
Certification of Smart-Card Applications in Common
Criteria

Proving Representation Correspondences

Iman Narasamdya1 and Michaël Périn2 ?

1 FBK-Irst, Italy. Email: narasamdya@fbk.eu
2 Verimag - UJF, France. Email: Michael.Perin@imag.fr

Abstract. We present a method for proving representation correspondences in
the Common Criteria (CC) certification of smart-card applications. For security
policy enforcement, the CC defines a chain of requirements: a security policy
model (SPM), a functional specification (FSP), and a target-of-evaluation design
(TDS). In our approach to the CC certification, these requirements are models of
applications that can have different representations. A representation correspon-
dence (RCR) describes a correlation between the representations of two adjacent
requirements. One task in the CC certification is to demonstrate formal proofs of
RCRs. We first develop a modelling framework by which the representations of
SPM, FSP and TDS can be described uniformly as models of an application. We
then define RCRs as mutual simulations between two application models over
sets of observable events and variables. We describe a proof technique for prov-
ing RCRs and providing certificates about them based on assertions relating two
models at specific locations. We show how RCRs can help us prove property
preservation from the SPM to the FSP and the TDS.

1 Introduction

We describe in this paper our work on developing a method for formal certification of
smart-card applications in the framework of Common Criteria (CC) [1]. This work is
part of an industrial project called EDEN2.3 The CC is an international standard for the
evaluation of security related systems. It guarantees that a target of evaluation (TOE),
or a system, enforces security policies by means of an assurance architecture. For assur-
ances in the development process, this architecture consists of a chain of requirements
starting from the model of the policies at the start of the chain, to the low-level design
and the implementation of the system at the end of the chain.

At the highest level of the CC certification, which is called evaluation assurance
level 7 (or EAL7), the following chain of requirements are needed in the assurance
architecture: (1) a formal security model (SPM), (2) a formal functional specification
of security functions (FSP), and (3) a TOE design (TDS). The SPM models the policy
independently of the implementation, the FSP describes input-output relationships of
? This research has been supported by funding from RNTL EDEN project.
3 Research and industrial partners include Verimag, CEA, Gemalto, and Trusted-Logic; see

http://www.eden-rntl.org.

security functions, and the TDS is a low-level design that is close to the implementation.
A representation correspondence (RCR) demonstrates the correlation between each two
adjacent requirements in the chain. The CC EAL7 certification consists of proving that
the SPM, the TDS, and the FSP satisfy the security policies, and providing certificates
about this satisfaction. In addition, the CC EAL7 also requires formal proofs of RCRs
between the SPM and the FSP, and between the FSP and the TDS.

In this paper we are concerned with proving RCRs and providing certificates about
them. We present a method for proving RCRs in the context of smart-card applica-
tions. First, we develop a framework for modelling smart-card applications such that
the formal models capture the operations of the applications, in particular our model al-
lows one to reason about card tears (or power loss) and transaction mechanism that are
present in smart-card applications. In this framework, a model of an application consists
of a set of command procedures (or simply command). Each command is presented by
two transition graphs (or control-flow graphs), one describes the normal behavior of
the command and the other describes what the command has to perform when a card
tear occurs. The FSP and the TDS are essentially models of an application. In EDEN2,
the SPM consists of two entities: one entity is a model of the application and the other
is a set of assertions (or formulas) in some logic such that the assertions describe se-
curity properties. In the sequel, we refer to the former entity when we speak about
SPM. Card readers communicate with a smart-card application by sending a sequence
of commands. We model this interaction with a main procedure that takes as the only
input a sequence of commands, and for each command, the procedure calls the cor-
responding command procedure in the application. The semantics of an application is
then characterized by the set of the main procedure’s runs.

