
Certification of Smart-Card Applications in Common
Criteria ∗

Iman Narasamdya
Verimag - Université de Grenoble I

2, avenue de Vignate
Gieres, France

Iman.Narasamdya@imag.fr

Michaël Périn
Verimag - Université de Grenoble I

2, avenue de Vignate
Gieres, France

Michael.Perin@imag.fr

ABSTRACT
This paper describes the certification of smart-card applica-
tions in the framework of Common Criteria. In this frame-
work, a smart-card application is represented by a model
of its specification, a functional specification describing an
input-output relationship, a low-level design, and implemen-
tation code. The certification process consists of the follow-
ing tasks: (1) prove that the model, the functional speci-
fication, the low-level design, and the code satisfy security
properties in the smart-card application’s specification, and
(2) prove that there is a representation correspondence be-
tween each two consecutive representations. For each task,
a certificate or a collection of certificates are needed to cer-
tify the accomplishment of the task. All representations of
a smart-card application are essentially programs and the
representation correspondences are properties relating two
programs. We show that a theory of program properties
can be applied to the certification process. The theory pro-
vides foundations for describing and proving properties of a
single program and properties relating two programs. The
theory provides a notion of certificate that is essential to the
certification process.

Categories and Subject Descriptors
F.3.1 [Logics and Meaning of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms
Assertions, Invariants, Specification techniques

Keywords
Assertion Functions, Invariants, Common Criteria Certifi-
cation, Smart-Card Applications

∗This work is supported by EDEN2 ANR project

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

1. INTRODUCTION
The use of smart cards has been pervasive in our every-

day lives. For example, smart cards in the form of debit or
credit cards have been used in electronic banking transac-
tions. Smart-card applications are programs embedded in
the chip on smart cards. These programs control the use of
smart cards. Smart card and smart-card applications have
mostly been used to provide security, mainly for authentica-
tion and authorization. The security functions provided by
a smart-card application are described in the specification as
security properties. Since security properties are paramount
for a smart-card application, one has to prove formally that
an implementation of the application satisfies the security
properties. Moreover, to give high confidence to the user of
the smart-card application, one needs to provide a certifi-
cate showing that the implementation indeed satisfies the
properties.

We describe in this paper our work on certifying smart-
card applications. Our work is part of an industrial project
called EDEN2 that has been conducted at Verimag labora-
tory. The aim of the project are twofold: (1) to develop a
method for formal software certification in the framework of
Common Criteria certification [1], and (2) to provide a cer-
tificate or a collection of certificates showing that a smart-
card application follows its specification or a model of its
specification.

Common Criteria (CC) is an international standard for
the evaluation of security related systems. CC defines re-
quirements for certification: security policy model (SPM),
functional specification (FSP), TOE design (TDS), and im-

plementation (IMP). Given a system and its specification,
an SPM is a model of the specification. An FSP describes an
input-output relationship of the system. TOE stands for tar-
get of evaluation, which is the system itself. A TDS is a low-
level design of the system. An IMP is the code implementing
the system. Each requirement in CC has a representation.
For example, in EDEN2 the SPM is written in a declarative
language specifying the behavior of the smart-card applica-
tion, while the FSP and the TDS are written in subsets of
Java. Between every two consecutive requirements there is a
so-called representation correspondence (RCR) relating the
two requirement representations.

In the CC certification process one first has to demon-
strate that each requirement representation satisfies the se-
curity properties, and also produce certificates that certify
that the representation satisfies the properties. Second, one
proves that there is an RCR between each two consecutive
representations and produces a certificate about the RCR.

In this paper we consider only the requirements SPM, FSP,
and TDS.

We apply the theory of intra-program and inter-program
properties described in [10] to the certification process. The
theory provides foundations for proving properties of a sin-
gle program and properties that relate two programs. The
formalization of the theory is based on a suitably adapted
notion of program invariant for a single program. The theory
is based on the notion of assertion function: a function that
assigns assertions to program points. The theory introduces
the notion of extendible assertion function as a constructive
notion for describing and for proving program invariants.
This notion is developed further in the theory so that it
can be used to prove properties relating two programs, or
inter-program properties. The theory also develops a notion
of verification condition. A verification condition associated
with an assertion function of a program forms a certificate

that certifies that the program satisfies the properties de-
scribed by the assertion function. A verification condition
itself is a finite set of assertions constructed from the asser-
tion function and the program. A certificate can be turned
into a proof by proving that all assertions in the certificate
are valid.

The representations of the SPM, the FSP, and the TDS
are essentially programs. Although standard Floyd-style
verification technique [3, 5] can be applied to prove their
properties, the theory described above can also be used to
prove the properties and, additionally, to provide certifi-
cates about those properties. The RCR between two con-
secutive requirements are essentially properties relating two
programs. Thus, we can apply the theory to prove the RCR
and to provide a certificate about the RCR.

The contribution of this paper is the application of the
above theory in the certification of smart-card applications
in CC. The application itself is not straightforward since
smart-card programs have different characteristics from typ-
ical imperative programs. First, a run of a smart-card pro-
gram can terminate abruptly in the middle of the program
due to power loss. Thus, one has to model such an abrupt
termination. Second, mapping between variables in RCRs
can be nontrivial. For example, a scalar variable in the
SPM can correspond to an array variable in the FSP. The
low-level design of the application can include a transaction
mechanism and memory characteristics that are specific to
smart-card applications. One then has to model these fea-
tures to apply the theory to the certification process.

