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Abstract. A polyhedron can be represented as constraints, generators
or both in the double description framework. Whatever the representa-
tion, most polyhedral operators spend a significant amount of time to
maintain minimal representations. To minimize a polyhedron in cons-
traints-only representation, the redundancy of each constraint must be
checked with respect to others by solving a linear programming (lp)
problem. We present an algorithm that replaces most lp problem reso-
lutions by distance computations. It consists in launching rays starting
from a point within the polyhedron and orthogonal to its bounding hy-
perplanes. A face first encountered by one of these rays is an irredundant
constraint of the polyhedron. Since this procedure is incomplete, lp prob-
lem resolutions are required for the remaining undetermined constraints.
Experiments show that our algorithm drastically reduces the number of
calls to the simplex, resulting in a considerable speed improvement. To
follow the geometric interpretation, the algorithm is explained in terms
of constraints but it can also be used to minimize generators.

1 Redundancy in Polyhedra

Convex polyhedra are used in static analysis [2] and automatic parallelization [6]
to capture linear inequalities of the form

∑n
i=1 aixi ≤ b relating the program

variables x1, . . . , xn.1 A polyhedron P can be defined as the set of points x =
(x1, . . . , xn) that satisfy a system of inequalities Ax ≤ b. The `th row of the
augmented matrix [A|−b] is a vector C` = (a`1, . . . , a`n,−b`) which encodes the
constraint

∑n
i=1 a`i xi ≤ b`. A constraint C` defines the bounding hyperplane

normal to (a`1, . . . , a`n) and shifted by b` (see Fig. 1). Alternatively the same
set of points can be defined as the convex combination of generators (vertices

and rays), i.e. {x | x =
v∑

i=1

βivi +
r∑

i=1

λiRi, βi, λi ≥ 0,
∑
βi = 1} where

Ri’s and vi’s denote respectively rays and vertices. Fig. 1 shows two polyhedra
Pa and Pb defined in double description as the set of constraints {C1 :x2 −
? This work was partially supported by the European Research Council under the
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1 We only deal with convex polyhedra. For readability, we will omit the adjective
convex in the following.
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x1 ≤ 1, C2 :x2 − x1 ≥ −2, C3 :x1 ≥ 1, C4 :x1 + x2 ≥ 2} and the set of
generators {v1 : (1, 2), v2 : (1, 1), v3 : (2, 0), R1 : (1, 1)} for Pa; respectively as
{C1,C2,C

′ :x1 ≥ 3} and {v′1 : (3, 4), v′2 : (3, 1), R1} for Pb.

Fig. 1: Emergence of redundant constraints and generators in polyhedra.

The addition of new constraints or generators introduces redundancies which
must be removed to reduce memory consumption and avoid useless computa-
tions in subsequent operations. In constraints-only representation, redundant
constraints tend to grow exponentially during the computation of a projection
by Fourier-Motzkin elimination [18]. For a description by generators the same
pitfall occurs when a polyhedron is sliced with a constraint [8]. The emergence
of redundancies is illustrated by Fig. 1: when constraint C ′ is added into Pa to
form Pb, constraints C3 and C4 become redundant. Conversely, the addition of
points v1,v2,v3 into Pb generates Pa and makes v′1 and v′2 redundant.

Characterization of Redundancy. A ray Rk is redundant if it is a nonnegative
combination of the other rays and a point vk is redundant if it is a convex
combination of the other generators, i.e. vk =

∑
i βivi +

∑
i λiRi for some

βi, λi ≥ 0 with
∑
βi = 1 and βk = 0. Back to our running example, the equations

v′1 = 1×v1 + 2×R1 and v′2 = 1×v3 + 1×R1 prove the redundancy of v′1 and
v′2 in Pa. Therefore, these equations account for certificates of redundancy.

Intuitively, a constraint is redundant if it is useless, in the sense that adding it
does not change the geometrical space delimited by the polyhedron. Formally, a
constraintCk is redundant if it is a nonnegative combination of other constraints.
As we did for generators, we can find equations that prove the redundancy of C3

and C4 in Pb, but we need to consider the tautological constraint C0 : 1 ≥ 0 as



being part of the system in order to exactly fit the constant b of the redundant
constraint.

Example 1. The equationsC3 = 1×C ′⊕2×C0 andC4 = 2×C ′⊕1×C2⊕2×C0

are called the Farkas decomposition of C3 and C4. They act as certificates of
redundancy. Indeed, C3 :x1 ≥ 1 ≡ (x1 ≥ 3)⊕2× (1 ≥ 0) and C4 :x1 +x2 ≥ 2 ≡
2×(x1 ≥ 3)⊕(x2−x1 ≥ −2)⊕2×(1 ≥ 0) where (l ≥ r)⊕(l′ ≥ r′) def

= l+l′ ≥ r+r′.

