Models and analysis of security protocols
1st Semester 2009-2010
Public Encryption
Lecture 3

Pascal Lafourcade

Université Joseph Fourier, Verimag

Master: September 28th 2009
Last Time (I)

Indistinguishability

- Indistinguishability
- Perfect Encryption OTP
- Adversary: CPA, CCA1, CCA2
- Security Notions: OW, IND, NM
- DL, DDH, CDH

Remarks, questions, comments?
Last Time (II)

Exercises

- Perfect Security
- Perfect Encryption OTP
- DL, DDH, CDH
- Elgamal OW and IND-CPA
Precisions about 1^n

$$Pr[D(X_n, 1^n) = 1]$$

1^n describes the size of the output of the algorithm D on the input X_n. It is used mainly for hash functions, in the book Foundations of Cryptography.
Outline of Today:

Perfect Encryption
Outline of Today:

Perfect Encryption
Cyclic Groups
Outline of Today:

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
RSA
ElGamal
Elgamal OW
Elgamal IND-CPA
Outline of Today:

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 ElGamal OW
 ElGamal IND-CPA
IND-CCA2 \Rightarrow NM-CCA2
 Attack of the Scheme
Outline of Today:

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 - DL implies CDH
 - CDH implies DDH
RSA
ElGamal
ElGamal OW
Elgamal IND-CPA
IND-CCA2 \Rightarrow NM-CCA2
 - Attack of the Scheme
IND-CCA1 $\not\Rightarrow$ NM-CPA
Outline of Today:

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 Elgamal OW
 Elgamal IND-CPA
IND-CCA2 \Rightarrow NM-CCA2
 Attack of the Scheme
IND-CCA1 $\not\Rightarrow$ NM-CPA
Conclusion
Outline

Perfect Encryption

Cyclic Groups

Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 ElGamal OW
 ElGamal IND-CPA

IND-CCA2 \Rightarrow NM-CCA2

Attack of the Scheme

IND-CCA1 $\not\Rightarrow$ NM-CPA

Conclusion
Description of Problem
Description of Problem

Intruder
Description of Problem
Perfect Encryption

Description of Problem

Intruder

Message cannot be understood by anyone else
Notations

If m is the message to be encrypted (also known as the "plain-text" or the "clear-text") then $c = E_{k_e}(m, r)$ is the encrypted message or "cipher-text" with the key k_e. The decryption function is denoted by $D_{k_d}(c)$.

$k_e = k_d$ symmetric encryption
$k_e \neq k_d$ asymmetric encryption

A unique m satisfies the relation (with possibly several r)

→ At least an exhaustive search on m and r can lead to m!

⇒ unconditional secrecy is impossible, we need algorithmic assumptions
Perfect Security (Shannon)

Definition

Let $m \in M$ be a random message and $c \in C$ be the cipher-text of m, that is, $c = E_k(m)$. For any $m' \in M$ and $c' \in C$, an encryption system is called **perfectly secure** if from the perspective of the attacker,

$$Pr(m = m'|c = c') = Pr(m = m')$$

This means that Eve’s probability of guessing m remains unchanged after seeing any particular outcome $c = c'$.
Exercise:

Message are composed of \(\{0, 1\} \), keys are \(\{A, B\} \) and we know \(P(0) = 1/4, P(1) = 3/4, P(A) = 1/4, P(B) = 3/4 \). The encryption is defined by:

\[
E_A(0) = a,
E_A(1) = b,
E_B(0) = b,
E_B(1) = a
\]

Is this encryption perfectly secure?
One Time Pad (OTP)

The One Time Pad encryption function is easily described; simply take the exclusive OR of the message string m and the key k. (Vernam encryption)

- $E_k(m) = m \oplus k$
- $D_k(c) = c \oplus k$

Exercise: Prove that OTP is perfectly secure.
Entropy

Definition

For a random variable \(X \) which takes a finite number of values \(x \) define

\[
H(X) = - \sum_x \Pr [X = x] \log_2(\Pr [X = x])
\]

\[
H(X|Y) = H(X, Y) - H(Y)
\]

