Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Automatic Grading

"take a CEGAR and let the machine do your work" (no Machine Learning in this talk)

> Michaël Périn May 17th 2018

Univ. Grenoble Alpes

VERIMAG, France

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification MOOC: Massive Online Open Courses teachers'ubiquity: everywhere, whenever, subtitled in many languages

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification MOOC: Massive Online Open Courses teachers'ubiquity: everywhere, whenever, subtitled in many languages

- **LMS:** Learning Management Systems
 - help organizing the material: courses, exercises, exams,
 - manage user accounts and permissions
 - help managing the grading tasks of digitalized exams: Nb-Grader, Gradescope
 - (eg. Moodle, Chamilo, Claroline, Dokeos, ...)

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

- Grading and Repairing
- Application to Deterministic Finite Automata
- Experiments
- Future work

Related work in Program Verification

- MOOC: Massive Online Open Courses teachers'ubiquity: everywhere, whenever, subtitled in many languages
- **LMS:** Learning Management Systems
 - help organizing the material: courses, exercises, exams,
 - manage user accounts and permissions
 - help managing the grading tasks of digitalized exams: Nb-Grader, Gradescope
 - (eg. Moodle, Chamilo, Claroline, Dokeos, ...)
- DCMS: Dynamic Content Management Systems you must pass the automatic test to unlock the next level

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

- Grading and Repairing
- Application to Deterministic Finite Automata
- Experiments
- Future work
- Related work in Program Verification

 MOOC: Massive Online Open Courses teachers'ubiquity: everywhere, whenever, subtitled in many languages

- **LMS:** Learning Management Systems
 - help organizing the material: courses, exercises, exams,
 - manage user accounts and permissions
 - help managing the grading tasks of digitalized exams: Nb-Grader, Gradescope
 - (eg. Moodle, Chamilo, Claroline, Dokeos, ...)
- **DCMS:** Dynamic Content Management Systems
 - you must pass the automatic test to unlock the next level
- Training with Automatic Correction
 - mainly MCQ (Multiple-Choice Quiz) : most LMS
 - Web-notebook: online text editor + interpreter, for practice and examination (eg. Nb-Grader, Caseine)
 - Feeback: ✓, ×

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

- Grading and Repairing
- Application to Deterministic Finite Automata
- Experiments
- Future work
- Related work in Program Verification

 MOOC: Massive Online Open Courses teachers'ubiquity: everywhere, whenever, subtitled in many languages

- **LMS:** Learning Management Systems
 - help organizing the material: courses, exercises, exams,
 - manage user accounts and permissions
 - help managing the grading tasks of digitalized exams: Nb-Grader, Gradescope
 - (eg. Moodle, Chamilo, Claroline, Dokeos, ...)
- **DCMS:** Dynamic Content Management Systems
 - you must pass the automatic test to unlock the next level
- Training with Automatic Correction
 - mainly MCQ (Multiple-Choice Quiz) : most LMS
 - Web-notebook: online text editor + interpreter, for practice and examination (eg. Nb-Grader, Caseine)
 - Feeback: √, ×
- Online exams are still marked by teachers

MOOC from a teacher's point of view

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

MOOC = Teachers' hell

 \ominus time consuming... means reluctant to evolution

⊖ no student, no feedback from students,

 \ominus only exams and markings

MOOC from a teacher's point of view

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

MOOC = Teachers' hell

 \ominus time consuming... means reluctant to evolution

- \ominus no student, no feedback from students,
- $\ominus\,$ only exams and markings

My dream as a teacher

- $\oplus\,$ interactive course with just chalks and black board,
- \oplus interaction with students,
- writing exams with solutions,
- \oplus no markings = automatic grading

Evaluation in Learning Management Systems

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Simple answers: boolean, string or numerical values

 \rightarrow Exams must be smart to evaluate elaborated reasoning through MCQ

Evaluation in Learning Management Systems

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

- Grading and Repairing
- Application to Deterministic Finite Automata
- Experiments
- Future work
- Related work in Program Verification

Simple answers: boolean, string or numerical values

- \rightarrow Exams must be smart to evaluate elaborated reasoning through MCQ
- Test campaign on executable code produced by students
 - script running on student projects
 - web-notebook for programming exercises
 Jupyter supports 40 programming languages,
 Caseine: local development at G-SCOP on top of
 Moodle and Virtual Lab
 - \blacksquare feedback on each test: \checkmark,\times
 - \rightarrow No evaluation of the code quality.