Due to space limitation, in this paper we are only con-
cerned with proving properties of the SPM and proving
RCRs between the SPM and the FSP. In our technical re-
port [8] we extend our discussion in this paper further to
proving RCRs between the FSP and the TDS, and proving
property preservation from the SPM to the FSP and the
TDS.

The outline of this paper is as follows. We first describe
the theory of program properties. We only provide the
essence of the theory. A detailed description of the theory
can be found in [10]. We then apply the theory to prov-
ing properties of SPMs. Afterward, we apply the theory to
proving RCRs between the SPM and the FSPs. We finally
conclude this paper and briefly discuss some related work.

2. PROVING PROGRAM PROPERTIES

2.1 Assumptions
The theory is based on standard assumptions about pro-

grams and their semantics. A program consists of a finite
set of program points. We denote by PointP the set of pro-
gram points of P . A program-point flow graph of P is a
finite directed graph whose nodes are the program points
of P . In the sequel, we assume that every program P we
are dealing with is associated with a program-point flow
graph, denoted by GP . We assume that every program has
a unique entry point and a unique exit point . Denote by
entry(P) and exit(P), respectively, the entry and the exit
point of program P .

We describe the run-time behavior of a program as se-
quences of configurations. A configuration is a pair (p, σ),
where p is a program point and σ is a state mapping vari-
ables to values. A configuration (p, σ) is called an entry

configuration for P if p = entry(P), and an exit configura-

tion for P if p = exit(P). We assume that the semantics
of a program P is defined as a transition relation 7→P with
transitions of the form (p1, σ1) 7→P (p2, σ2), where (p1, σ1)
and (p2, σ2) are configurations and (p1, p2) is an edge in GP .
A computation sequence of a program P is either a finite or
an infinite sequence of configurations (p0, σ0), (p1, σ1), . . . ,
where (pi, σi) 7→P (pi+1, σi+1) for all i. A run R of a pro-

gram P from an initial state σ0 is a computation sequence
(p0, σ0), (p1, σ1), . . . , such that p0 = entry(P).

We introduce two restrictions on the semantics of pro-
grams. First, we assume that programs are deterministic.
One can view a non-deterministic program as a determin-
istic program having an additional input variable x whose
value is an infinite sequence of numbers, these numbers are
used to decide which of non-deterministic choices should be
made. We also assume that for every program P and for
every non-exit configuration γ1 of P ’s run, there exists a
configuration γ2 such that γ1 7→P γ2.

Further, we assume some assertion language in which one
can write assertions involving variables and express prop-
erties of states. We write σ |= α to mean an assertion α
is true in a state σ, or σ satisfies α, or α holds at σ. We
say that an assertion α is valid if σ |= α for every state σ.
We will also use a similar notation for configurations: for a
configuration (p, σ) and assertion α, we write (p, σ) |= α if
σ |= α. The assertion language is closed under the standard
propositional connectives and respects their semantics

2.2 Extendible Assertion Functions
We introduce the notion of assertion function that asso-

ciates program points with assertions. An assertion function

for a program P is a partial function

I : PointP → Assertion

mapping program points of P to assertions such that I is
defined on entry(P) and exit(P). The requirement that I is
defined on the entry and exit points is purely technical and
not restrictive, for one can always define I(entry(P)) and
I(exit(P)) as ⊤, that is, an assertion that holds at every
state.

Given an assertion function I , we call a program point
p I-observable if I(p) is defined. A configuration (p, σ) is
called I-observable if so is its program point p. We say that
a configuration γ = (p, σ) satisfies I , denoted by γ |= I , if
I(p) is defined and σ |= I(p). We will also say that I is
defined on γ if it is defined on p and write I(γ) to denote

I(p).
For proving that a program satisfies some properties, we

introduce the notion of extendible assertion function. This
notion provides a constructive characterization of relations
between an assertion function and a program.

Definition 2.1 Let I be an assertion function of a program
P . I is strongly extendible if for every run γ0, . . . , γi of the
program such that i ≥ 0, γ0 |= I , γi |= I , and γi is not an
exit configuration, there exists a finite computation sequence
γi, . . . , γi+n such that

1. n > 0,

2. γi+n |= I , and

3. for all j such that i < j < i + n, the configuration γj

is not I-observable.

The definition of weakly-extendible assertion function is ob-
tained from this definition by dropping condition 3. 2

Later, to provide verification conditions associated with
assertion functions, we need a notion of covering set. We say
that a set C of program points in P covers P if entry(P) ∈ C
and every infinite path in GP contains a program point in C.
Verification conditions associated with assertion functions
consist of assertions formed from paths in program-point
flow graphs. To form such assertions, we need the notions
of precondition and liberal precondition.

Definition 2.2 Let π = (p0, . . . , pn) be a path in the flow
graph. An assertion ϕ is called a precondition of the path π
and an assertion ψ, if, for every state σ0 such that σ0 |= ϕ,
there exist states σ1, . . . , σn such that

(p0, σ0) 7→ (p1, σ1) 7→ . . . 7→ (pn, σn)

and σn |= ψ. An assertion ϕ is called the weakest precondi-

tion of π and ψ, denoted by wpπ(ψ), if it is a precondition
of π and ψ, and, for every precondition ϕ′ of π and ψ, the
assertion ϕ′ ⇒ ϕ is valid.