Joint entropy

For two random variables \(X, Y \) which takes a finite number of values \(x, y \) define

\[
H(X, Y) = - \sum_{x,y} \Pr [X = x, Y = y] \log_2(\Pr [X = x, Y = y])
\]
Perfect Security Equivalence

\[m: \text{ cleartext.} \]
\[c: \text{ ciphertext.} \]
\[k: \text{ key.} \]

Theorem

\[\text{Independance} \quad H(m|c) = H(m) \iff \Pr(m = m'|c = c') = \Pr(m = m') \]

Proof exercise
OTP optimality

In OTP, the key is as long as the cleartext. You can’t do better for a perfectly secure cipher:

\[H(K) \geq H(X) \]
Outline

Perfect Encryption

Cyclic Groups

Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 Elgamal OW
 Elgamal IND-CPA
 IND-CCA2 \Rightarrow NM-CCA2
 Attack of the Scheme
 IND-CCA1 $\not\Rightarrow$ NM-CPA

Conclusion
Definitions (I)

A **group** \((G, \ast)\) is composed of a set \(G\) and a binary operator \(\ast\) on \(G\) which satisfy the three following axioms:

\[
\forall a, b, c \in G, \ a \ast (b \ast c) = (a \ast b) \ast c \quad \text{Associativity}
\]
\[
\exists e \in G, \ \forall a \in G, \ e \ast a = a \ast e = a \quad \text{Neutral Element}
\]
\[
\forall a \in G, \ \exists b \in G, \ a \ast b = b \ast a = e \quad \text{Inverse Element}
\]

\(b\) is called the inverse of \(a\) and is denoted by \(a^{-1}\).

Example

\((\mathbb{Z}, +), (\mathbb{Z}/n\mathbb{Z}, +),\) permutation group, \((\mathcal{M}_{(n,n)}, +)\).

Counter-Example

\((\mathbb{N}, +), (\mathcal{M}_{(n,n)}, \ast)\)
Definitions (II)

Cyclic Group

A group G is **cyclic** if G is finite and there exists an element g of G such that:

$$\forall a \in G, \exists n \in \mathbb{N}, \ a = g^n$$

Element g is called a *generator* of group G.

Example

If p is a prime number, then $\mathbb{Z}/p\mathbb{Z}$ is a cyclic group.
Outline

Perfect Encryption

Cyclic Groups

Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 Elgamal OW
 Elgamal IND-CPA
 IND-CCA2 ⇒ NM-CCA2
 Attack of the Scheme
 IND-CCA1 ≠ NM-CPA

Conclusion
Reduction Proof Technique

Prove that an encryption scheme E is secure?

1. Hypothesis: Consider an HARD problem P (RSA, DL, DDH, CDH)

2. Reduction:
 - If an adversary A breaks the encryption scheme E
 - Then A can be used it to solve P in polynomial time.

3. Security: There does not exist an adversary in polynomial time under the hypothesis.

Application: Elgamal is IND-CPA secure under DDH assumption.

Consider an adversary breaking IND-CPA game for Egamal then he can solve DDH
Outline

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 Elgamal OW
 Elgamal IND-CPA
IND-CCA2 ⇒ NM-CCA2
 Attack of the Scheme
IND-CCA1 \n\n\nConclusion
Definitions (recall)

\[\text{Adv}^{DL}(A) = \Pr \left[A(g^x) \rightarrow x \mid x, y \overset{R}{\leftarrow} [1, q] \right] \]

\[\text{Adv}^{CDH}(A) = \Pr \left[A(g^x, g^y) \rightarrow g^{xy} \mid x, y \overset{R}{\leftarrow} [1, q] \right] \]

\[\text{Adv}^{DDH}(A) = \Pr \left[A(g^x, g^y, g^{xy}) \rightarrow 1 \mid x, y \overset{R}{\leftarrow} [1, q] \right] - \Pr \left[A(g^x, g^y, g^r) \rightarrow 1 \mid x, y, r \overset{R}{\leftarrow} [1, q] \right] \]
Proof of $CDH \leq DL$