If only one representation is available – as generators or as constraints –
discovering redundancy requires solving linear programming (lp) problems of
the form “does there exist nonnegative scalars satisfying some linear equations?”:

∃λ0, . . . , λp ≥ 0, Ck =
p∑

i=0,i6=k

λiCi (1) for constraints

∃λ1, . . . , λr ≥ 0, Rk =
r∑

i=1,i6=k

λiRi (2) for rays

∃β1, . . . , βv, λ1, . . . , λr ≥ 0, vk =
v∑

i=1,i6=k

βivi +
r∑

i=1

λiRi (3) for vertices

∧
v∑

i=1,i6=k

βi = 1

Polyhedral Cones. The way to reconcile the two definitions of redundancy is
to switch to polyhedral cones to get a homogeneous system of constraints and
only rays as generators. The trick for changing a polyhedron P into a cone is to
associate an extra variable η to the constant term b as follows [19]: Ax ≤ b ≡

η(Ax) ≤ ηb ≡ A(ηx) − ηb ≤ 0 ≡ [A| − b]
(
ηx
η

)
≤ 0 for any η > 0. It can be

proved [9] that x ∈ Qn belongs to P if and only if
(
x
1

)
∈ Qn+1 belongs to the

cone
{
x′ ∈ Qn+1 | A′x′ ≤ 0

}
where A′ = [A| − b]. Using this transformation,

operators on polyhedra can be implemented as computations on their associated
cones producing a cone that, once intersected with the hyperplane η = 1, is the
expected polyhedron. We switch back to polyhedra in illustrations as they are
easier to draw. Considering cones simplifies the presentation: the constant term
of constraints and the vertices disappear from definitions. Then, we end up with
the same definition of redundancy for constraints (1) and for generators (2): a
vector is redundant if it is a nonnegative combination of the others vectors.

Deciding Redundancy. The redundant/irredundant status of a constraint or a
ray depends on the satisfiability of an existential problem (1,2) involving linear
equations but also inequalities (

∧
i λi ≥ 0). Thus, such a problem does not

fall within the realm of linear algebra but in that of lp for which the simplex
algorithm is a standard solver [5]. In practice, the simplex performs much better
than its theoretical exponential complexity – but still remains a costly algorithm.
So, much research has been devoted to identifying many cases where the simplex
can be avoided. Wilde [19] and Lassez et al. [13] suggest several fast redundancy-
detection criteria before switching to the general lp problem:



– The quasi-syntactic redundancy test considers pairs of constraints and
looks for single constraint redundancies of the form C ′ = λC with λ > 0,
e.g. C ′ : 4x1 − 6x2 ≥ 2 is redundant with respect to C :x1 − 3x2 ≥ 1 since
C ′ = 2×C.

– The bound shifting test exploits the implication
∑n

i=1 ai xi ≤ b =⇒∑n
i=1 ai xi ≤ b′ if b ≤ b′. Hence, when the coefficients of two constraints C

and C ′ only differ on b and b′ with b ≤ b′ then C ′ is redundant and the
certificate is C ′ = C ⊕ (b′ − b)×C0 where C0 is the tautology 0 ≤ 1.

– The combination of single variable inequalities such as x1 ≤ b1 and
x2 ≤ b2 entails for instance the redundancy of C : 2x1 + 3x2 ≤ b with 2b1 +
3b2 < b. The corresponding certificate is C = 2 × (x1 ≤ b1) ⊕ 3 × (x2 ≤
b2)⊕ (2b1 + 3b2 − b)× (0 ≤ 1).

While these criteria can detect certain redundancies at low-cost, in this paper
we investigate the other side of redundancy: we provide a fast criterion to detect
irredundant constraints. The combination of the two approaches limits the usage
of the simplex to constraints that are neither decided by our criteria nor by those
of Wilde and Lassez et al.

Contributions. We present an algorithm that replaces most lp problem reso-
lutions by distance computations. It is detailed in §4, after introducing useful
notations in §2. The geometric intuition of our irredundancy criterion is simple:
consider ray traces starting from a point within the polyhedron and orthogonal
to its bounding hyperplanes. The hyperplane first encountered by one of these
rays is an actual face of the polyhedron. It is therefore an irredundant constraint.
Since this procedure is incomplete, lp problem resolutions are required for the
remaining undetermined constraints. Experiments of §5 show that our algorithm
drastically reduces the number of calls to the simplex, resulting in a considerable
speed improvement. In addition, our algorithm generates certificates of correct-
ness, precision and minimality which make it usable in a certified static analyzer.
Certificates are presented in §3. To follow the geometric interpretation, the algo-
rithm is explained below in terms of constraints but it can similarly be used to
minimize generators. We conclude in §6 by a discussion of the potential benefit
of integrating our algorithm in the double description framework.

2 Notations

Vectors and matrices are written in boldface to be distinguished from scalars,
e.g. 0 is a vector of 0. For clarity and without loss of generality the rest of
the paper will focus on polyhedral cones over rationals. A polyhedral cone P of
p constraints on n variables (x1, . . . , xn) is a conjunction (written as a set) of
homogeneous linear constraints {C1, . . . ,Cp} of the form C` :

∑n
i=1 a`i xi ≤ 0

where C` = (a`1, . . . , a`n). The inner product of vectors offers a convenient
notation 〈C`,x〉 ≤ 0 for that inequality. Then, the cone P corresponds to a
matrix inequality Ax ≤ 0 where the rows of A are the vectors C1, . . . ,Cp.
Finally, {C1, . . . ,Cp},

∧p
`=1 〈C`,x〉 ≤ 0 or Ax ≤ 0 are three equivalent ways of



denoting a polyhedral cone P. We use [[P]] to specifically refer to the set of points
defined by P. Given a cone P :Ax ≤ 0, the same system with a strict inequality
defines P̊, the interior of P, and x̊ denotes a point of [[P̊]]

def
= {x | Ax < 0}.

3 Certifying a Minimization of Polyhedra

Our minimization algorithm is part of the Verimag Polyhedra Library (Vpl)
which operates on rational polyhedra in constraints-only representation. It was
originally designed by Fouilhé et al. [7] as an abstract domain for the Verasco
certified static analyzer whose soundness is proved in Coq [12]. Verasco can
collaborate with an external library in Ocaml such as the Vpl, provided that it
produces certificates of correctness, allowing a Coq-checker to verify the results
computed in Ocaml. In this section we recall the algorithm used in the original
Vpl for minimizing a polyhedral cone represented as a set of constraints. It is
the standard algorithm but extended to produce on-the-fly certificates of cor-
rectness, precision and minimality. We recall the fundamental theorem of linear
inequalities due to Farkas (1894) which ensures the existence of such certificates.
Revisiting this theorem with a geometrical interpretation reveals an efficient way
to determine irredundant constraints, which will be the key of our algorithm (§4).