An assertion ϕ is called a liberal precondition of the path
π and an assertion ψ, if, for every sequence σ0, . . . , σn of
states such that

(p0, σ0) 7→ (p1, σ1) 7→ . . . 7→ (pn, σn),

and σ0 |= ϕ, we have σn |= ψ. An assertion ϕ is called the
weakest liberal precondition of π and ψ, denoted by wlpπ(ψ),
if it is a liberal precondition of π and ψ, and, for every liberal
precondition ϕ′ of π and ψ, the assertion ϕ′ ⇒ ϕ is valid. 2

To provide certificates or verification conditions for pro-
gram properties, we need to be able to compute the weakest
and the weakest liberal precondition of a given path and an
assertion. In the sequel we assume that our programming
language has the weakest precondition property, that is, for
every assertion ψ and path π, the weakest precondition for π
and ψ exists and moreover, can effectively be computed from
π and ψ. Since wlpπ(ψ) is equivalent to wpπ(ψ)∨¬wpπ(⊤),
one can also compute the weakest liberal precondition for π
and ψ.

Next, we describe the verification conditions associated
with assertion functions. Such verification conditions form
certificates for program properties described by the assertion
functions. Let I be an assertion function. A path p0, . . . , pn

in GP is called I-simple if n > 0 and I is defined on p0 and
pn and undefined on all program points p1, . . . , pn−1. We
will say that the path is between p0 and pn.

Definition 2.3 Let I be an assertion function of a program
P such that the domain of I covers P . The strong verifica-

tion condition associated with I is the set of assertions

{I(p0) ⇒ wlpπ(I(pn))
| π is an I-simple path between p0 and pn}.

Note that the strong verification condition is always finite.
2

Theorem 2.4 Let I be an assertion function of a program

P whose domain covers P and S be the strong verification

condition associated with I. If every assertion in S is valid,

then I is strongly extendible. 2

One can reformulate the notion of verification condition
in such a way that it will guarantee weak extendibility. For
every path π, denote by start(π) and end(π), respectively,
the first and the last point of π.

Definition 2.5 Let I be an assertion function of a program
P and Π a set of paths in GP such that for every path π
in Π both start(π) and end(π) are I-observable. For every
program point p in P , denote by Π|p the set of paths in Π
whose first point is p.

The weak verification condition associated with I and Π
consists of all assertions of the form

I(start(π)) ⇒ wlpπ(I(end(π))),

where π ∈ Π and all assertions of the form

I(p) ⇒
_

π∈Π|p

wpπ(⊤),

where p is an I-observable point. 2

Theorem 2.6 Let I and Π be as in Definition 2.5 and W

be the weak verification condition associated with I and Π.

If every assertion in W is valid, then I is weakly extendible.

2

2.3 Inter-Program Properties
To prove properties relating two programs P and P ′, we

consider the programs as a pair (P, P ′) of programs with dis-
joint sets of variables. A configuration is a tuple (p, p′, σ, σ′),
where p ∈ PointP , p′ ∈ PointP ′ , and σ and σ′ are states
for P and P ′, respectively.

Similar to the case of a single program, we say that a con-
figuration γ = (p, p′, σ, σ′) is called an entry configuration

for (P, P ′) if p = entry(P) and p′ = entry(P ′), and an exit

configuration for (P, P ′) if p = exit(P) and p′ = exit(P ′).
The transition relation 7→ of a pair (P, P ′) of programs

contains two kinds of transition:

(p1, p
′
, σ1, σ

′) 7→ (p2, p
′
, σ2, σ

′),

such that (p1, σ1) 7→ (p2, σ2) is in the transition relation of
P , and

(p, p′1, σ, σ
′
1) 7→ (p, p′2, σ, σ

′
2),

such that (p1, σ1) 7→ (p2, σ2) is in the transition relation
of P ′. Having the notion of transition relation for pairs of

programs, the notions of computation sequence and run can
be defined in the same way as in the case of a single program.

An assertion function of a pair (P, P ′) of programs is a
partial function

I : PointP ×PointP ′ → Assertion

mapping pairs of program points of P and P ′ to asser-
tions such that I is defined on (entry(P), entry(P ′)) and
(exit(P), exit(P ′)).

Unlike in the case of a single program, for a pair of pro-
grams, there are no notions of invariant and strong ex-
tendibility. The notion of weakly-extendible assertion func-
tion is better suited for describing inter-program properties.
For a pair of programs (P, P ′), the definition of weakly-
extendible assertion function of (P, P ′) is similar to Def-
inition 2.1. The only difference is, for a pair (P, P ′) of
programs, the assertion function I in Definition 2.1 is an
assertion function of (P, P ′).

A path π̂ of (P, P ′) can be considered as a trajectory in
a two dimensional space where the axes are paths of P and
P ′. We denote such a path π̂ by (π, π′), where π and π′ are
the axes of the space, π is a path of P and π′ is a path of
P ′. Having the notion of path for a pair of programs, the
notions of precondition and liberal precondition for paths of
a pair of programs can be defined in the same way as in the
case of a single program.