Denote by $X = g^x$, $Y = g^y$ using DL you get y and $Z = g^{xy}$, with $Z = g^{xy} = (g^x)^y = X^y$ and $x = \log_g X$, we conclude.
Outline

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 - DL implies CDH
 - CDH implies DDH
 - RSA
 - ElGamal
 - ElGamal OW
 - ElGamal IND-CPA

IND-CCA2 \Rightarrow NM-CCA2

Attack of the Scheme

IND-CCA1 \nRightarrow NM-CPA

Conclusion
CDH implies DDH

Let A be an adversary against the CDH assumption and B against DDH.

Adversary $B(X, Y, Z)$:
- if $Z = A(X, Y)$ then return 1
- else return 0
CDH implies DDH

Let A be an adversary against the CDH assumption and B against DDH

Adversary $B(X, Y, Z)$:
- if $Z = A(X, Y)$ then return 1
- else return 0

$$\text{Adv}^{DDH}(B) = \Pr\left[B(g^x, g^y, g^{xy}) \rightarrow 1 \middle| x, y \leftarrow [1, q] \right] - \Pr\left[B(g^x, g^y, g^r) \rightarrow 1 \middle| x, y, r \leftarrow [1, q] \right]$$

$$\Pr\left[A(g^x, g^y) \rightarrow g^{xy} \middle| x, y \leftarrow [1, q] \right] - \Pr\left[A(g^x, g^y) \rightarrow g^r \middle| x, y, r \leftarrow [1, q] \right]$$

$$\text{Adv}^{CDH}(A) - \frac{1}{q}$$

The number of elements in G is supposed large hence $1/q$ is negligible. As the DDH assumption holds, the advantage of B is negligible. Hence the advantage of A against CDH is also negligible and the CDH assumption holds.
Outline

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 Elgamal OW
 Elgamal IND-CPA
IND-CCA2 \Rightarrow NM-CCA2
 Attack of the Scheme
IND-CCA1 $\not\Rightarrow$ NM-CPA
Conclusion
Simple Examples of Reduction Proof Technique

RSA

Example: RSA

<table>
<thead>
<tr>
<th>public</th>
<th>private</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = pq$</td>
<td>$d = e^{-1} \mod \phi(n)$</td>
</tr>
<tr>
<td>e (public key)</td>
<td>(private key)</td>
</tr>
</tbody>
</table>

RSA Encryption

- $E(m) = m^e \mod n$
- $D(c) = c^d \mod n$

OW-CPA = RSA problem by definition!
Outline

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 Elgamal OW
 Elgamal IND-CPA
 IND-CCA2 \Rightarrow NM-CCA2
 Attack of the Scheme
 IND-CCA1 \nRightarrow NM-CPA
Conclusion
Example: ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group generator g of $(\mathbb{Z}/p\mathbb{Z})^*$ and $a \in (\mathbb{Z}/(p-1)\mathbb{Z})^*$.
Public key: (p, g, h), where $h = g^a \mod p$.
Private key: a

Encryption: Bob chooses $r \in R (\mathbb{Z}/(p-1)\mathbb{Z})^*$ and computes $(u, v) = (g^r, Mh^r)$
Decryption: Given (u, v), Alice computes $M \equiv_p v \div u^a$
Justification: $v \div u^a = Mh^r \div g^{ra} \equiv_p M$
Remarque: re-usage of the same random r leads to a security flaw:

$$M_1 h^r \div M_2 h^r \equiv_p M_1 \div M_2$$

Practical Inconvenience: Cipher is twice as long as plain text.
Outline

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 Elgamal OW
 Elgamal IND-CPA
 IND-CCA2 \Rightarrow NM-CCA2
 Attack of the Scheme
 IND-CCA1 $\not\Rightarrow$ NM-CPA
Conclusion
Example: ElGamal Encryption Scheme