We define RCRs between two application models as bisimulation equivalence con-
sisting of mutual simulations between the models over observable events and variables.
To this end, given two models S and T of an application, we associate with S and T
the same set of observable events and for each event we associate a mapping between
observable variables. Intuitively, we say that there is an RCR between S and T if for
every run of S, there is a run of T on the same input, and vice versa, such that (1) both
runs exhibit the same sequence of observable events, and (2) for each two equal events,
the values of corresponding observable variables coincide. Having a unified model for
smart-card applications allows us to have only a single definition of RCRs such that
the definition is applicable for RCRs between the SPM and the FSP, and between the
FSP and the TDS. Furthermore, we will show that our definition of RCR helps us prove
property preservation from one model to the other. That is, as required by the CC EAL7
certification, the RCRs must guarantee that all security properties satisfied by the SPM
are satisfied by the FSP and the TDS.

We develop a proof technique for proving RCRs. We prove RCRs between S and
T by proving the RCR between each corresponding commands in S and T . We apply
a theory of inter-program properties described in [16] to proving RCRs. Inter-program
properties are properties relating two programs. RCRs are essentially inter-program
properties. We prove RCRs by using assertions that describe data abstraction and con-
trol mapping between the transition graphs of the corresponding commands. The theory

also provides a notion of certificate about inter-program properties. Such a certificate is
essential to the CC EAL7 certification.

Proving RCRs are challenging due to nontrivial data abstractions between applica-
tion models and due to language features in which the models are written. Consider a
command checkPIN used to authenticate users by checking an input PIN against the
PIN stored on the card. The security policy does not require the PIN to be in some spe-
cific format. Thus, in the SPM the PIN can simply be a natural number. For security,
the command uses variables trial as a trial-remaining counter. If the input PIN does not
match the stored PIN, then trial is decremented, and if it gets 0, then the PIN is blocked.
In the FSP, developers usually take defensive measures. The PIN in the FSP is now an
array of natural numbers, and prior to checking the input PIN, the variable trial must
be decremented. We then have the following excerpts of over-simplified checkPIN, the
SPM and the FSP are on the lefthand and righthand, respectively:

if (pin 6= input) {
trial := trial − 1;
return fail;

}

trial := trial − 1;
while (i < length) {

if (pin[i] 6= input[i])
return fail;

}
If we associate an event with every update of trial, then in the SPM this event occurs at
the end of command execution, but in the FSP it occurs at the beginning. Thus, we may
end up with different sequences of observable events. This poses some difficulties in
determining observable events in RCRs. Note that in the SPM and the FSP above, the
data abstraction introduces a loop in the FSP. To prove that for every run of the SPM
there is a “corresponding” run of the FSP, one has to prove that the loop will not yield
non-terminating run. We will show later that in the presence of transaction mechanism,
we sometimes have to relax the definition of RCR. That is, we only require that for
every run of the TDS, there is a corresponding run of the FSP.

In summary the contributions of this paper is a method for proving representation
correspondences as a part of the CC EAL7 certification of smart-card applications.

The outline of this paper is the following. We first discuss our framework for for-
mally modelling smart-card applications. We then develop a notion of representation
correspondence based on this framework. Afterward we describe briefly the theory of
inter-program properties. Then, we discuss our proof technique for proving RCRs based
on the theory. We then show how RCRs allow us to preserve property in the chain of
the CC requirements. Finally, we discuss some related work and conclude this paper.

2 Formal Models and Representation Correspondences
2.1 Transition Graphs and Computation Sequences

A smart-card application is a program consisting ofm+1 procedures:main, c1, . . . , cm,
where main is the main procedure and c1, . . . , cm are command procedures. In the se-
quel, command procedures are often called commands. Each procedure P consists of
a finite set of program points and is presented as two disjoint transition graphs (or
program-point flow graphs) G

n
P and G

a
P . A transition graph is a finite directed graph

whose nodes are program points. Each edge of a transition graph is labelled with a
guard, an assignment instruction, a goto instruction (or a skip instruction), or a pro-
cedure call. The transition graph G

n
P describes the normal behavior of P , while the

transition graph G
a
P describes what the application has to do when a card tear occurs

during the execution of P .
We assume that every transition graph GP has a unique entry point, denoted by

entry(GP) and a unique exit point, denoted by exit(GP). As such, every procedure
P has a unique entry point entry(P) = entry(Gn

P), and two exit points, normal exit
point exitn(P) = exit(Gn

P) and abrupt exit point exita(P) = exit(Ga
P).