The definition of weak verification condition for the case
of a pair of programs is similar to Definition 2.5. The only
differences are, for a pair (P, P ′) of programs, the assertion
function I in Definition 2.5 is an assertion function of (P, P ′)
and the set Π in Definition 2.5 is a set of non-trivial paths
of (P, P ′). Moreover, Theorem 2.6 about weak verification
conditions still holds for the case of a pair of programs. The
notion of weak verification condition forms a suitable notion
of certificate about properties involving two programs.

3. PROVING PROPERTIES OF SECURITY
POLICY MODELS

3.1 Life Cycle of Smart-Card Applications
In this section we briefly overview the operations of smart-

card application. A card reader communicates with a smart-
card application by first selecting the application and then
sending a sequence of commands to the application. Com-
mands sent by the reader are in the form of application pro-

tocol data units (APDUs), a standard format for exchanging
data defined in ISO 7816-4. The application replies to each
APDU command with a status word indicating the result of
the operation, and optionally with data. The reader termi-
nates the communication with the application by deselecting
the application.

An application is inactive when it is first installed into
the smart card. The application then becomes active when
it gets selected by a card reader. From being active, the
application becomes inactive if the reader deselects the ap-
plication or a card tear (loss of power) occurs. Later in
defining the runtime behavior of smart-card applications,
we only concern with the behavior of active applications.

3.2 Command Description Language
In EDEN2 an SPM is written in a so-called command de-

scription language. An SPM consists of commands that will

C?

FailFail

Pass Fail

ϕ2 ϕ3ϕ1 ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3

B1 B2 B3

Abrupt

B4

exit
a
(C)exit

n
(C)

entry(C)

Figure 1: Semantics of SPM.

be implemented in the smart-card application. Each com-
mand in the SPM has the following form:

command C(p1, . . . , pn) {
pass (ϕ1) { B1 } fail (ϕ2) { B2 } fail (ϕ3) { B3 }
abrupt { B4 } }

The command C has a list (p1, . . . , pn) of input parameters.
The conditions ϕ1, ϕ2, ϕ3 of the clauses are boolean expres-
sions. The bodies B1, B2, B3, B4 of clauses are statements
written in a simple imperative language. The semantics of
the command is shown in Figure 1. For every command
C, there is a unique entry denoted by entry(C), but there
are two exit points, one exit point, denoted by exitn(C),
is for normal exit and the other, denoted by exita(C), is
for abrupt exit. A run of a command C from a state σ

is a computation sequence starting from the configuration
(entry(C), σ). A run of a command C terminates normally
if it reaches exitn(C). For a such termination, the run emits
either a Pass or a Fail event. When, a card tear occurs, the
run terminates abruptly and emits an Abrupt event.

As shown in Figure 1, an SPM itself can be considered as
a program that takes as an input a sequence of commands.
A run of an SPM is a finite or infinite alternating sequence
γ0, ε1, γ2, ε2, . . . , where (1) γ0 is an entry configuration, (2)
γi 7→ γi+1 for all i ≥ 0, and (3) for all j ≥ 1, εj is an
event associated with transition γj−1 7→ γj . Events are not
restricted to Pass, Fail, and Abrupt events; we allow unob-
servable internal events.

3.3 Proof Technique
We prove properties of an SPM by proving properties of

each command in the SPM. Each command in the SPM is
represented by two flow graphs: one for the pass and fail

clauses, and the other for the abrupt clause. We illustrate
our proof technique by the following example.

Example 3.1 We consider a command checkPIN used to au-
thenticate users by verifying the input PIN. The flow graphs
representing the command are depicted in Figure 2. The
lefthand flow graph P1 is for the pass and fail clauses, while
the righthand flow graph P2 is for the abrupt clause. The
variables pin, p, MAX, and trial are of integral type, while
the variable val is of boolean type. The variable pin is the
PIN stored in the card and the variable p is the input PIN.
The variable MAX holds the maximum number of failed tri-
als, while the variable trial holds the remaining failed trials.
The variable val is a flag denoting the validation status of
the PIN.

trial > 0

val := ⊥

pin = p

val := ⊤

trial := MAX

trial := trial − 1

p
x

p
e

Fail
Pass

Fail

val := ⊥

a
e

a
x

Abrupt

Figure 2: An SPM of checkPIN.

The property that we want to prove is as follows: “In
any run of checkPIN, the value of variable val at the exit
configuration of the run is true if and only if the execution
emits a Pass event.”

To prove this property, we need to prove that, for any run
of the command, the following sub-property holds at the
entry and normal exit configurations of the run: If the PIN
is blocked, that is the value of trial is equal to 0, then the
value of val is false.

We define assertion functions I1 of P1 and I2 of P2 as
follows:

I1(pe) = ϕ, I1(px) = ϕ ∧ val = ⊤ ⇔ ε = Pass

I2(ae) = ⊤, I2(ax) = val = ⊤ ⇔ ε = Pass,

where the assertion ϕ is defined as ϕ ⇔ (MAX > 0 ∧ 0 ≤
trial ≤ MAX ∧ (trial < MAX ⇒ val = ⊥)). The last conjunct
above generalize the sub-property that we want to prove.
We also use a special variable ε to store emitted events.

Next, since a card tear can happen at any time and at any
point in the flow graph P1. We need to prove that for any
run of P1 from a state satisfying I1(pe), the assertion I2(ae)
holds at every configuration at any point in P1. Since I2(ae)
is a valid assertion, then I2(ae) holds at every configuration.