Minimizing a cone P consists in removing all redundant constraints such that
the result, PM , represents the same geometrical space, i.e. [[P]] = [[PM ]]. Two
certificates are needed to prove that equality: (1) one for the inclusion [[P]] ⊆
[[PM ]] which guarantees the correctness of the minimization and (2) another one
for [[PM ]] ⊆ [[P]] which justifies its precision. A third certificate (3) ensures the
minimality of the result showing that all constraints of PM are irredundant.

Certificate (1) must prove that each point of [[P]] belongs to [[PM ]]. In the
particular case of minimization, inclusion (1) is trivial because PM is obtained
by only removing constraints from P, which necessarily leads to a larger set of
points. By contrast, the existence of certificates (2) and (3) is not straightfor-
ward but the consequence of the following theorem, which we rephrased in our
constraint terminology to ease its interpretation.

Theorem 1 (Fundamental theorem of linear inequalities [17, 7.1 p.85]).
Let C1, . . . ,Cp and C ′ be vectors in a n-dimensional space. Then,

(I) either C ′ is redundant and there exists a Farkas decomposition of C ′

that is a nonnegative linear combination of linearly independent vectors from
C1, . . . ,Cp, i.e. C ′ = λ1C1 + . . .+ λpCp for some scalars λ1, . . . , λp ≥ 0.

(II) or C ′ is irredundant and there exists a n-dimensional vector w such that
〈C′,w〉 > 0 and 〈C1,w〉 , . . . , 〈Cp,w〉 ≤ 0.

The standard algorithm (Algorithm 1) exploits the redundancy criterion (I)
of the theorem which was already illustrated in §1 Example 1. The existence of
a Farkas decomposition of C ′ is decided by solving a lp problem. If the simplex
algorithm returns a solution λ then the pair (C ′,λ) is recorded as a certificate of
precision (2) which proves that the removed constraint was indeed redundant. To



get rid of all the redundancies, Algorithm 1 needs one execution of the simplex
algorithm for each constraint.

Given an existential lp problem, the simplex can return either a solution or
an explanation of the lack of solution. The proof of Theorem 1 and the simplex
algorithm have strong connections which result in an interesting feature of the
Vpl simplex: calling simplex(∃λi ≥ 0, C ′ =

∑
i λiCi) returns either success(λ)

or failure(w) such that 〈C′,w〉 > 0
∧

i 〈Ci,w〉 ≤ 0.2 This feature is a conse-
quence of Theorem 1 and requires no additional computation.

When the simplex returns failure(w), the irredundancy criterion (II) of the
theorem tells that C ′ is irredundant and must be kept in the set of constraints.
Algorithm 1 builds the certificate of minimality (3) by associating a witness point
to each constraint of the minimized polyhedron PM .

While the standard algorithm focuses on criterion (I), we revisit the theo-
rem paying attention to the geometrical interpretation of criterion (II): when a
constraint C ′ is irredundant, its associated bounding hyperplane is a frontier of
the polyhedron separating the inside from the outside. Part (II) of the theorem
ensures that we can exhibit a witness point w, outside of [[P]], satisfying all con-
straints of P except C ′. The rest of the paper is dedicated to an algorithm that
efficiently discovers such witness points.

Algorithm 1: The standard minimization algorithm (used in Vpl 1.0)
Input : A set of constraints {C1, . . . ,Cp}.
Output: PM = the irredundant constraints of {C1, . . . ,Cp}

(R, I) = the redundancy and irredundancy certificates

PM ← {C1, . . . ,Cp}
for C′ in {C1, . . . ,Cp} do

switch simplex

(
∃λi ≥ 0, C′ =

∑
Ci∈PM \C′

λiCi

)
do

case success (λ): R← R ∪ {(C′,λ)} ; PM ← PM \C′

case failure (w): I ← I ∪ {(C′,w)}

return (PM , R, I)

4 An Efficient Minimization Algorithm

Building up on the geometric interpretation of Theorem 1, we present a new
minimization algorithm for polyhedral cones that brings two major improve-
ments: it reduces the number of calls to the simplex algorithm and limits the
constraints they involve. The key idea of the algorithm is to trace rays starting
from a point in the interior of the cone. The first hyperplane encountered by
2 Conversely, simplex

(
∃w, 〈C′,w〉 > 0

∧
i 〈Ci,w〉 ≤ 0

)
returns either success(w) or

failure(λ) such that C′ =
∑

i λiCi.



a ray is a frontier of the polyhedron, thus an irredundant constraint. Unfortu-
nately, with a limited number of rays, some frontiers can be missed depending
on the cone and the position of the interior point. This raytracing procedure is
thus incomplete and lp problem resolutions are still required for the remaining
undetermined constraints.

While the simplex algorithm is used in the standard minimization to discover
Farkas decompositions, we rather use it to get closer to a witness point, and only
when all previous rays failed to prove the irredundancy of a constraint. Of course,
if the constraint is redundant, the simplex algorithm returns no point at all but
an explanation of its failure which is nothing else than a Farkas decomposition
proving the redundancy.

4.1 The Frontier Detection Criterion

We now detail the process of finding witness points by raytracing. We consider
a cone P with a nonempty interior. Then, there exists a point x̊ in P̊. The basic
operation of our algorithm consists in sorting the constraints of P with respect
to the order in which they are hit by a ray, i.e. a half-line starting at the interior
point x̊ and extending along a given direction d.