The main procedure takes as input a sequence of input commands. In turn, the pro-
cedure reads each input command of the form (C, v̄), where C is the command name
and v̄ are the input values for C. For each input command (C, v̄), the main procedure
calls the corresponding command C on input v̄, or call C(v̄).

We introduce a restriction on command procedures, that is, for every command
procedure P , the graphs G

n
P and G

a
P do not contain edges labelled with procedure

calls. Similarly, the graph G
a
main does not contain such edges. This restriction does

not limit the applications that can be modelled in our framework. Procedures called by
command procedures in smart-card applications are usually not recursive and thus can
be inlined. For technical reason, we assume that, for every command procedure, Gn

main

contains an edge labelled with a call to the procedure.
We describe the run-time behavior of an application as sequences of configurations.

A configuration of a run is a pair (p, σ) where p is a program point and σ is a state
mapping variables to values. Given a procedure P , a configuration (p, σ) is called an
entry configuration for P if p is an entry point of P , a normal exit configuration for P
if p is a normal exit point of P , and an abrupt exit configuration for P if p is an abrupt
exit point of P

The semantics of an application is defined as a transition relation with transitions of
the form (p1, σ1)

l
7→ (p2, σ2), where (p1, σ1) and (p2, σ2) are configurations and l is a

transition label. Transitions are of the following kinds:
– Intra-graph transition, where the pair (p1, p2) is an edge of a transition graph, l is

the label of the edge such that l is not a procedure call.
– Call and return transitions, where l is a procedure call and a special label ret, re-

spectively.
– Abrupt transition, where p1 is in G

n
P , p2 is entry(Ga

P), l is a special label ab, and
σ1 = σ2.

We allow labels of transitions (or edges of transition graphs) to be associated with
events, which means that the transitions emit the events. We will use a special event
variable ε to store emitted events. That is, if a transition emits an event E, then it is the
same as an assignment of E to ε. Details of transition relations are in [12].

We use the following assumptions for transition relations. First, for every pro-
cedure P , every point p in G

n
P , and every state σ, there is a transition (p, σ)

l
7→

(entry(Ga
P), σ). That is, a card tear can occur non-deterministically. Second, there

is no transition from an exit configuration (p, σ), where p = exita(P) for every pro-
cedure P , or p = exitn(main). Third, intra-graph transitions are deterministic. Forth,
transitions are atomic.

A computation sequence of an applicationA is either a finite or an infinite sequence
of

(p0, σ0)
l17→ (p1, σ1)

l27→ (p2, σ2) . . .

where, for all i, the transition (pi, σi)
li+1
7→ (pi+1, σi+1) is justified by a transition in

the transition relation of A. When a computation sequence is finite, then it ends with a
configuration. A run of a procedure P in A from a state σ0 is a computation sequence
of A such that p0 = entry(P). For every run of a command procedure P , the run
terminates when it reaches an exit configuration for P , and can only terminate in such a
configuration. We say that the run terminates normally (terminates abruptly) if the final
configuration is a normal (abrupt) exit configuration for P . A run of an application A
from a state σ is a run of the procedure main from σ. Especially for main, a run of
main terminates normally if the final configuration is a normal exit configuration for
main, and terminates abruptly if the final configuration is an abrupt exit configuration
for any procedure. A run of a transition graph G in an application A is a computation
sequence of A such that p0 = entry(G) and for all i, the pairs (pi, pi+1) is an edge of
the graph.

2.2 Representation Correspondences

For our discussion on representation correspondences (RCRs), we assume that we are
given two models S and T of an application, where T is an implementation of S. That
is, S and T can be, respectively, an SPM and an FSP, or they can be, respectively an
FSP and a TDS. For simplicity, we assume that each command in S has a corresponding
command, with the same name, in T , and vice versa. We assume further that S and T
have disjoint sets of transition graphs and disjoint sets of variables.