We argue that if I1 and I2 are weakly extendible, then
the properties that we want to prove hold. Consider a run
R of the command from a state σ. We concern only with
the run R emitting Fail. If σ satisfies I1(pe), trial > 0, and
pin 6= p, then when R terminates normally with states σ′,
then σ′ satisfies I1(px). Particularly, the state σ′ satisfies
0 ≤ trial ≤ MAX because the assertion 0 ≤ trial ≤ MAX ∧
MAX > 0 ∧ trial > 0 ⇒ 0 ≤ (trial − 1) ≤ MAX is valid. If
the state σ satisfies I1(pe) ∧ trial < 0, then by the assertion
ϕ, we have σ satisfies val = ⊥. Moreover, R will not modify
any variables, and thus I1(px) holds at the state σ′. One
can prove that I1 and I2 are strongly extendible easily, and
thus I1 and I2 are weakly extendible.

To prove the above properties for the whole SPM we need
to prove that the assertion ϕ holds at the entry and nor-
mal exit configurations of any run of other commands. To
this end, we follow the following steps: (1) Prove that the
assertion ϕ holds after the initialization of the SPM; (2)
For each command, define an assertion function for the flow
graph representing the pass and fail clauses such that the
assertions defined on the entry and normal exit points of
the function imply ϕ, and then prove that the function is
weakly extendible. These steps (1) and (2) can be carried
out in the same way as proving the properties for the com-
mand checkPIN. 2

4. PROVING REPRESENTATION CORRE-
SPONDENCES

In EDEN2 an FSP is essentially a Java program written
in a subset of Java. Each command in an FSP is a Java
method. The return value of the method is a response status
indicating whether the execution of the method is successful
or not. If the method needs to return some data, then such
data is assigned to a special designated variable. One can
consider returning a successful response status as emitting
a Pass event, while returning a response status that indi-
cates error or failure as emitting a Fail event. Any exception
that can occur in the method shall be encoded as return-
ing a response status indicating failure. An FSP describes
card tears using a try-catch construct, where the catch part
catches a special exception called CardTearException. The try

part describes an input-output relationship when card tears
are not present. The catch part tells what the application
has to do when a card tear occurs.

Like an SPM, an FSP is a program that takes as an in-
put a sequence of command calls of the form C(a1, . . . , an),
where C is the command’s name and a1, . . . , an are input
arguments. For each execution of the command, if the exe-
cution exits from the try part, then the execution fetches the
next input C(a1, . . . , an) from the input sequence. If a card
tear occurs, then the execution exits from the catch part or
terminates abruptly, and in turn the execution of the FSP
simply terminates. A run of an FSP is defined in the same
way as a run of an SPM. We also prove properties of an
FSP similarly to proving properties of an SPM. First, each
command in an FSP is represented by two flow graphs, one
for the try part and the other for the catch part. We then
define assertion functions of the two flow graphs and prove
that the functions are weakly or strongly extendible.

We now define the notion of RCR between SPMs and
FSPs. Let E be a set of observable events. Denote by R|E
the subsequence of R consisting only of events in E:

R = (p0, σ0), ε1, (p1, σ1), ε2, . . .
R|E = (p0, σ0), εi1 , (pi1 , σi1), εi2 , (pi2 , σi2),

where εij
∈ E for all j. Let X be a set of variables of an

SPM, we denote by Ab(X) the set of variables in X such
that the variables are modified in the abrupt clause of the
SPM.

Definition 4.1 Let EO = {Pass,Fail,Abrupt} be the set of
observable events. Let OSPM and OF SP be the sets of ob-
servable variables of, respectively, the SPM and the FSP
such that there is a one-to-one correspondence Obs between
OSPM and OF SP . There is an RCR between the SPM and

the FSP if, for every run

R|EO
= (p0, σ0), εi1 , (pi1 , σi1), . . .

of the FSP, there is a run

R
′|EO

= (p′0, σ
′
0), ε

′
j1
, (p′j1 , σ

′
j1

), . . .

of the SPM, where for all x ∈ OSPM , we have σ0(x) =
σ′

0(Obs(x)), such that, for all k,

1. εik
= ε′jk

,

2. if εik
6= Abrupt, then σik

(x) = σ′
jk

(Obs(x)) for all
x ∈ OSPM ,

3. if εik
= Abrupt, then σil

(y) = σ′
jl

(Obs(y)) for all y ∈
Ab(OSPM).

2

To apply the theory of inter-program properties to proving
an RCR between an SPM and an FSP, we prove the RCR be-
tween each corresponding commands separately. Let Obs be
a one-to-one correspondence between observable variables
of the SPM and of the FSP. There is an RCR between the
SPM and the FSP of a command C if the following condi-
tions hold. For any run R of the command C in the FSP
from a state σ1, there is a run R′ of the same command
in the SPM from a state σ′

1 such that σ1 and σ′
1 satisfy

V

x∈OSPM
x = Obs(x), and

1. R is terminating if and only if so is R′,

2. when R and R′ are terminating with, respectively,
states σ2 and σ′

2, R and R′ emit the same event ε
such that

• if ε 6= Abrupt, then the states σ2 and σ′
2 satisfy

V

x∈OSPM
x = Obs(x);

• otherwise the states σ2 and σ′
2 satisfy x = Obs(x)

for all x ∈ Ab(OSPM).

