $j + 1$ same or earlier successors
their original predecessors finish before successor $[j]$:
take successor \([j]\)
by definition there exist \(j + 1 \) same or earlier successors
their original predecessors finish before successor \([j]\):
\(j + 1 \) predecessors finish before, hence the earliest \(j + 1 \) ones as well
Proof Sketch

take successor \([j]\)

by definition there exist \(j+1\) same or earlier successors

their original predecessors finish before successor \([j]\):

\(j+1\) predecessors finish before, hence the earliest \(j+1\) ones as well

predecessor \([j]\) finishes before successor \([j]\)
Processor Symmetry

Symmetry Breaking for mapping/scheduling

Tendulkar, Poplavko, Maler
Outline

1. Motivation
2. Application Model
3. Problem Formulation - SMT
4. Symmetry Breaking
5. Cost Space Exploration
6. Experiments and Results
7. Conclusions
Exploring the Design Space

One SMT query for a given point \((C_L, C_M)\) in the cost space:

- \(C_L\) - latency
- \(C_M\) - processor count

\[
\begin{align*}
\bigwedge_{u \in U} s(u) + \delta(u) & \leq C_L \\
\bigwedge_{u \in U} \mu(u) & \leq C_M
\end{align*}
\]
Exploring the Design Space

One SMT query for a given point \((C_L, C_M)\) in the cost space:
- \(C_L\) - latency
- \(C_M\) - processor count

- sat points
- unsat points
- unexplored points

Precedence and Mutual Exclusion Constraints
Cost Constraints

\[
\bigwedge_{u \in U} s(u) + \delta(u) \leq C_L \quad \land \quad \bigwedge_{u \in U} \mu(u) \leq C_M
\]
Outline

1. Motivation
2. Application Model
3. Problem Formulation - SMT
4. Symmetry Breaking
5. Cost Space Exploration
6. Experiments and Results
7. Conclusions
Synthetic-Graph Experiments

- Fix processor cost C_M and perform binary search for optimal C_L
- Increase α and measure increase in computation time
- With(out) breaking of task symmetry and processor symmetry
Experiments and Results

Synthetic-Graph Experiments

Fix processor cost C_M and perform binary search for optimal C_L
Increase α and measure increase in computation time
With(out) breaking of task symmetry and processor symmetry
Z3 solver v4.1 on i7 core at 1.73GHz
Experiments and Results

Synthetic-Graph Experiments

5-processor deployments
Experiments and Results

Pareto Exploration

without symmetry breaking

cost space \((C_L, C_M)\) exploration for \(\alpha = 30\)
evaluate task and processor symmetry breaking
Pareto Exploration

without symmetry breaking

with symmetry breaking

cost space \((C_L, C_M)\) exploration for \(\alpha = 30\)
evaluate task and processor symmetry breaking
Video Decoder

3D cost space \((C_L, C_M, C_B)\) exploration, \(C_B\) - total buffer size

MPEG video decoder:
Video Decoder

3D cost space \((C_L, C_M, C_B)\) exploration, \(C_B\) - total buffer size

MPEG video decoder:

![Diagram of 3D cost space exploration with nodes and edges labeled with values.](image-url)
Conclusions

- Symbolic representation of data-parallel programs
 - a useful subclass of SDF model
- Framework for multi-criteria optimal deployment
- Symmetry breaking: prove task symmetry and use processor symmetry
Conclusions

- Symbolic representation of data-parallel programs
 - a useful subclass of SDF model
- Framework for multi-criteria optimal deployment
- Symmetry breaking: prove task symmetry and use processor symmetry
- Future work:
Conclusions

- Symbolic representation of data-parallel programs
 - a useful subclass of SDF model
- Framework for multi-criteria optimal deployment
- Symmetry breaking: prove task symmetry and use processor symmetry
- Future work:
 - More symmetry breaking, also approximation and heuristics
 - More refined data communication: data transfer delays
 - Pipelined scheduling
 - Scheduling under uncertainty
 - Multistage design flow
QUESTIONS?