To define RCRs, we associate with both S and T the same set of observable events,
and for each observable event we associate a one-to-one correspondence between ob-
servable variables of S and T at the start or final configurations of the transitions that
emit the event. Intuitively, there is an RCR between S and T if for every run of T , there
is a run of S on the same input, such that (1) both runs terminate or generate infinite
computation sequences, (2) these runs exhibit the same sequence of observable events,
(3) the values of corresponding observable variables in the configurations of each cor-
responding events coincide, and (4) vice versa for every run of S.

We first discuss the set of observable events. For every procedure P , we associate
every incoming edge into exitn(P) with either a PassP or a FailP events. The first event
denotes a successful completion of a run of P , while the latter denotes a logic failure.
We associate every incoming edge into exita(P) with an AbruptP event and every call
transition to a procedure P with a CallP event.

Next, we associate one-to-one correspondences between observable variables for
events. For each command procedureP and for every configuration γ such that there is a
configuration γ′ and γ′ l

7→ γ where l is associated with PassP , we associate with γ a set
OS of observable variables if γ belongs to an S’s run, and a setOT if γ belongs to a T ’s
run, such that there is a one-to-one correspondenceObs betweenOS andOT . Similarly
for l associated with FailP and AbruptP . When l is associated with CallP , then, instead
of γ, we associateOS andOT with γ′ such that if the parameters of P in S and in T are,
respectively, x̄ = x1, . . . , xm and ȳ = y1, . . . , yn, then m = n, {x1, . . . , xm} ⊆ OS

and {y1, . . . , yn} ⊆ OT , and Obs maps xi to yi for all i = 1, . . . ,m. We also associate
entry configurations of main with the sets OS and OT such that the input variables of
S and T are mapped to each other.

We associate observation function O with each S and T to identify observable con-
figurations and transition labels. That is, for a configuration γ, the function O(γ) = γ if
γ is associated with a set of observable variables, otherwise O(γ) = ⊥. Similarly,
for a label l of a transition, O(l) = e if l emits an observable event e, otherwise
O(l) = ⊥. An observation sequence of a computation sequence R, denoted by o(R),
is obtained by turning R into an alternating sequence of configurations and transition
labels, and applying the observation function O to each configuration and transition
label of R. That is, for a computation sequence R = γ0

l17→ γ1
l27→ γ2

l37→ . . ., we have
o(R) = O(γ0),O(l1),O(γ1),O(l2),O(γ2),O(l3), A ⊥-free observation sequence
of a computation sequenceR, denoted by o⊥(R) is obtained from o(R) by suppressing
⊥ in o(R).

We say that two states σ1 and σ2 are compatible with respect to a one-to-one cor-
respondence Obs between the sets O1 and O2 of observable variables in the domain
of, respectively, σ1 and σ2 if for every x ∈ O1, we have σ1(x) = σ2(Obs(x)). Two
configurations γ1 = (p1, σ1) and γ2 = (p2, σ2) are compatible if there are sets O1 and
O2 of observable variables associated with γ1 and γ2 such that (1) there is a one-to-one
correspondenceObs betweenO1 andO2, and (2) σ1 and σ2 are compatible with respect
to Obs.

DEFINITION 2.1 We say that two computation sequences R1 and R2 are observation-
ally equivalent (or stuttering equivalent) if, let

o⊥(R1) = θ1, θ2, . . . o⊥(R2) = θ1, θ
′
2, . . . ,

o⊥(R1) and o⊥(R2) are of the same length, and for all i, we have either (1) θi = γ and
θ′i = γ′, for configurations γ and γ ′, such that γ and γ ′ are compatible, or (2) θi = θ′i.

ut

DEFINITION 2.2 There is a representation correspondence between a procedure P of
S and a procedure P ′ of T if for every runR of P from a configuration γ, there is a run
R′ of P ′ from a configuration γ ′, where γ and γ ′ are compatible, and vice versa, such
that R and R′ are observationally equivalent.