Let α be an assertion such that α implies
V

x∈OSPM
x =

Obs(x). Let P1 be the flow graph of the pass and fail

clauses of the command C in the SPM, and let P2 be the
flow graph of the abrupt clause of C. Let P ′

1 and P ′
2 be the

flow graphs of, respectively, the try and the catch parts of the
same command in the FSP. In the same way as denoting the
exit points of commands in SPM, we denote the exit point
of P ′

1 by exitn(P ′
1) and the exit point of P ′

2 by exita(P ′
2). We

define an assertion function Î1 of (P1, P
′
1) such that

Î1(entry(P1), entry(P ′
1)) = Î1(exitn(P1), exitn(P ′

1)) = α.

The function Î1 can be defined elsewhere but for all points
p 6= exitn(P1) and p′ 6= exitn(P ′

1), we have Î1(exitn(P1), p
′)

and Î1(p, exitn(P ′
1)) undefined. Furthermore, let S1 = {p′ |

∃p, φ.Î1(p, p
′) = φ} be the set of points in P ′

1 such that, for

any point p′ in S1, there is a point p in P1 and Î1(p, p
′) is

defined. We say that a path p0, . . . , pn is S1-simple if n > 0,
and p0 and pn are in S1 but none of p1, . . . , pn−1 are in S.
We require that the set S1 covers P ′

1. Next, we define a set
Π̂1 of paths of (P1, P

′
1) such that the set {π′ | ∃(π, π′) ∈ Π̂1}

consists of all S1-simple paths.
We define an assertion function Î2 of (P2, P

′
2) as follows.

On the pair (entry(P2), entry(P ′
2)) of entry points the func-

tion Î2 is defined as ψ with the following requirements:

1. the assertion α⇒ ψ is valid, and

2. for every finite run (p′0, σ
′
0), . . . , (p

′
n, σ

′
n) of P ′

1, there
is a finite run (p0, σ0), . . . , (pm, σm) of P1 such that
(σ0, σ

′
0) satisfies α and (σm, σ

′
n) satisfies ψ.

On the pair (exita(P2), exita(P ′
2)), the function Î2 is de-

fined as ψ′ such that, for all x ∈ Ab(OSPM), the asser-
tion ψ′ ⇒ x = Obs(x) is valid. Furthermore, for all points

p 6= exita(P2) and p′ 6= exita(P ′
2), we have Î2(exitn(P2), p

′)

and Î2(p, exitn(P ′
2)) undefined From the function Î2, we can

define a set S2 from Î2 similarly to defining the set S1 from
Î1. The set S2 must cover P ′

2. We also define a set Π̂2 of
paths of (P2, P

′
2) similarly to defining the set Π̂1.

trial > 0

length = l
val := ⊥

pin = p

val := ⊤

trial := MAX

trial := trial − 1

trial > 0

i := 0

i < l

trial := MAX

val := ⊤

val := ⊥

pin[i] = p[i]

i := i + 1

trial := trial − 1

p
e

p1

p2

p
′
2

p
′
3

p
′′
1

p
′
e

p
′
1

p
x

p
′
x

val := ⊥

p3

Figure 3: P1 is on the left and P ′
1 is on the right.

Theorem 4.2 Let Î1 and Î2 be assertion functions as de-

fined above, and Π̂1 and Π̂2 be sets of paths as defined above.

Let W1 and W2 be the weak verification conditions associ-

ated, respectively, with Î1 and Π̂1, and with Î2 and Π̂2. If

all assertions of W1 and W2 are valid, then there is an RCR

between the SPM and the FSP of the command C.

To prove that there is an RCR between the SPM and the
FSP, first we require that for every command C and for
every assertion function Î1 of the flow graphs representing
the pass and fail clauses of the command C in the SPM
and the try part of the same command in the FSP,

Î1(entry(P1), entry(P ′
1)) = Î1(exitn(P1), exitn(P ′

1)) = α,

where α is the assertion expressing the correspondence be-
tween the SPM and the FSP. Second, we have to prove that
α holds when the SPM and the FSP are initialized. When
a command C1 calls another command C2 both in the SPM
and in the FSP, then since a command in a smart-card appli-
cation is usually not recursive, we can inline the command
C2.

Example 4.3 In this example we will show that there is
an RCR between the SPM and the FSP of the command
checkPIN. The flow graph P1 representing the pass and

fail clauses and the flow graph P ′
1 representing the try part

are depicted in Figure 3. We assume that the SPM and the
FSP have disjoint sets of variables. To this end, we consider
that all variables in the FSP are in primed notation. Let
the sets

OSPM = {trial, pin, p, val,MAX, ε}
OF SP = {trial′, pin′, p′, val′,MAX′, ε′}

be the sets of observable variables of, respectively, the SPM
and the FSP such that a one-to-one correspondence Obs
between OSPM and OF SP maps each variable in OSPM to
its primed counterpart in OF SP Note that pin in the SPM
has a scalar type but pin′ in the FSP has an array type,
and so we have to define the equality between pin and pin′.
First, every array PIN p has a length l associated with the
array; we write the association as a pair (p, l). We introduce
a predicate ≡ between such a pair such that, given an array
PINs p, p′ and lengths l, l′, we say that (p, l) ≡ (p′, l′) if
l = l′ and for all i = 0, . . . , l − 1, we have p[i] = p′[i]. Next
we introduce a predicate ∼ between scalar PINs and array

PINs. The predicate ∼ is axiomatized as follows: for every
scalar PINs w, x and for every array PINs y, z, (1) x ∼ y ⇒
(y ≡ z ⇔ x ∼ z) and (2) x ∼ y ⇒ (w = x ⇔ w ∼ y). The
predicate ∼ defines the equality between a scalar PIN and
an array PIN.