Exercise

Prove that Elgamal is OW-CPA under CDH assumption a
Outline

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 Elgamal OW
 Elgamal IND-CPA
IND-CCA2 \Rightarrow NM-CCA2
 Attack of the Scheme
IND-CCA1 $\not\Rightarrow$ NM-CPA
Conclusion

Example: ElGamal Encryption Scheme

Exercice

Prove that Elgamal is IND-CPA under DDH Assumption.
Outline

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 Elgamal OW
 Elgamal IND-CPA
IND-CCA2 ⇒ NM-CCA2
 Attack of the Scheme
IND-CCA1 \nRightarrow NM-CPA
Conclusion
Intuition for IND-CCA2 \Rightarrow NM-CCA2

Non-malleability deals with the ability to output ciphertexts.

As the adversary is granted access to the decryption oracle during its whole attack, it can decrypt any ciphertext it outputs.

The ability to output ciphertexts is thus not likely to increase the power of the adversary.
PROOF TODO
Main Idea

- We assume the scheme \mathcal{PE} is secure in the IND-CCA2 sense.
- We let $B = (B_1, B_2)$ be an NM-CCA2 adversary attacking \mathcal{PE}. We must show that $\text{Adv}_{\mathcal{PE}, B}^{\text{NM-CCA2}}(k)$ is negligible.
- We construct an IND-CCA2 adversary A attacking the scheme, using B.
- Comparing these two adversaries, we show the advantages are such that:

$$
\text{Adv}_{\mathcal{PE}, B}^{\text{NM-CCA2}}(k) = 2 \cdot \text{Adv}_{\mathcal{PE}, A}^{\text{IND-CCA2}}(k)
$$
Outline

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 Elgamal OW
 Elgamal IND-CPA

IND-CCA2 \Rightarrow NM-CCA2
 Attack of the Scheme

IND-CCA1 $\not\Rightarrow$ NM-CPA

Conclusion
Algorithm of Attack

Algorithm $A_{1}^{D_{sk}}(pk)$

$(s, M) \xleftarrow{R} B_{1}^{D_{sk}}(pk)$;
$(m_{0}, m_{1}) \xleftarrow{R} M$;
$s' \leftarrow (m_{0}, m_{1}, M, s)$;
Return (m_{0}, m_{1}, s').

Algorithm $A_{2}^{D_{sk}}(s', y)$

$(R, \tilde{C}') \xleftarrow{R} B_{2}^{D_{sk}}(M, s, y)$;
$\tilde{M}' \leftarrow D_{sk}(\tilde{C}')$;
if $R(m_{0}, \tilde{M}')$ then $d \leftarrow 0$ else $d \xleftarrow{R} \{0, 1\}$.
Return d.
IND-CCA2 \Rightarrow NM-CCA2

\textbf{Attack of the Scheme}

\textbf{Notation}

\[
\text{Adv}_{\mathcal{P}E, A}^{IND-CCA2}(k) = pk(0) - pk(1)
\]

\[
p_k(b) = Pr[(pk, sk) \leftarrow \mathcal{K}(\eta); (s', m_0, m_1) \leftarrow \mathcal{A}_1^{D_{sk}}(pk) : \mathcal{A}_2^{D_{sk}}(s', \mathcal{E}(pk, m_b)) = 0]
\]

\[
\text{Adv}_{\mathcal{P}E, B}^{NM-CCA2}(k) = pk'(0) - pk'(1)
\]

\[
p_k'(b) = Pr[(pk, sk) \leftarrow \mathcal{K}(\eta); (s, M) \overset{R}{\leftarrow} \mathcal{B}_1^{D_{sk}}(pk); (m_0, m_1) \overset{R}{\leftarrow} M;