There is a representation correspondence between S and T if there is a representa-
tion correspondence between main of S and main of T . ut

In the above definition, due to call transitions and our assumption that Gn
main con-

tains at least a call edge for every command procedure, the configurations γ and γ ′ have
sets of observable variables associated with them. Note that to have γ and γ ′ compati-
ble, then the procedures P and P ′ must refer to the same command. The notion of RCR
for procedures is useful for proving RCR between S and T . Sincemain can be thought
of as a loop that read input command and call the command, then proving RCR between
S and T can be reduced to proving RCR between each corresponding commands.

3 Theory of Inter-Program Properties

In this section we describe an abstract theory for describing and proving properties that
relate two programs, or inter-program properties. A detailed description of the theory

can be found in [16]. The theory deals with programs that are represented as transition
graphs described in the previous section.

For describing and proving inter-program properties, the theory considers two pro-
grams P1 and P2 as a pair (P1, P2), such that they have disjoint flow graphs and disjoint
sets of variables. A state σ for the pair (P1, P2) can be considered as a pair (σ1, σ2) = σ,
such that σ1 is for P1 and σ2 is for P2. A configuration is a tuple (p1, p2, σ1, σ2) such
that (p1, σ1) is a configuration for P1 and (p2, σ2) is a configuration for P2. The seman-
tics of (P1, P2) is a transition relations containing two kinds of transitions:

1. (p1, p2, σ1, σ2) 7→ (p′1, p2, σ
′
1, σ2), such that (p1, σ1) 7→ (p′1, σ

′
1) is in P1;

2. (p1, p2, σ1, σ2) 7→ (p1, p
′
2, σ1, σ

′
2), such that (p2, σ2) 7→ (p′2, σ

′
2) is in P2.

In the description of the theory in this section, we omit the transition labels for simplic-
ity. Thus, a computation sequence is simply a sequence of configurations.

The theory assumes an assertion language and uses relation σ |= α to mean that
the state σ satisfies the assertion α. For a configuration γ = (p, σ), we write γ |= α for
σ |= α. An assertion is valid if it is satisfied by any state.

The formalization of the theory is based on the notion of assertion function. An
assertion function of (P1, P2) is a partial function

I : PointP1 ×PointP2 → Assertion

mapping pairs of program points of (P1, P2) to assertions, such that I is defined on
(entry(P1), entry(P2)) and (exit(P1), exit(P2)). This requirement is technical as one
can always define I on these pairs as >. Assertions defined on such an I are called
inter-program assertions. Given a pair of points p̂ and a pair of states σ̂ of (P1, P2), we
say that p̂ is I-observable if I(p̂) is defined. For a configuration γ = (p̂, σ̂), we write
γ |= I if I(p̂) is defined and σ̂ |= I(p̂).

The theory introduces the notion of weakly-extendible assertion function as a well-
suited notion for describing inter-program properties.

DEFINITION 3.1 Let I be an assertion function of a pair (P1, P2) of programs. The
function I is weakly extendible if every run

γ0, . . . , γi

of (P1, P2), such that i ≥ 0, γ0 |= I , γi |= I , and γi is not an exit configuration, can be
extended to a run

γ0, . . . , γi, . . . , γi+n

such that (1) n > 0, and (2) γi+n |= I .

In [16] we show that, without appealing to the standard proof technique that uses
well-founded set, and using only inter-program assertions and the notion of weak ex-
tendibility, we can prove program equivalence and mutual simulations of two programs
where one program has a loop that does not correspond to any loop in the other pro-
gram, or even the loop is eliminated in the other program. For proving RCRs, we often
encounter such a situation. For example, PIN is a scalar variable in the SPM, but is an
array variable in the FSP. So, for checking and updating the PIN, the FSP contains loops
that do not exist in the SPM.

We now develop verification conditions that guarantee weak extendibility. To this
end, we need a notion of path of pairs of programs. A path π of (P1, P2) can be viewed
as a trajectory in a two dimensional space: π = (π1, π2), where π1 is a path in the flow
graph of P1 and π2 is a path in the flow graph of P2. A path is trivial if it consists of
a single pair of points. Given a path π and an assertion ψ, we denote by wpπ(ψ) and
wlpπ(ψ), respectively, the weakest and the weakest liberal preconditions of π and ψ.
Since we have to compute these preconditions, we assume that the programming lan-
guage that we consider has the weak precondition property: for every path π and every
assertion ψ, wpπ(ψ) exists and can effectively be computed. One can also compute
wlpπ(ψ) since it is equivalent to wpπ(ψ) ∨ ¬wpπ(>). The precondition for paths of
pairs of programs can also be derived from the precondition of paths of single programs.