The following assertions express the correspondence be-
tween observable variables of the SPM and of the FSP:

φ1 ⇔ trial = trial′

φ2 ⇔ val = val′

φ3 ⇔ pin ∼ (pin′, length′)

φ4 ⇔ p ∼ (p′, l′)
φ5 ⇔ MAX = MAX′

φ6 ⇔ ε = ε′

Next, we define an assertion function Î1 of (P1, P
′
1) as

follows:

Î1(pe, p
′
e) = Î1(px, p

′x) =
V6

i=1
φi

Î1(p1, p
′
1) =

V6

i=1
φi ∧ trial > 0

Î1(p1, p
′′
1) =

V

6

i=2
φi ∧ trial > 0 ∧ trial = trial′ + 1

∧length′ = l′ ∧ i′ < l′

∧(∀j.0 ≤ j < i′ ⇒ pin′[j] = p′[j])

Î1(p2, p
′
2) =

V6

i=1
φi ∧ pin = p ∧ (pin, length) ≡ (p, l)

Î1(p3, p
′
3) =

V6

i=1
φi ∧ pin 6= p ∧ (pin, length) 6≡ (p, l)

The function Î1 is undefined elsewhere. Note that the set
S1 = {p′e, p

′
1, p

′′
1 , p

′
2, p

′
3, p

′
x} of points in P ′

1 covers P ′
1.

Denote a path from point p to q in a program-point flow
graph by πp,q. We construct a set Π̂1 of paths of (P1, P

′
1) as

follows: for each S1-simple path πp′,q′ , we only pair πp′,q′

with a path π in Π̂1, that is (π, πp′,q′) ∈ Π̂1, such that if

π is nontrivial, that is π = πp,q, then Î1(p, p
′) and Î1(q, q

′)

are defined, or if π is trivial, that is π = πp, then Î1(p, p
′)

and Î1(p, q
′) are defined. Note that the set {π′ | ∃π.(π, π′) ∈

Π̂1} consists of all S1-simple paths. One can prove that all
assertions in the weak verification condition associated with
Î1 and Π̂1 are valid.

We now consider the flow graph P2 of the abrupt clause

and the flow graph P ′
2 of the catch part. For simplicity in

this example, the flow graph P ′
2 is identical to the flow graph

P2 depicted on the righthand side of Figure 2.
We define an assertion function Î2 of (P2, P

′
2) such that

Î2(entry(P2), entry(P ′
2)) = ⊤ and Î2(exita(P2), exita(P ′

2)) =
val = val′. The set S2 = {entry(P ′

2), exita(P ′
2)} covers P ′

2.
Note also that since the assertion ⊤ is satisfied by any state,
the assertion Î2(ae, a

′
e) satisfies the requirements of the as-

sertion ψ described before. The set Π̂2 consists only of a
pair of paths from the entry points to the exit points. One
can prove easily that all assertions in the weak verification
condition associated with Î2 and Π̂2 are valid. Thus, by The-
orem 4.2 there is an RCR between the command checkPIN

of the SPM and of the FSP.
2

The proof technique for proving RCRs between an SPM
and an FSP is also applicable to proving RCRs between an
FSP and a TDS. The latter is challenging due to features
introduce by the language of TDSs. A TDS is written in
a subset of Java Card [9]. This subset includes the mem-
ory characteristics and transaction mechanism of Java Card.
First, in the language of TDSs there are two kinds of mem-
ory, persistent memory and transient memory. The differ-
ence between these kinds of memory is the following: when
a card tear occurs, data stored in the persistent memory
will be kept in the memory, while data stored in the tran-
sient memory will be lost. In the sequel, variables whose

values are stored in the persistent memory are called persis-

tent variables, and variables whose values are stored in the
transient memory are called transient variables.

The language of TDSs also features the transaction mech-
anism of Java Card. Transactions are managed by methods
beginTransaction , commitTransaction, and abortTransaction with
standard functionalities. The updates of persistent variables
are conditional when a transaction is in progress. That is,
the updates are materialized if commitTransaction is called.
The updates of transient variables are always unconditional
regardless a transaction is in progress or not.

We use the desugaring method described in [6] to model
card tears and transactions. Similar to the FSP, each com-
mand in the TDS is a Java method. Desugaring the com-
mand translates the method into the same form as that of
the FSP, that is, the method has a big try-catch construct.
The catch construct sets all transient variables to their de-
fault values, and cancel the updates of persistent variables
if a card tear occurs when a transaction is in progress. The
desugaring method introduces fresh global variables that are
used to back up persistent variables before a transaction be-
gins. In the case that the transaction is aborted or a card
tear occurs, then using the back-up variables, the values of
the persistent variables are rolled back to the values before
the transaction begins. The desugaring method also intro-
duces a fresh boolean variable inTransaction that keeps track
whether a transaction is in progress or not. Let us consider
the following TDS of a toy command:

t = 4 ;
beg i nT r an s a c t i on () ;
x = 5 ;
t = 6 ;
y = 7 ;
endTransac t i on () ;

t r y {
t = 4 ;
i f (i nT r a n s a c t i o n)

r e t u r n IN PROGRESS
xb = x ; yb = y ;
i nT r a n s a c t i o n = t rue ;
x = 5 ; t = 6 ;
y = 7 ;
i nT r a n s a c t i o n = f a l s e ;