Consider the constraint 〈C,x〉 ≤ 0. The hyperplane of the constraint is
{x | 〈C,x〉 = 0}, i.e. the set of points orthogonal to vectorC. The ray starting at
x̊ and extending in direction d is the set of points {x(t) | x(t)= x̊+ t× d, t ≥ 0}.
Let us assume that the ray hits the C-hyperplane at point xc. Then, there ex-
ists tc ≥ 0 such that xc = x̊ + tc × d and so, xc − x̊ = tc × d. Therefore, the
distance ||x̊−xc|| is just a scaling by |tc| of the norm ||d|| which does not depend
on C. Hence, by computing |tc| for each constraint we will be able to know in
which order the constraints are hit by the ray. Prior to computing tc we check
if the ray can hit the constraint, i.e. 〈C,d〉 6= 0. Then, we use the fact that
xc ∈ {x | 〈C,x〉 = 0} to get tc = − 〈C ,̊x〉

〈C,d〉 . Indeed,

0 = 〈C,xc〉 = 〈C, x̊+ tc × d〉 = 〈C, x̊〉+ tc × 〈C,d〉 .
Hence, the basic operation of our raytracing algorithm consists in two evaluations
of each constraint C of P at x̊ and d in order to compute the scalar tc. Let us
explain how we exploit this information to discover actual frontiers of P.

Fig. 2: The ray starting at the interior point x̊ and orthogonal to a constraint C meets
C and possibly others constraints.

Note that any direction could be used to sort the constraints with respect
to the order of intersection by a ray. We choose successively for d the opposite



direction of the normal vector of each bounding hyperplane of P. This heuristic
ensures that each hyperplane will be hit by at least one ray. As illustrated by
Fig. 2, a direction d def

= −C necessarily intersects the C-hyperplane and may
potentially cross many other constraints for some values of t. Considering a

Fig. 3: Detection of some frontiers of a polyhedron by looking at their intersections with
rays starting from an interior point x̊ and orthogonal to a constraint. The thick lines
are the discovered frontiers, confirmed by the doubly-circled intersection points.

direction di = −Ci, we sort the intersected hyperplanes with respect to the
increasing order of the scalar t, which is proportional to the distance between
the interior point x̊ and the intersection point x(t) of an hyperplane and the ray
ray(x̊,di). We obtain a sorted intersection list of pairs (t, St) where St is the
set of the (possibly many) constraints vanishing at x(t). If a constraint C is not
hit by the ray (because 〈C,di〉 = 0), then C is not added to the intersection
list. The head pair provides the constraints which are encountered first by the
ray. At the heart of our algorithm is the following proposition: “If the head of an
intersection list is a pair (t, {C}) with a single constraint, then C is a frontier
of P ; otherwise we cannot conclude from this list.” This will be proved in §4.2
(Proposition 1) when we will come to the generation of witness points.

Example 2. Here are the sorted intersection lists obtained for the 6-constraints
polyhedron of Fig. 3. The list Ii records the constraints met along ray(x̊,−Ci)
from x̊ orthogonally to the hyperplane of Ci. It satisfies ti < t′i < t′′i < t′′′i .



I1 = [ (t1, {C1}); (t′1, {C5,C6}); (t′′1 , {C2}) ]
I2 = [ (t2, {C2}); (t′2, {C6}); (t′′2 , {C3}); (t′′′2 , {C1}) ]

I3 = [ (t3, {C3}); (t′3, {C2}); (t′′3 , {C4}) ] I4 = [ (t4, {C5}); (t′4, {C4}); (t′′4 , {C3}) ]
I5 = [ (t5, {C5}); (t′5, {C1,C4}) ] I6 = [ (t6, {C1}); (t′6, {C6}); (t′′6 , {C2}) ]

These lists reveal that C1, C2, C3 and C5 are frontiers of P ; C1 and C5

are even confirmed twice. Our criterion fails to decide the status of C4 and C6

because, in any of the considered directions, they are never encountered first.
This situation is legitimate for the redundant constraint C6 but also happens
for C4 even if it is a frontier of P.

At this point (line 10 of Algorithm 2), we run the simplex to determine the
irredundancy of the remaining constraints. In order to keep lp problems as small
as possible, we build them incrementally as follows. Consider an undetermined
constraint Ci and let Ii be the intersection list resulting from the direction
di = −Ci. We pose a lp problem to find a point x′

i satisfying 〈Ci,x
′
i〉 >

0 ∧ 〈C ′,x′
i〉 ≤ 0, where C ′ is the single constraint that appears at the head of

Ii. As said earlier, C ′ is a frontier because it is the first hyperplane encountered
by the ray. We illustrate the algorithm on the case of a single head constraint
as it is the most frequent one. If the head set contains several constraints we
cannot know which one is a frontier, thus we add all of them in the lp problem
(lines 13-14 of Algorithm 2). We distinguish two cases depending on the satis-
fiability of the existential lp problem: If the problem of line 15 is unsatisfiable,
the simplex returns failure(λ), Ci is redundant with respect to C ′ and the
Farkas decomposition of Ci is λ × C ′. Otherwise, the simplex exhibits a point
x′
i which satisfies 〈Ci,x

′
i〉 > 0∧ 〈C ′,x′

i〉 ≤ 0. Here, we cannot conclude on Ci’s
redundancy since x′

i is a witness showing that Ci is irredundant with respect to
C ′ alone, but Ci could still be redundant with respect to the other constraints.

