1 Lecture 1: Introduction

Exercise 1
Give the security properties that an international airport should guarantee.

Exercise 2
Suppose a certain drug test is 99% accurate, that is, the test will correctly identify a drug user as testing positive 99% of the time, and will correctly identify a non-user as testing negative 99% of the time. Let’s assume a corporation decides to test its employees for opium use, and 0.5% of the employees use the drug.

We want to know the probability that, given a positive drug test, an employee is actually a drug user.

Exercise 3
Prove that for real random variables X and Y, and real number a, we have $E[X + Y] = E[X] + E[Y]$ and $E[aX] = aE[X]$. And if X and Y are independent real random variables, then $E[XY] = E[X]E[Y]$.

Exercise 4
Let X be a real random variable, and let a and b be real numbers. Then we have:

(i) $Var[X] = E[X^2] - (E[X])^2$
(ii) $Var[aX] = a^2Var[X]$
(iii) $Var[X + b] = Var[X]$

Exercise 5
Prove Markov’s inequality: Let X be a random variable that takes only non-negative real values. Then for any $t > 0$, we have

$$P[X \geq t] \leq \frac{E[X]}{t}$$

Exercise 6
Prove Chebyshev’s inequality: Let X be a real random variable. Then for any $t > 0$, we have:

$$P[|X - E[X]| \geq t] \leq \frac{Var[X]}{t^2}$$
Exercise 7
Prove Chernoff bound: Let X_1, \ldots, X_n be mutually independent random variables, such that each X_i is 1 with probability p and 0 with probability $q := 1 - p$. Assume that $0 < p < 1$. Also, let X be the sample mean of X_1, \ldots, X_n. Then for any $\epsilon > 0$, we have:

- $(i) P[\overline{X} - p \geq \epsilon] \leq e^{-n\epsilon^2/2q}$
- $(ii) P[\overline{X} - p \leq -\epsilon] \leq e^{-n\epsilon^2/2p}$
- $(iii) P[|\overline{X} - p| \geq \epsilon] \leq 2e^{-n\epsilon^2/2}$

Exercise 8
Generalization of BirthDay Paradox:
The setting is that we have q balls. View them as numbered, 1, \ldots, q. We also have N bins, where $N \geq q$. We throw the balls at random into the bins, one by one, beginning with ball 1. At random means that each ball is equally likely to land in any of the N bins, and the probabilities for all the balls are independent. A collision is said to occur if some bin ends up containing at least two balls. We are interested in $C(N, q)$, the probability of a collision. The birthday paradox is the case where $N = 365$. We are asking what is the chance that, in a group of q people, there are two people with the same birthday, assuming birthdays are randomly and independently distributed over the days of the year.

Let $C(N, q)$ denote the probability of at least one collision when we throw $q \geq 1$ balls at random into $N \geq q$ buckets. Then

$$C(N, q) \leq \frac{q(q - 1)}{2N}$$

Also if $1 \leq q \leq \sqrt{2N}$ then $C(N, q) \geq 1 - e^{(q-1)/2N}$. Hint: first prove the inequality $(1 - 1/e)x \leq 1 - e^{-x} \leq x$.

Exercise 9
Prove or disprove:

a) The function $f(n) := (\frac{1}{2})^n$ is negligible.

b) The function $f(n) := 2^{-\sqrt{n}}$ is negligible.

c) The function $f(n) := n^{-\log n}$ is negligible.

Exercise 10
Prove or disprove the following statements:

1. If both $f, g \geq 0$ are noticeable, then $f - g$ and $f + g$ are noticeable.

2. If both $f, g \geq 0$ are not noticeable, then fg is not noticeable.

3. If both $f, g \geq 0$ are not noticeable, then $f + g$ is not noticeable.

4. If $f \geq 0$ is noticeable, and $g \geq 0$ is negligible, then fg is negligible.

5. If both $f, g \geq 0$ are negligible, then f/g is noticeable.
2 Lecture 2: Introduction

Exercise 11
Prove that $DDH \leq CDH \leq DL$

Exercise 12
Prove that
\[
\text{Adv}_{S,A}^{\text{IND}}(\eta) = 2\Pr[b' \xleftarrow{\text{R}} \text{IND}^1(A) : b' = 1] - \Pr[b' \xleftarrow{\text{R}} \text{IND}^0(A) : b' = 1]
\]

3 Lecture 3: Reductions Proofs

Exercise 13
Message are composed of \{0, 1\}, keys are \{A, B\} and we know $P(0)=1/4, P(1)=3/4, P(A)=1/4, P(B)=3/4$. The encryption is defined by:
\[
E_A(0) = a, E_A(1) = b, E_B(0) = b, E_B(1) = a
\]
This encryption is it perfectly secure?

Exercise 14
Prove that OTP is perfectly secure according Shannon definition.

Exercise 15
Prove the following equivalence:
\[
\text{independance} + H(m|c) = H(m) \iff \Pr(m = m'|c = c') = \Pr(m = m')
\]

Exercise 16
Prove that under CDH assumption El-Gamal is OW-CPA.

Exercise 17
Prove that under DDH assumption El-Gamal is IND-CPA.

4 Lecture 4: Public Encryption

Exercise 18
Prove that X and Y are independent if and only if for all values x taken by X with non-zero probability, the conditional distribution of Y given the event $X = x$ is the same as the distribution of Y'.

Exercise 19
Consider the algorithm $D2$ that outputs 1 iff the input string contains more zeros than ones. If $D2$ can be implemented in polynomial time, then prove that X and Y are polynomial-time-indistinguishable. (Assume that the two inputs have the same size)

Exercise 20
Let $X := \{X_n\}_{n \in \mathbb{N}}, Y := \{Y_n\}_{n \in \mathbb{N}}$ and $Z := \{Z_n\}_{n \in \mathbb{N}}$ three ensembles. If X and Y are indistinguishable in polynomial time, Y and Z are indistinguishable in polynomial time then X and Z are indistinguishable in polynomial time.
Exercise 21
Recall that the distributions D_0, D_1 are said to be indistinguishable ($0 \leq \epsilon \leq 1$) if

$$|\Pr[A(x_0) = 1] - \Pr[A(x_1) = 1]| \leq \epsilon$$

holds for all adversaries A running in time at most t, where the random variable x_0 is distributed according to D_0 and x_1 is distributed like D_1.

Now, let’s call the distributions D_0, D_1 inseparable just if

$$\frac{1}{2} - \frac{\epsilon}{2} \leq \Pr[A(x_b) = b] \leq \frac{1}{2} + \frac{\epsilon}{2}$$

holds for all adversaries A running in time at most t, where the random variable b is a uniformly random bit and where the random variable x is distributed according to D_b. This is a very natural notion, because it talks about our chances of guessing correctly which distribution x came from, and whether we can do much better than simply flipping a coin.

Prove: D_0, D_1 are indistinguishable if and only if they are inseparable. (Hence the notion of inseparability is redundant.)

5 Lecture 5: Symmetric Encryption

Exercise 22
Find an attack on CBC encryption with counter IV, (proving that this encryption mode is not IND-CPA secure). In this scheme the frist IV used is 0 and for generating the next IV we just increase by one the value of the previous IV.

Exercise 23
Prove that CBC with random IV is not IND-CCA secure. This time IV is a random number. But notice that this mode is IND-CPA secure.

Exercise 24
Find an attack on Needham Schroeder protocol:

1. $A \rightarrow B : \{N_a, A\}_{pk(B)}$
2. $A \leftarrow B : \{N_a, N_b\}_{pk(A)}$
3. $A \rightarrow B : \{N_b\}_{pk(B)}$