Evaluation in Learning Management Systems

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

- Grading and Repairing
- Application to Deterministic Finite Automata
- Experiments
- Future work

Related work in Program Verification

Simple answers: boolean, string or numerical values

- \rightarrow Exams must be smart to evaluate elaborated reasoning through MCQ
- Test campaign on executable code produced by students
 - script running on student projects
 - web-notebook for programming exercises
 Jupyter supports 40 programming languages,
 Caseine: local development at G-SCOP on top of
 Moodle and Virtual Lab
 - feedback on each test: \checkmark, \times
 - \rightarrow No evaluation of the code quality.
- Serious Game eg. treasure hunt → What is evaluated ? "learning linux command and tools" by M.Moy evaluates the capacity of self-training and finding information → Students can be stuck.

This talk I

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

A brainstorming session

- I'm not an expert in Learning Management Systems, just a teacher fed up with grading
- a 1 brain × month work
- hijacking verification techniques

Assumptions

- no digitalization or handwriting recognition
- students composing on machine becomes feasible 90% of CS students have a laptop

This talk II

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

.. addresses two problems of LMS

- Exams must be smart to evaluate a precise knowledge or elaborated reasoning through Multiple-Choice Quiz
- Not enough feedback to students

Contributions

- Automatic Correction and Automatic Grading
- more freedom in exercises than Multiple-Choice Questions
- finer evaluation of knowledge
- more feedback to students for training before the exams

Grading exams (facts from teachers' interviews)

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

- Grading and Repairing
- Application to Deterministic Finite Automata
- Experiments
- Future work

Related work in Program Verification

Grading takes times

- $10 \min \sim 15 \min$ by form
- $240 \sim 300 \text{ exam forms/year}$
- $\blacksquare \ 41 \sim 75 \ {\rm hours/year}$
- $\blacksquare~2.5\sim5~{\rm weeks/year}$ as half-time job
- it is not precisely taken into account as teaching time

Students have no return,

only the final grade ... weeks later

 Grading is not uniform between the first and the last exam forms

Automatic grading

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Automatic Grading is for teachers:

- 1 it saves hours for research
 - it automatically computes the grade
- 2 even if it is not perfect, it can do better than teachers it is uniform

Technical problem: most of student answers are incorrect but "partially correct". The difficulty of Automatic Grading is

the detection of "good ideas" in an incorrect answer.

Student training (facts from students' interviews)

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

The Y,Z generation asks for **Personalized Feedback**

1 Providing the solution of an exercice is not satisfactory:

- it's all done!
- is the teacher's solution the only way?
- it does not explain why my reasoning was incorrect.
- 2 Supplementary exercices are not done

... and for High Frequency Feedback

- 1 feedback on tests comes too late, at best one week later
- 2 students moved to another topic ;
- 3 they only look at the grade

Automatic correction

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Automatic Correction / Repair is for students:

1 training with *instantaneous feedback*

- 2 feedback on their production
- **3** self-evaluation of strengths and weaknesses *without external judgement*
- 4 they get used to the expected answers: payback guaranty

Technical problem: repairing student's productions toward the solution, and annotating with: correct, uncomplete, incorrect, correction

Technical part of the talk

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

- **1** a definition of **automatic grading** from automatic correction
- 2 a CEGAR approach for automatic correction (Counter-Example-Guided Answer Repair)

Automatic grading as editing distance

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Definition (Automatic Grading)

Computing the distance between the student answer \boldsymbol{A} and the solution \boldsymbol{S}

Requirements

- a formal notation: $A, S \in Term$
- lacksquare a decideable equivalence relation : $A\stackrel{?}{\simeq}S$

Example (finite automata)

 $\begin{aligned} & $\mathcal{T}erm = Automata(\Sigma = \{a, b\}, State = \{1, 2, 3\})$ \\ & $\mathbb{A} \simeq S$ iff $\mathscr{L}(A) = \mathscr{L}(S)$ \end{aligned}$

Automatic grading as editing distance

Counter-Example-Guided Answer Repair

Autonomou: Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Editing distance = minimal number of rewritings