DEFINITION 3.2 Let I be an assertion function and Π be a set of nontrivial paths such
that, for every π ∈ Π , we have start(π) and end(π) to be I-observable. Denote by
Π |(p, p

′) the set of paths in Π whose first pair of points is (p, p′).
The weak verification condition W associated with I and Π consists of assertions

of the form
I(start(π)) ⇒ wlpπ(I(end(π))),

where π ∈ Π and assertions of the form

I(p) ⇒
∨

π∈Π|(p,p′)

wpπ(>)

where (p, p′) is I-observable. ut

The first kind of assertion is a standard assertion for proving partial correctness of
path. The second kind of assertion expresses that, whenever a configuration at p satisfies
I(p), the computation from this configuration will inevitably follows at least one path
in Π .

THEOREM 3.3 Let W, I andΠ be as in Definition 3.2. If every assertion in W is valid,
then I is weakly extendible. ut

The notion of weak verification condition is our notion for certificates that certify
inter-program properties. In the next section we will use inter-program assertions to
describe correspondences between observable variables. Later, to prove an RCR be-
tween two commands, one has to prove other inter-program properties between transi-
tion graphs of the commands. These program properties altogether describe the RCR.
To prove such properties, we define an assertion function and prove that the function is
weakly extendible. The certificates certifying these properties form a certificate for the
RCR.

4 Proving Representation Correspondences

For our discussion on proving RCRs, we consider the application models S and T

described in Section 2. To prove an RCR between S and T , we are only concerned with
command procedures, that is, for each corresponding command procedures, we prove
an RCR between the procedures.

For two models S and T , there is usually a one-to-one correspondenceObs between
global observable variables of S and T such that the values of each corresponding
variables coincide at the entry and normal exit configurations of every command run.
To this end, let us consider some command procedure P . Let Obsp, Obsf , Obsa be
one-to-one correspondences specified for the end configurations of transitions emitting,
respectively, a PassP , a FailP , an AbruptP event. For simplicity of presentation, in the
sequel let Obsp = Obsf . Let Obsc be a one-to-one correspondence specified for the
start configurations of transitions emitting CallP . We require that Obs is included in
Obsp and Obsc. We say that a correspondence f is included in a correspondence g if
for every mapping x 7→ y in f is a mapping in g.

Denote by P S andP T , respectively, the commandP in S and in T . Given a function
f , we denote by dom(f) the domain of f . For simplicity of notation, given a one-to-
one correspondence g, we abbreviate the assertion

∧
x∈dom(g) x = g(x) to simply g. To

prove an RCR between P S and P T , we do the following steps:
1. Let α be an assertion, such that the assertionα ⇒ Obsc is valid. That is, α describes

the correspondence Obsc. The assertion α can also describe invariants specific to
S or T . We prove that α is satisfied by the initializations of global variables.

2. We assert α at (entry(Gn
P S), entry(Gn

P T)) and α′ at (exit(Gn
P S), exit(Gn

P T))
such that the assertions α′ ⇒ Obsp and α′ ⇒ α are valid. That is, we assume
that the correspondence expressed by α holds in the entry configurations of the
procedures, and is preserved in the exit configurations.

3. Let ψ, ψ′ be assertions asserted at, respectively, (entry(Ga
P S), entry(Ga

P T)) and
(exit(Ga

P S), exit(Ga
P T)) such that the assertion ψ′ ⇒ Obsa is valid. That is, the

correspondenceObsa holds when procedure runs terminate abruptly.
4. We prove that for every finite run of G

n
P T , there is a finite run of G

n
P S from config-

urations satisfying α, and vice versa, such that the final configurations of the runs
satisfy the assertion ψ.