} catch (Ca rdTea rExcept i on e) {
i f (i nT r a n s a c t i o n) {

x = xb ; y = yb ; }
t = 0 ;

}
endTransac t i on () ;

The lower program is obtained by desugaring the upper pro-
gram. The variables xb and yb are back-up variables for the
persistent variables x and y, and t is a transient variable.
Similar to the FSP, we then have two flow graphs, one for
the try part and the other for the catch part. One can set
the value of inTransaction to false to escape from a transac-
tion. This feature is useful for variables whose updates must
be unconditional. In Java Card such a feature is provided
by non-atomic API methods [9]. Discussion on Java Card
non-atomic API methods and their effects on transactions
can be found in [7].

To prove RCRs between the FSP and the TDS, we con-
sider the pair of flow graphs of the try parts of the FSP and
of the TDS, and the pair of flow graphs of the catch parts
of the FSP and of the TDS. Suppose that the FSP of the

above command is as follows:

t r y {
yp = 7 ;
xp = 5 ;
tp = 6 ;

} catch (Ca rdTea rExcept i on e) {
tp = 0 ;

}

Suppose that the variables x, y, t in the TDS are observable
variables that correspond to the variables xp, yptp, respec-
tively. We want to prove that this correspondence holds
even when a card tear occurs. To this end, we have to as-
sert at the entries of the flow graphs of the catch parts the
following assertion:

(¬inTransaction ⇒ x = xp ∧ y = yp)
∧(inTransaction ⇒ xp = xb ∧ yp = yb)

To prove that every finite run of the TDS, there is finite run
of the FSP such that the above assertion holds, we need to
associate events with the updates of observable persistent
variables and use event variables that keep track the occur-
rences of these events. In particular, during a transaction
the order of independent updates, such as the updates of x

and y is irrelevant. So, an event variable that keeps track
events during the transaction has to collect a set of events
instead of a sequence of events.

Due to lack of space, detailed discussion on proving RCRs
between the FSP and the TDS can be found in our technical
report [8].

5. CONCLUSIONS
We have successfully applied the theory of program prop-

erties described in [10] to the certification of smart-card ap-
plications in the framework of Common Criteria. The appli-
cation of the theory also handles memory characteristics and
transaction mechanism that exist in the low-level design.

There have been some works related to the specification
and verification of smart-card applications and to CC cer-
tification. For example, the work in [2] describes a case
study in the specification and verification of an electronic
purse application. The work is not in the framework of CC
and only concerned with the specification and verification
of a single program, which is the implementation code. The
work can complement our work in proving properties of the
implementation code. An example work on CC certification
is [4]. The work is concerned with verifying that the kernel
of a software-based embedded device enforces data separa-
tion. Similar to our SPMs, the specification is modelled as a
finite state machine. The RCR in this work is only between
the state machine and the implementation code, and also is
a standard refinement relation.

6. REFERENCES
[1] Common Criteria for Information Technology Security

Evaluation, 2007. Version 3.1, CCMB-2007-09-003.

[2] C.-B. Breunesse, N. Cataño, M. Huisman, and
B. Jacobs. Formal methods for smart cards: an
experience report. Sci. Comput. Program.,
55(1-3):53–80, 2005.

[3] Robert W. Floyd. Assigning meaning to programs. In
J. T. Schwartz, editor, Proceedings of Symposium in

Applied Mathematics, pages 19–32, 1967.

[4] Constance L. Heitmeyer, Myla Archer, Elizabeth I.
Leonard, and John McLean. Formal specification and
verification of data separation in a separation kernel
for an embedded system. In CCS ’06: Proceedings of

the 13th ACM conference on Computer and

communications security, pages 346–355, New York,
NY, USA, 2006. ACM.

[5] C. A. R. Hoare. An axiomatic basis for computer
programming. CACM, 12(10):576–580, 1969.

[6] E.-M.G.M. Hubbers and E. Poll. Reasoning about
card tears and transactions in Java Card. In
M. Wermelinger and T. Margaria-Steffen, editors,
Fundamental Approaches to Software Engineering, 7th

International Conference, FASE 2004, volume 2984 of
LNCS, pages 114–128. Springer-Verlag, 2004.

[7] E.-M.G.M. Hubbers and E. Poll. Transactions and
non-atomic API methods in Java Card: specification
ambiguity and strange implementation behaviors.
Technical Report NIII R0438, University of Nijmegen,
Toernooiveld, 6525 ED Nijmegen, The Netherlands,
October 2004.

[8] Iman Narasamdya and Michaël Périn. Certification of
smart-card applications in common criteria. Technical
Report TR-2008-14, Verimag, September 2008.

[9] Sun Micro systems, Inc, Palo Alto, California. Java

Card 3.0 Platform Specification, 2008.
http://java.sun.com/javacard/3.0/.

[10] Andrei Voronkov and Iman Narasamdya. Proving
inter-program properties. Technical Report
TR-2008-13, Verimag, September 2008.