Given some transformers $\tau_1, \tau_2, \ldots : \mathcal{T}erm \to \mathcal{T}erm$

$$|A_0 \xrightarrow{\tau_1} A_1 \xrightarrow{\tau_2} \dots \xrightarrow{\tau_n} A_n| = n$$

•
$$edist(A, S) = \min\{ |A \xrightarrow{\tau}^* S| \}$$

Example (Transformers of finite automata)

- adding/removing a state
- changing status of a state: initial / accepting / non-accepting
- adding/removing a transition

A concrete example

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Exercise

Design a finite automaton that recognizes $\{(a.b)^n \mid n \in \mathbb{N}\}$

Example (Solution provided by the teacher)

$$L = \{\epsilon, ab, abab, ab \cdot \ldots \cdot ab, \ldots\}$$

parse+output

A concrete example

Counter-Example-Guided Answer Repair

Exercise

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

uture work

Related work in Program Verification Example (student answer A)

Design a finite automaton that recognizes $\{(a.b)^n \mid n \in \mathbb{N}\}$

A:= automaton{ ->(1)-a->(2)-b->(1) ; (1)-b->(1) ; (2)-a->(3) ; (3)-a->(3)

}

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example (let's compute edist(A, S))

edist(A, S) = 5

Feedback, a side-effect of computing *edist*

Counter-Example-Guided Answer Repair

Example

Autonomou: Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

edist(A, S) = 5, is it fair?

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Another repairing is possible!

edist(A, S) = 5, is it fair?

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Consider S' = FullSpec(S) and compute edist(A, S')

edist(A, S) = 5, is it fair?

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Consider S' = FullSpec(S) and compute edist(A, S')

edist(A, S) = 5, is it fair?

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Consider S' = FullSpec(S) and compute edist(A, S')

edist(A, S) = 5, is it fair?

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Consider S' = FullSpec(S) and compute edist(A, S')

 $\operatorname{edist}(A,S') = 4 < \operatorname{edist}(A,S) = 5$ and $S' \simeq S$

Grading, a mix of syntax and semantics

Counter-Example-Guided Answer Repair

Grading and Repairing

The grade $\in [0,1]$

 \dots evaluates the syntactic differences between the answer A and a solution S' semantically equivalent to the provided one.

$$\textit{grade}(A) \hspace{2mm} = \hspace{2mm} 1 - \frac{\min\{\textit{edist}(A,S') \mid S' \simeq S\}}{\textit{size}(S)}$$

where

 $size(S) = min\{edist(\emptyset, S') \mid S' \simeq S\}$ = the minimal number of steps to build a solution equivalent to S

and size(S')is bounded size(S') < size(A)Roughly,

erase

rebuild

Grading, a mix of syntax and semantics

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

The grade $\in [0, 1]$

$$grade(A) = 1 - \frac{\min\{edist(A,S) \mid S \simeq S\}}{size(S)}$$

where $size(S) = \min\{edist(\emptyset, S') \mid S' \simeq S\}$
Roughly, $size(S') < size(A) + size(S)$

erase

. .

P (A a) + a (a)

rebuild

Example (requirements on the grading function)

•
$$\forall S' \simeq S$$
, $grade(S') = 1$ since $edist(S', S') = 0$
• $grade(\emptyset) = 0$ since $grade(\emptyset) = 1 - \frac{size(S)}{size(S)}$

Example: Grading + Feedback

Counter-Example-Guided Answer Repair

Autonomou: Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example

2

S

S : 2 states, 2 transitions, 1 initial state, 1 accepting state

$$\textit{size}(S) = \min\{\textit{edist}(\emptyset, S') \mid S' \simeq S\} = 6$$

$$grade(A) = 1 - \frac{\min\{\textit{edist}(A,S') \mid S' \simeq S\}}{6}$$
Example: Grading + Feedback

Counter-Example-Guided Answer Repair

Autonomou: Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example

S

a

2

$$grade(A_1) = 1 - \frac{4}{6}$$

A

repaired_A

Interesting fairness of this grading function

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

B_1 and B_2 should receive the same grade

... they both forgot the loop and the word ϵ .

Interesting fairness of this grading function

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

B_1 and B_2 should receive the same grade

... they both forgot the loop and the word ϵ .