(\mathcal{R}, \vec{C}') \overset{R}{\leftarrow} \mathcal{B}_2^{D_{sk}}(M, s, \mathcal{E}(pk, m_b)) \vec{M}' \leftarrow \mathcal{D}_{sk}(\vec{C}'); \mathcal{R}(m_b, \vec{M}')]\]
End of the Proof

\[p_k(0) = p'_k(0) \cdot \Pr[d = 0 | R(m_0, \tilde{M})] + (1 - p'_k(0)) \cdot \Pr[d = 0 | \text{coinflip}] \]

\[= p'_k(0) + \frac{1}{2} - \frac{1}{2} \cdot p'_k(0) \]

\[= \frac{1}{2} \cdot (1 + p'_k(0)) \]

\[p_k(1) = \frac{1}{2} \cdot (1 + p'_k(1)) \]

\[\text{Adv}^{\text{IND-CCA2}}_{P \mathcal{E}, A}(k) = pk(0) - pk(1) \]

\[= \frac{1}{2} \cdot (1 + p'_k(0)) - \frac{1}{2} \cdot (1 + p'_k(1)) \]

\[= \frac{1}{2} \cdot (p'_k(0) - p'_k(1)) \]

\[= \frac{1}{2} \cdot \text{Adv}^{\text{NM-CCA2}}_{P \mathcal{E}, B}(k) \]
Outline

Perfect Encryption

Cyclic Groups

Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 ElGamal OW
 ElGamal IND-CPA

IND-CCA2 \Rightarrow NM-CCA2

Attack of the Scheme

IND-CCA1 \nRightarrow NM-CPA

Conclusion
Idea: \(\text{IND-CCA1} \not\Rightarrow \text{NM-CPA} \)

Assume there exists some IND-CCA1 secure encryption \(P \mathcal{E} \).

We modify \(P \mathcal{E} \) to build \(P \mathcal{E}' \) which is also IND-CCA1 secure but not NM-CPA secure.
PROOF TODO
Algorithm $P\mathcal{E}'$:

Algorithm $\mathcal{E}'_{pk}(x)$:

\[
y_1 \leftarrow \mathcal{E}_{pk}(x); \quad y_2 \leftarrow \mathcal{E}_{pk}(\overline{x});
\]
Return $y_1 \parallel y_2$

Where $y_1 \parallel y_2$ is a pair, and \overline{x} us the bitwise complement of x.

Algorithm $\mathcal{D}'_{sk}(y_1 \parallel y_2)$:

Return $\mathcal{D}_{sk}(y_1)$.
\mathcal{PE}' is not NM-CPA: Idea

Given a cipher text $y_1 \mathbin{||} y_2$ of a message x it is easy to create a cipher of \overline{x}: just output $y_2 \mathbin{||} y_1$. Thus the scheme is malleable.

Formally: $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ breaks \mathcal{PE}' in the sense of NM-CPA.

$(\emptyset, M) \xleftarrow{R} \mathcal{A}_1(pk)$, where M puts uniform distribution on $\{0, 1\}^k$

$(R, y_2 \mathbin{||} y_1) \xleftarrow{R} \mathcal{A}_2(\emptyset, M, y_1 \mathbin{||} y_2)$, where $R(m_1, m_2) = 1$ if $m_1 = \overline{m_2}$

$$\text{Adv}_{\mathcal{PE}', B}^{\text{NM-CPA}}(k) = 1 - 2^{-k}$$
PE' is IND-CCA1: Idea

Let $B = (B_1, B_2)$ be some polynomial time adversary attacking PE' in the IND-CCA1 sense. Show that $\text{Adv}_{PE', B}^{IND-CCA1}(k)$ is negligible, using an hybrid argument.