To check the irredundancy of Ci, we launch a new ray ray(x̊,x′
i − x̊) from

x̊ to x′
i in direction d = x′

i − x̊. As before, we compute the intersection list
of this ray with all the constraints but this time we know for sure that Ci

will precede C ′ in the list.3 Then, we analyze the head of the list: if Ci is
the single first element, then it is a frontier. Otherwise the first element, say
C ′′, is added to the lp problem, which is now asked for a point x′′

i such that
〈Ci,x

′′
i 〉 > 0 ∧ 〈C ′,x′′

i 〉 ≤ 0 ∧ 〈C ′′,x′′
i 〉 ≤ 0 resulting in a new ray(x̊,x′′

i − x̊).
The way we choose rays guarantees that the previous constraints C ′,C ′′, ... will
always be hit after Ci by the next ray. Therefore, ultimately the constraint
Ci will be hit first by a ray, or it will be proved redundant. Termination is
guaranteed because the first constraint struck by the new ray is either Ci and
we are done, or a not already considered constraint and there is a finite number
of constraints in P. Observe that this algorithm builds incremental lp problems
which contain only frontiers that were between x̊ and the hyperplane of Ci at
some step.

Example 2 (continued). In the above example, we found out that C1, C2, C3

and C5 were frontiers. To determine the status of C4, we solve the lp problem
3 As this property is a pure technicality it is not given here but is available in [15].



∃x′
4, 〈C4,x

′
4〉 > 0 ∧ 〈C5,x

′
4〉 ≤ 0 because C5 is the head of I4. The simplex

finds such a point x′
4 and the next step is to compute the intersection list cor-

responding to ray(x̊,x′
4 − x̊). This list will reveal C4 as an actual frontier.

Similarly, the intersection list I6 of the example suggests to solve the lp
problem ∃x′

6, 〈C6,x
′
6〉 > 0∧ 〈C1,x

′
6〉 ≤ 0 to launch a new ray toward C6. This

problem is satisfiable and the simplex returns success(x′
6). Then, we compute

the intersection list corresponding to ray(x̊,x′
6 − x̊) and this time the head of

the list is C2. We thus add C2 to the previous lp problem and call the simplex
on ∃x′′

6, 〈C6,x
′′
6〉 > 0 ∧ 〈C1,x

′′
6〉 ≤ 0 ∧ 〈C2,x

′′
6〉 ≤ 0. This problem has no

solution: the simplex returns failure(λ = (1, 1)) showing that C6 is redundant
and its Farkas decomposition is C6 = 1×C1 + 1×C2.

Algorithm 2: Raytracing algorithm
Input : A set of constraints P = {C1, . . . ,Cp} ; a point x̊ ∈ P̊
Output : PM : minimized version of P
Data : LP [i]: lp problem associated to Ci ; I[i]: intersection list of Ci

Function: intersectionList(d, {C1, . . . ,Cq}) returns the intersection list
obtained by intersecting {C1, . . . ,Cq} with ray d

1 Function updateFrontiers (I[i], PM , P)
2 if head (I[i]) = (tF , {F }) then
3 PM ← PM ∪ {F }
4 P ← P \ F
5 return (PM , P)

6 PM ← ∅ ; LP ← arrayOfSize(p) ; I ← arrayOfSize(p)

7 for Ci in P do /* First step of raytracing with orthogonal rays */
8 I[i]← intersectionList (ray(x̊,−Ci), P)
9 (PM , P)← updateFrontiers (I[i], PM , P)

10 while P 6= ∅ do
11 for Ci in P do
12 (t, S)← head(I[i])
13 for C in S do
14 LP [i]← LP [i] ∧ 〈C,x′

i〉 ≤ 0

15 switch simplex (∃x′
i, 〈Ci,x

′
i〉 > 0 ∧ LP [i]) do

16 case success (x′
i):

17 I[i]← intersectionList (ray(x̊,x′
i − x̊), P ∪ PM )

18 (PM , P)← updateFrontiers (I[i], PM , P)
19 case failure (λ): P ← P \Ci /* Ci is redundant */
20

21 return PM



4.2 Irredundancy Certificates

Let us explain how we compute witness points from the intersection lists defined
in the previous section. From now on, we will denote a constraint by F if it is
a frontier and by C when we do not know if it is a redundant constraint or an
actual frontier. Let us come back to the list of the intersections of constraints of
P with a ray {x(t) | x(t) = x̊+ t× d, t ≥ 0} for a direction d.

Proposition 1. If the head of an intersection list contains a single constraint
F , then we can build a witness point satisfying the irredundancy criterion of
Theorem 1 which proves that F is a frontier:

(a) For a list [(tF , {F })], we take the witness wa = x̊+ (tF + 1)× d
(b) For a list [(tF , {F }) ; (t′, S′) ; . . .] with at least two pairs, we define the

witness wb = x̊+ tF +t′

2 × d.

Proof. Let us prove that these witness points attest that F is an irredundant con-
straint. According to Theorem 1, it amounts to proving that

∧
C∈P\F

〈C,w〉 ≤ 0
∧ 〈F ,w〉 > 0 for wa (resp. wb).