Interesting fairness of this grading function

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

The repairing algorithm

Counter-Example-Guided Answer Repair

Autonomou: Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

The general idea, independant of the domain : ${\rm CEGAR}$

Iteratively repair $A_0 \xrightarrow{\tau_1} \dots \xrightarrow{\tau_i} A_i$ until $A_i \simeq S$ then return τ_1, \dots, τ_i

SMT (Solver Modulo Theory) can be useful there to check the equivalence $A_i \stackrel{?}{\simeq} S$.

```
    TRUE : return τ<sub>1</sub>,...,τ<sub>i</sub>
    FALSE(C) : use the counter example C
    as feedback
    for selecting a repair τ<sub>i+1</sub> of A<sub>i</sub>
    A<sub>i</sub> τ<sub>i+1</sub> → A<sub>i+1</sub> ; recall with A<sub>i+1</sub> 2 S.
```

This Counter-Example-Guided Answer Repair approach is similar to the CEGAR method (Counter-Example-Guided Abstraction Refinment) used in computer aided verification.

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Applications to Deterministic Finite Automata

(an ideal case study)

a Recap on DFA

Checking equivalence of automata $A \stackrel{?}{\simeq} S$ I

Counter-Example-Guided Answer Repair

Autonomou Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification • The langage associated to the state q of an Automaton A

$$L_q \stackrel{\text{\tiny def}}{=} \mathscr{L}(A \text{ with } q_{init}(A) := q)$$

States are equivalent, denoted $q \sim q'$, iff $L_q = L_{q'}$

Equivalence of Automata

$$\begin{array}{rcrcr} A &\simeq & S\\ \text{iff} & \mathscr{L}(A) &= & \mathscr{L}(S)\\ &= & =\\ & L_{q_{init}(A)} &= & L_{q_{init}(S)}\\ \text{iff} & q_{init}(A) &\sim & q_{init}(S) \end{array}$$

■ Algorithm: compute the equivalent states of the automaton A + S and check $q_{init}(A) \stackrel{?}{\sim} q_{init}(S)$

Checking equivalence of automata $A \stackrel{?}{\simeq} S$ II

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation ir LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related worł in Program Verification

Example (Constructing equivalence classes of \sim in A + S)

Initially, all states are \sim {1, 2, 3, 4, S₁, S₂}

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation ir LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation ir LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation ir LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

А S **S**1 \$2 no b

Example (Constructing equivalence classes of \sim in A + S)

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation ir LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

A S **S1** \$2 no b

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation ir LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example (Constructing equivalence classes of \sim in A + S)

1st partition refinment

add
$$4 \stackrel{\scriptscriptstyle 0}{
ightarrow} S_1$$
 to get $4 \sim S_2$

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation ir LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation ir LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example (continued)

- consider the graph of the repaired automaton $(A + S + 4 \xrightarrow{b} S_1)$ with ~ edges
- **2** remove the State(S) except the targets of State(A)

eg. (4)
$$\xrightarrow{b}$$
 S_1

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

А S

Example (continued)

1 consider the graph of the repaired automaton $(A + S + 4 \xrightarrow{b} S_1)$ with \sim edges

2 remove the State(S) except the targets of State(A)

eg. (4)
$$\xrightarrow{b}$$
 S_1

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example (continued)

- **1** consider the graph of the repaired automaton $(A + S + 4 \xrightarrow{b} S_1)$ with \sim edges
- **2** remove the State(S) except the targets of State(A)

eg. (4)
$$\xrightarrow{b}$$
 S_1

3 replace
$$(q) \xrightarrow{\ell} [S_i] \dots (q)$$

by $(q) \xrightarrow{\ell} (q)$

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example (continued)

- **1** consider the graph of the repaired automaton $(A + S + 4 \xrightarrow{b} S_1)$ with \sim edges
- **2** remove the State(S) except the targets of State(A)

eg. (4)
$$\xrightarrow{b}$$
 S_1

3 replace
$$(q) \xrightarrow{\ell} \overline{S_i} \dots q'$$

by $(q) \xrightarrow{\ell} q'$

Example (continued)