$$p_k(i,j) = \Pr[(s, m_0, m_1) \xleftarrow{\$} D^s_k; y_1 \xleftarrow{\$} E_p(x_i); y_2 \xleftarrow{\$} E_p(x_j): B_2(s, m_0, m_1, y_1\|y_2) = 1]$$

$$\text{Adv}_{PE', B}^{IND-CCA1}(k) = p_k(1, 1) - p_k(0, 0)$$

$$\text{Adv}_{PE', B}^{IND-CCA1}(k) = p_k(1, 1) - p_k(1, 0) + p_k(1, 0) - p_k(0, 0)$$
Claim 1: $p_k(1, 1) - p_k(1, 0)$ is negligible

Algorithm $A_1^{D_{sk}}(pk)$

$$
(s, m_0, m_1) \xleftarrow{R} B_1^{D'_{sk}}(pk);
$$
Return $(\overline{m_0}, \overline{m_1}, s)$.

Algorithm $A_2(s, m_0, m_1, y)$

$$
(R, \overline{C'}) \xleftarrow{R} B_2^{D_{sk}}(M, s, y);
$$
$$
d \xleftarrow{R} B_2(\overline{m_0}, \overline{m_1}, s, E_{pk}(\overline{m_1}) || y);
$$
Return d.

$$
Pr[(m_0, m_1, s) \xleftarrow{R} A_1^{D_{sk}}(pk) : A_2(m_0, m_1, s, E_{pk}(m_1)] = p_k(1, 1)
$$
$$
Pr[(m_0, m_1, s) \xleftarrow{R} A_1^{D_{sk}}(pk) : A_2(m_0, m_1, s, E_{pk}(m_0)] = p_k(1, 0)
$$

$\text{Adv}_{\mathcal{P}E, A}^{\text{IND-CCA1}}(k) = p_k(1, 1) - p_k(0, 0)$ is negligible, assumng security of $\mathcal{P}E$ in the IND-CCA1 sense.
Claim 2: \(p_k(1, 0) - p_k(0, 0) \) is negligible

Algorithm \(A_1^{D_{sk}}(pk) \)

\[
(x_0, x_1, s) \overset{R}{\leftarrow} B_1^{D'_{sk}}(pk);
\]

Return \((x_0, x_1, s) \).

Algorithm \(A_2(x_0, x_1, s, y) \)

\[
(R, \vec{C}') \overset{R}{\leftarrow} B_2^{D_{sk}}(M, s, y);
\]

\[
d \overset{R}{\leftarrow} B_2(x_0, x_1, s, y || E_{pk}(\overline{x_0}));
\]

Return \(d \).

\[
Pr[(x_0, x_1, s) \overset{R}{\leftarrow} A_1^{D_{sk}}(pk) : A_2(x_0, x_1, s, E_{pk}(x_1)) = p_k(1, 0)]
\]

\[
Pr[(x_0, x_1, s) \overset{R}{\leftarrow} A_1^{D_{sk}}(pk) : A_2(x_0, x_1, s, E_{pk}(x_0)) = p_k(0, 0)]
\]

\[
Adv^{\text{IND-CCA1}}_{\mathcal{PE}, A}(k) = p_k(1, 0) - p_k(0, 0) \text{ is negligible, assuming security of } \mathcal{PE} \text{ in the IND-CCA1 sense.}
\]
Outline

Perfect Encryption
Cyclic Groups
Simple Examples of Reduction Proof Technique
 DL implies CDH
 CDH implies DDH
 RSA
 ElGamal
 ElGamal OW
 ElGamal IND-CPA

IND-CCA2 \Rightarrow NM-CCA2
 Attack of the Scheme
IND-CCA1 \nRightarrow NM-CPA

Conclusion
Summary

Today

- Reduction proofs for
 - ElGamal
 - DH
- IND-CCA2 \Rightarrow NM-CCA2
- NM-CCA1 $\not\Rightarrow$ NM-CPA
Thank you for your attention.

Questions?