Let us first study the sign of 〈F ,x(t)〉 at point x(t) = x̊+ t× d. Note that

〈F ,x(t)〉 = 〈F , x̊+ t× d〉 (†)= 〈F , x̊〉+t×〈F ,d〉 . By construction, 〈F ,x(tF )〉 = 0
then, by equation (†), −〈F , x̊〉 = tF × 〈F ,d〉. Recall that tF ≥ 0, 〈F ,d〉 6=
0 since the ray hits F and 〈F , x̊〉 < 0 because x̊ ∈ P̊. Thus, 〈F ,d〉 and tF
are necessarily positive. Consequently, for a frontier F found in a direction d,
〈F ,x(t)〉 = 〈F , x̊〉 + t × 〈F ,d〉 is positive for any t > tF . Hence, in case (a)

〈F ,wa〉
def
= 〈F ,x(tF + 1)〉 > 0 and in case (b) 〈F ,wb〉

def
=
〈
F ,x( tF +t′

2 )
〉
> 0

since tF < tF +t′

2 < t′.
Let us now study the sign of 〈C,x(t)〉 for constraints other than F :

(a) Consider the list [(tF , {F })]. By construction, it means that no other con-
straint C of P is struck by the ray(x̊,d), i.e. whatever the value t ≥ 0, the
sign of 〈C,x(t)〉 = 〈C, x̊〉 + t × 〈C,d〉 does not change. As 〈C,x(t=0)〉 =
〈C, x̊〉 < 0 because x̊ ∈ P̊, we can conclude that ∀t ≥ 0, 〈C,x(t)〉 < 0.
Thus, in particular, 〈C,wa〉

def
= 〈C,x(tF + 1)〉 < 0 for any C ∈ P \ F .

(b) Consider now the list [(tF , {F }); (t′, S′); . . .]. A constraint C that appears
in the set S′ vanishes at point x(t′) with t′ > tF ≥ 0. The previous reasoning
(†) (on F ) based on equation 〈C,x(t)〉 = 〈C, x̊〉+ t× 〈C,d〉 is valid for C,
hence proving 〈C,d〉 > 0. Thus, 〈C,x(t)〉 is negative for t < t′ (zero for
t = t′ and positive for t′ < t). Finally, 〈C,wb〉

def
=
〈
C,x( tF +t′

2 )
〉
< 0 since

tF +t′

2 < t′. The same reasoning applies to any other pair (t, St) in the tail
of the list.

Fig. 4(Pb) shows the irredundancy witness points w1, w2, w
′
1, w

′
2 of constraints

C1,C2 and C ′. The irredundancy of C ′ is confirmed three times by different
rays respectively orthogonal to C ′, C3 and C4, leading to witnesses w′

1 (twice)
and w′

2.



Fig. 4: Irredundancy witnesses for generators of Pa and constraints of Pb.

4.3 Minimizing Generators

So far, to ease the understanding, we presented the raytracing for constraints-
only polyhedra, but it works as well for generators. Indeed, we manipulated con-
straints as vectors and all our explanations and proofs are based on inner prod-
uct. Moreover, Theorem 1 is not limited to constraints, it holds for any vector
space and can be rephrased for generators. This time the irredundancy certificate
for a generator g′ is a vector n such that 〈g1,n〉 , . . . , 〈gp,n〉 ≤ 0 and 〈g′,n〉 > 0.
Such a vector defines a hyperplane orthogonal to n, i.e. {x | 〈n,x〉 = 0}. It is
called a separating hyperplane because it isolates generator g′ from the other
ones. Fig. 4(Pa) shows the separating hyperplanes defined by n1,n2,n3 and
n4. They respectively justify the irredundancy of v1,v2,v3 and R1 in Pa.

4.4 Using Floating Points in Raytracing

It is possible to make raytracing even more efficient by using floating points
instead of rationals. Thereby, we experimented floating points in both lp problem
resolutions and distance computations. The rational coefficients of constraints
are translated into floating points. It introduces a loss in precision which does not
jeopardize the result because the certificate checking controls the minimization
process. However, we must pay attention to the generation of exact (i.e. rational)
certificates from floating point computations. The solution we propose differs
depending on the kind of certificate.

Witness Points. Checking a certificate of irredundancy consists in evaluating
the sign of 〈Ci,w〉 for all constraints Ci of P with the provided witness point



w. A witness point w must then be given with rational coefficients to avoid sign
errors if 〈Ci,w〉 is too close to 0. Thus, the witness point wF obtained with
floating point computations is translated into a rational one wQ, without loss of
precision (each floating point 0.d1...dm10e is changed into a rational d1...dm.10e

10m ).
Then we check the irredundancy certificate with wQ and the rational version of
the constraints. If the verification passes, then wQ is indeed a witness point. In
the rare case of failure, using the exact simplex of the Vpl on the lp problem
will fix the approximation error by providing a rational witness point.

Farkas Decompositions. To prove a redundancy we need to exhibit the Farkas
decomposition of the redundant constraint. To obtain an exact decomposition
from the floating lp solution, we record which constraint is actually part of the
decomposition.4 Then, we run the exact simplex on a lp problem involving only
those constraints to retrieve the exact Farkas decomposition.

5 Experiments

(a) : C = 35, V = 10, D = 50%, R = [0%, 90%] (b) : C = [20, 50], V = 10, D = 50%, R = 50%

(c) : C = 100, V = 10, D = [10%, 80%], R = 50% (d) : C = 50, V = [2, 50], D = 50%, R = 50%

Fig. 5: Execution time in milliseconds of sma (blue), rra (red) and fra (green) de-
pending on respectively (a) redundancy, (b) number of constraints, (c) density and (d)
number of variables.

4 What is needed from the floating point solution is the set of basic variables and an
ordering of the nonnull λi coefficients to speed up the search in exact simplex.



This section is devoted to the comparison of three minimization algorithms:

– The Standard Minimization Algorithm (sma). The standard Algo-
rithm 1 of §3 is available in the Vpl since version 1.0. It works on rationals
and can generate certificates of precision, minimality and correctness.