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

A

- **1** consider the graph of the repaired automaton $(A + S + 4 \xrightarrow{b} S_1)$ with \sim edges
- **2** remove the State(S) except the targets of State(A)

eg. (4)
$$\xrightarrow{b}$$
 S_1

3 replace
$$(q) \xrightarrow{\ell} S_i \ldots q$$

by $(q) \xrightarrow{\ell} q$

eg.
$$(4) \xrightarrow{b} S_1 \cdots (1)$$

becomes $(4) \xrightarrow{b} (1)$

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

$\label{eq:computes the $$\sim$ relation using partition refinment:$$ it always succeeds and provides the greatest equivalence relation. $$$

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

- $\label{eq:computes the $$\sim$ relation using partition refinment:$$ it always succeeds and provides the greatest equivalence relation. $$$
- **2** Reparing A + S may be required to guaranty
 - (every state of A) \sim (a state of S)
 - (every state of *S*) ~ (a state of *A*)

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

- $\label{eq:computes the $$\sim$ relation using partition refinment:$$ it always succeeds and provides the greatest equivalence relation. $$$
- **2** Reparing A + S may be required to guaranty
 - (every state of A) \sim (a state of S)
 - (every state of *S*) ~ (a state of *A*)
- **3** Available Repairs on Automata
 - status (initial / accepting / non-accepting) of states
 - addition / removal of transitions and states

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

- $\label{eq:computes the $$\sim$ relation using partition refinment:$$ it always succeeds and provides the greatest equivalence relation. $$$
- **2** Reparing A + S may be required to guaranty
 - (every state of A) \sim (a state of S)
 - (every state of S) ~ (a state of A)
- **3** Available Repairs on Automata
 - status (initial / accepting / non-accepting) of states
 - addition / removal of transitions and states
- **4** repaired(A) is reconstructed from A + S + repairs

Repairing accepting states

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example $(A_1 \stackrel{?}{\simeq} S$ by computing \sim in $A_1 + S)$

Repairing accepting states

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example $(A_1 \stackrel{?}{\simeq} S$ by computing \sim in $A_1 + S)$

Diagnostic:

 S_1 is accepting, $S_1 \sim \emptyset$

thus, missing accepting states

Counter-example:

 $\epsilon \notin \mathscr{L}(A_1) \qquad \epsilon \in \mathscr{L}(S)$

Repairing accepting states

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example $(A_2 \stackrel{?}{\simeq} S$ by computing \sim in $A_2 + S)$

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example (~ in $A_2 + S$: $1 \sim S_1$, $2 \sim S_2$)

checking equivalence

 $A_2 \not\simeq S$

because $q_{init}(A_2) \not\sim q_{init}(S)$

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example (~ in $A_2 + S$: $1 \sim S_1$, $2 \sim S_2$)

checking equivalence

because $q_{init}(A_2) \not\sim q_{init}(S)$

then repairing

entails $A_2 \simeq S$

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Example (~ in $A_2 + S$: $1 \sim S_1$, $2 \sim S_2$)

checking equivalence

because $q_{init}(A_2) \not\sim q_{init}(S)$ then repairing $q_{init}(A_2) \sim q_{init}(S)$

The repair algorithm for DFA

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

repair(A,S) : set of repaired automata

1 computes \sim in A + S

- **2** return $\{A\}$ if
 - $A \simeq S$ ie. $q_{init}(A) \sim q_{init}(S)$
 - every state of $A \sim$ state of S
 - \blacksquare every state of $S \sim$ state of A

otherwise:

3 use the counter-example to select possible repairs {τ₁,...,τ_r} eg. { add transition, remove state }
4 recursively call *repair* on each automaton τ_i(A)

 $repair(\tau_1(A), S) \cup \ldots \cup repair(\tau_r(A), S)$

A generic grading algorithm (using *repair*)

Grading is obvious from repairs

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

1 $\{A'_1, \ldots, A'_n\} := \operatorname{repair}(A, S)$ where each $A'_i \simeq S$

2 select the repaired automaton with minimal repair cost

$$A' := \textit{imin} [\textit{edist}(A, A'_1) ; \ldots; \textit{edist}(A, A'_r)]$$

where $edist(A, A') \stackrel{\text{def}}{=} n$ for $A' = \tau_1 \circ \ldots \circ \tau_n(A)$ 3 return the **repaired automaton** and **the grade**

$$\operatorname{grading}(A,S) \stackrel{\text{\tiny def}}{=} \left(\underbrace{\begin{array}{c} A' \\ \tau_1 \circ \ldots \circ \tau_n(A) \\ \overbrace{\mathsf{feedback}}^{A'}}_{\mathsf{feedback}} , \underbrace{1 - \frac{\operatorname{edist}(A,A')}{\operatorname{size}(S)}}_{\mathsf{grade}} \right)$$