– The Rational Raytracing Algorithm (rra). rra and sma use the
same lp solver, thus comparing their running time is relevant to estimate
the efficiency of raytracing with respect to the standard algorithm.

– The Floating point Raytracing Algorithm (fra). fra implements
raytracing with floating points as explained in §4.4. lp problems are solved
by the GNU lp kit which provides a simplex algorithm on floating points.

These three algorithms are all implemented in the current version (2.0) of the
Vpl.5 For computing the exact Farkas decomposition that proves a constraint’s
irredundancy, the three algorithms ultimately rely on the Vpl simplex in ra-
tional. They use the same datastructures (e.g. for constraints), allowing more
reliable timing comparisons between them. Moreover, they share the same pre-
processing step of finding a point within the polyhedron interior. This point is
obtained by solving a lp problem checking the emptiness of the polyhedron with
strict inequalities. The time measurements given below include this step but not
the reconstruction of exact certificates from floating point ones.

Benchmarks. Throughout the paper, we focused on cones to
simplify both notations and explanations. However, our algo-
rithm works for general convex polyhedra and we build our
experiments as follows. To compare the three algorithms, we
asked them to minimize polyhedra that were generated ran-
domly from four parameters that will be detailed further: the
number of variables (V ∈ [2, 50]), the number of constraints
(C ∈ [2, 50]), the redundancy rate (R ∈ [0%, 90%]) and the den-
sity rate (D ∈ [10%, 80%]). Each constraint is created by giving a
random integer between -100 and 100 to the coefficient of each variable, within
the density rate. All constraints are attached the same constant bound ≤ 20.
Such polyhedra have a convex potatoid shape, shown on the right hand side.
We do not directly control the number of generators but we count them using
the Apron interface [11] to polyhedral libraries in double description. Among
all our measurements, the number of generators ranged from 10 to 6400 and this
number grows polynomially in the number of constraints. This covers a wide
variety of polyhedra and our experiments show that raytracing is always more
efficient.

Redundancy Rate. The effect of redundancy on execution time is displayed on
Fig. 5(a). These measures come from the minimization of polyhedra with 10
variables and 35 constraints, and a redundancy rate ranging from 0% to 90%
of the number of constraints. To generate a redundant constraint, we randomly
5 https://github.com/VERIMAG-Polyhedra

https://github.com/VERIMAG-Polyhedra


pick two constraints and produce a nonnegative combination of them. We took
care of avoiding redundancies that can be discarded by the fast detection criteria
of §1. The graph clearly shows that raytracing has a big advantage on polyhedra
with few redundancies. This phenomenon was expected: raytracing is good at
detecting irredundancy at low-cost. sma becomes similar to raytracing when the
redundancy rate is high. This is explained by the implementation details given in
previous paragraphs: when a redundant constraint is found, it is removed from
the lp problem. Thus, if the redundancy rate reaches a very high level, the lp
problem becomes smaller and smaller at each iteration, lowering the impact of
using floating points. Moreover, the heuristic used by our algorithm never hits if
almost all constraints are redundant, which makes the raytracing computations
useless. To be fair between raytracing and the standard algorithm, we set the
redundancy rate at 50% in the other experiments.

Number of Constraints. Fig. 5(b) measures the minimization time depending on
the number of constraints for polyhedra with 10 variables. fra and rra scale
better with respect to the number of constraints than sma: experiments show
that when C ranges from 20 to 50 constraints, sma has a quadratic evolution
compared to raytracing algorithms.

Density Rate. The density of a polyhedron is the (average) rate of nonnull
coefficients within a constraint. For instance, a density of 60% with 10 variables
means that on average, constraints have 6 nonnull coefficients. Fig. 5(c) shows
the execution time for 10-dimensional polyhedra with 100 constraints, where the
density rate D goes from 10% to 80%. The raytracing algorithms are almost
insensitive to density, whereas the execution time of the standard algorithm
blows up with density. Actually, having a lot of nonnull coefficients in constraints
tends to create huge numerators and denominators because a pivot in the simplex
performs many combinations of constraints. The blow up does not happen in rra
because lp problems are much smaller in the raytracing algorithms.

Number of Variables. The effect of the dimension on execution time is shown on
Fig. 5(d). Whereas raytracing seems linearly impacted by the dimension, sma has
a behaviour that may look a bit strange. After a dramatic increase of execution
time, the curve falls down when the dimension reaches about half the number of
constraints. It finally joins and sticks to fra curve. This phenomenon may be
explained by the number of pivots needed to solve the lp problem. The closer
the dimension is to the number of constraints, the fewer pivots are needed, thus
making sma competitive even with more lp problems to solve.

Table 1 shows results for several values of dimension and number of con-
straints. Again, each cell of this table gives the average values resulting from the
minimization of 50 convex potatoids, with a density and a redundancy both fixed
at 50%. For each pair (number of variables × number of constraints), Table 1
gives the number of lp problems that were solved and their size (i.e. the number
of constraints they involve) on average. It contains also the computation time
of the minimization in milliseconds and the speed up of raytracing compared
to sma. Results of Table 1 show that for small polyhedra, either in dimension



Table 1: Time measures of the three minimization algorithms sma, rra and fra for
different values of variables and constraints.