Experiments in progress I

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Experiments at Polytech

- 6 students, running a limited linux distribution (made by P.Corbineau): guest login, no network.
- an exam on Automata & Grammars with additional instructions to provide answers in a given syntax
- questions available as paper sheet, in pdf format (subject.pdf), and in ascii format in the answer file (subject.org)
- both files are produced automatically from the latex source (subject.tex)
- corrected in the standard way
Experiments in progress II

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Lessons learned

- \ominus students want a paper version of the test
- composing on machine is well-accepted
- the imposed syntax helps students structuring their answers
- \oplus digital exams on your laptop weigh 0kg
- \oplus answers are organized and can be fold/unfold
- answer parsers must be available for students
- parsers must be user-friendly: tolerant syntax and feedback (answer.html)

Next steps

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Alexandre Borthomieu, L3, magistère info

 development of compliant parsers and automatic grading
 extension non-deterministic automata: A^D := det(A) ; repair(A^D, S) ; back propagation of τ₁ ◦ . . . τ_n to A?

Next steps

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Alexandre Borthomieu, L3, magistère info

 development of compliant parsers and automatic grading
 extension non-deterministic automata: A^D := det(A) ; repair(A^D, S) ; back propagation of τ₁ ◦ ... τ_n to A?

Philippe Genin, ITA, Verimag

- booting USB key with a limited linux distribution
- guest login only, mouse, keyboard, gedit, html viewer
- no network or restricted domain,
- no hard disk, saving subject.org on the USB key,
- executable parsers that generate html feedback

Future work I

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Larger experiments (2019 ?)

Convincing the school administration

- **60 students:** 1st year Polytech CS engineers
- **90%** of CS students have a **laptop**
- Automata & Grammars' exams on machine
- Deployment & costs: new room organisation, separator, one USB key per student + screen privacy filter ?
- Development: the grading software must be available for training (parsers, repair, grading)
- Integration in the Caseine web platform

Future work II

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Application to other teaching units?

- Automata, Regular Expression, Langage Equations
- Grammars: Context-Free Grammars
- Propositional Logic, Resolution
- Program Proof in restricted Hoare Logic
- Linear Programming (with Nicolas Catusse)

The ${\rm CEGAR}$ approach could probably be used, and brut force is also possible:

- \blacksquare small problems (automata with \leq 10 states)
- constraints on answers (4 states, initial state = 1)
- templates of logic invariant in program proofs

Future work III

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Autograding

- Is it a research topic? a business? a new trend?
- just a convenient tool?

Plans for the next few years

- 1 Nice subject for internship
- 2 Application to my teaching units
- **3** Generalization using SMT ?
- 4 Publication ? In which community ?

Challenging problem of comparing two programs

Counter-Example-Guided Answer Repair

Autonomou: Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

Teaching Programming is difficult

 Tests do not evaluate the code quality (O.Grüber's experience)

2 High Frequency Feedback to improve student skills

no off-the-shelf solution for comparing two programs but

it is an active domain in program verification since 1998.

Equivalence of two programs

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

- Grading and Repairing
- Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

- Translation Validation for Optimizing Compilers [Pnueli+ TACAS'98, Necula PLDI'2000, Zuck+ JUCS'2003, Tristan+ PLDI'2011].
- The desired ~ relation resembles that of Proving inter-program properties [Voronkov+ SAS'2009] where nodes of the control Flow Graph of the original program S are related by ~ to nodes of the optimized program A. Each node correspondance ~ relation bears an invariant, that is a predicate on variables of both A and S.
- Coupling proofs are probabilistic product programs, [Barthe+ POPL'2017]

Thanks

Counter-Example-Guided Answer Repair

Autonomous Learning

Evaluation in LMS

Grading and Repairing

Application to Deterministic Finite Automata

Experiments

Future work

Related work in Program Verification

- Questions?
- Comments?
- I'm looking for help