5 constraints 10 constraints 25 constraints 50 constraints 100 constraints

Var sma rra fra sma rra fra sma rra fra sma rra fra sma rra fra

2

# lp

lp size

time(ms)

speed up

2 0 0

3 3 3

0.05 0.03 0.02

- 1.8 1.9

3 1 1

4 3 4

0.04 0.05 0.09

- 0.77 0.48

6 2 2

6 3 4

0.10 0.14 0.14

- 0.74 0.73

9 5 5

8 3 4

0.27 0.30 0.34

- 0.90 0.79

15 11 11

12 3 5

0.83 0.71 0.80

- 1.2 1.0

5

# lp

lp size

time(ms)

speed up

5 2 2

5 3 4

0.09 0.15 0.18

- 0.61 0.51

10 6 6

9 3 5

0.29 0.45 0.50

- 0.65 0.59

24 16 16

20 4 7

3.8 2.0 1.8
- 1.9 2.1

46 34 34

36 5 8

29.8 7.1 5.4
- 4.2 5.5

90 72 73

65 5 9

178 26.0 18.8
- 6.8 9.5

10

# lp

lp size

time(ms)

speed up

5 2 2

5 3 4

0.18 0.30 0.32

- 0.59 0.55

10 5 5

9 4 5

0.60 1.1 0.86

- 0.57 0.70

25 13 13

22 7 7

17.6 10.8 6.0
- 1.6 2.9

50 28 28

44 10 8

811 65.9 23.5
- 12.3 34.5

100 58 58

87 13 11

14936 336 64.0
- 44.5 233

or in number constraints, raytracing does not help. Indeed, for such small lp
problems, the overhead of our algorithm is unnecessary and leads to time losses.
Raytracing becomes interesting for larger polyhedra, where the speed improve-
ment is significant. For instance, fra is 44.5 times faster with 10 variables and
100 constraints than sma. The gain can be explained by the number of lp prob-
lems solved and their average size, noticeably smaller in raytracing than in sma.
As expected, raytracing is faster with floating points.

We also compare through Apron with libraries in double description, the re-
sults are available in [15]. Not surprisingly the minimization time is significantly
larger than that of sma, fra and rra, as they must first compute all generators
using Chernikova’s algorithm.

6 Conclusion & Future Work

In this paper, we present a new algorithm to minimize the representation of
a polyhedron, available in the Vpl. It is based on raytracing and provides an
efficient irredundancy check in which lp executions are replaced by distance
computations. The raytracing procedure is incomplete and lp problem resolu-
tions are still required for deciding the redundancy of the remaining constraints.
However, our algorithm reduces not only the number of lp problems solved along
the minimization, but also their size by an incremental approach. Moreover, it
is usable for polyhedra in single representation, as constraints or as generators.
It can be used either with rational or floating coefficients. In both cases, it can
produce certificates of correctness, precision and minimality.

Parallelizing. Our raytracing algorithm is well-suited to parallelization: com-
puting the intersection lists could be done by as many threads as rays. These
computations boil down to matrix multiplications for which there exist efficient
libraries, e.g. the Lapack library [1]. Actually, to fully benefit from parallelism,
the algorithm should be implemented in C because Ocaml does not support
native concurrency yet. Exploiting multi-cores, the number of ray traces could



be greatly increased, and applying the raytracing principle from several interior
points would allow us to discover frontiers even more easily.

Redundancy in the Double Description Framework (ddf). Our algorithm has
been designed to minimize polyhedra in single representation, but the principle
of raytracing can be reused in the double description framework, where it could
quickly detect irredundant constraints. Redundancy is easier to detect when the
two representations of a polyhedron are available. Let the pair (C ,G ) denote the
set of constraints and the set of generators of a polyhedron in Qn and (CM ,GM )
be its minimal version. A constraint C ∈ C is irredundant if it is saturated by
at least n irredundant generators, i.e. ∃g1, . . . , gn ∈ GM , 〈C, gi〉 = 0. Similarly,
a generator g ∈ G is irredundant if it is the intersection of at least n irredundant
constraints i.e. ∃C1, . . . ,Cn ∈ CM , 〈Ci, g〉 = 0. Think for instance of a line in
2d being defined by two points and a point being the intersection of at least two
lines. The principle of the minimization algorithm is the following [10]: build the
boolean saturation matrix S of size |C |× |G | defined by S[C][g] := (〈C, g〉 = 0),
then iteratively remove constraints (and the corresponding rows of S) which
are insufficiently saturated and do the same for generators (and columns of S)
until reaching a stable matrix. The remaining constraints and generators form
the minimal version (CM ,GM ) which mutually justify the irredundancy of each
other. This algorithm is appealing compared to its counterpart in single repre-
sentation but the number of evaluation of 〈C, g〉 is huge when each variable xi
ranges in an interval [li, ui]. Such a product of intervals can be represented by 2n
constraints (two inequalities li ≤ xi∧xi ≤ ui per variable) which corresponds to
2n vertices [3].6 Therefore, the size of S is n2n+1. To limit the computations, the
saturation matrix is not fully constructed. Let us summarize the improved algo-
rithm [19]: (1) Some constraints are removed by the fast redundancy detection
recalled in §1. (2) The irredundant generators of GM are constructed from the
remaining constraints using Chernikova’s algorithm [4] with some optimized ad-
jacency criteria [14,8,20]. The adjacency criterion ensures that the construction
cannot produce redundant generators [16]. (3) Finally, the saturation matrix is
built to remove the constraint redundancies but a row is only completed if the
constraint never finds enough saturating generators, otherwise the computation
of the row is interrupted.

We believe that our orthogonal raytracing phase can be used at Step (3) to
quickly discover irredundant constraints, which therefore do not have to be con-
firmed by the saturation matrix. The cost of this initial raytracing is reasonable:
C rays and 2 × |C | evaluations per ray resulting in 2 × |C |2 computations of
inner products. It could therefore benefit to minimization in the ddf especially
when |C | << |G | as in hypercubes.

6 The opposite phenomena (2n vertices corresponding to 2n constraints) also exists
but hardly ever occurs in practice [3].
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