One can demonstrate (1) easily since it amounts to proving that the initializations of
global variables satisfy α. In the sequel we focus on the steps (2), (3), and (4).

We present our proof technique for proving RCRs of commands by means of a real
example of a command called checkPIN that is used for authenticating users. In this
paper we only consider proving RCRs between the SPM and the FSP of the command.
Proving RCRs between the FSP and the TDS follows the same steps above. The SPM
is written in a domain-specific language, called command description language, that
resembles a subset of Java. Each command can be thought of as a method that has
clauses: one pass clause describing conditions and state updates of successful comple-
tion of a run of the command; one or more fail clauses describing logic failures and the
corresponding state updates; and one abrupt clause describing abrupt behavior of the
command. For each command procedure P , the pass and fail clauses of the command
constitute the transition graph G

n
P , while the abrupt clause constitutes the transition

graph G
a
P .

The FSP is written in a subset of Java. Each command procedure P is a method of
the form:
P (. . .) { t ry { . . . } catch (CardTearException) { . . . } }

The try part constitutes G
n
P , while the catch part constitutes G

a
P . Details of SPM and

FSP can be found in our technical report [12].

EXAMPLE 4.1 We prove that there is an RCR between two corresponding commands
procedure Pc by considering their transition graphs G

n
Pc

and G
a
Pc

separately. The left-
hand pair of transition graphs in Figure 1 is G

n
checkPIN

of the SPM, on the left of the pair,
and G

n
checkPIN

of the FSP, on the right of the pair. As a shorthand, we call the former P1

and the latter P ′
1. For disjointness, we assume that all variables in P ′

1 are primed.

trial > 0

length = l
val := ⊥

pin = p

val := >

trial := MAX

trial := trial − 1

trial > 0

i := 0

i < l

trial := MAX

val := >

val := ⊥

pin[i] = p[i]

i := i + 1

trial := trial − 1

p
e

p1

p
′

2

p
′

3

p
′′

1

p
′

e

p
′

1

p
x

p
′

x

val := ⊥

p3

p2
p

′′

3

a
e

a
x

Abrupt

val := ⊥

Abrupt

val := ⊥

a
′

e

a
′

x

Fig. 1. SPM and FSP of checkPIN.

First the global variables of the SPM that we want to observe are trial, pin, val,
and MAX. They correspond to their primed counterparts in the FSP. Additionally, at
the entries of P1 and P ′

1, the input pin p corresponds to p′, and at the exits of P1 and
P ′

1, the event variable ε corresponds to ε′. Next, we have to define the equality between
scalar PIN and array PIN. Every array PIN p is associated with a length l; we write
this association as (p, l). We introduce predicate ≡ between such pairs such that, given
array PINs (p, l) and (p′, l′), we say that (p, l) ≡ (p′, l′) if l = l′, l ≥ 0, and for all
i = 0, . . . , l−1, we have p[i] = p′[i]. We introduce a predicate ∼ which is axiomatized
as follows: for every scalar PINs w, x and for every array PINs y, z,

x ∼ y ⇒ (y ≡ z ⇔ x ∼ z) x ∼ y ⇒ (w = x ⇔ w ∼ y).

The predicate ∼ defines the equality between a scalar PIN and an array PIN.
The following assertions express the correspondence between observable variables:

φ1 ⇔ trial = trial′

φ2 ⇔ val = val′
φ3 ⇔ pin ∼ (pin′, length′)
φ4 ⇔ MAX = MAX′

φ5 ⇔ p ∼ (p′, l′)
φ6 ⇔ ε = ε′

Next, we define an assertion function I1 of (P1, P
′
1) as follows:

I1(pe, p
′
e) =

∧5
i=1 φi I1(px, p

′
x) =

∧6
i=1 φi

I1(p1, p
′
1) =

∧5
i=1 φi ∧ trial > 0

I1(p1, p
′′
1) =

∧5
i=2 φi ∧ trial > 0 ∧ trial = trial′ + 1

∧length′ = l′ ∧ i′ < l′ ∧ (∀j.0 ≤ j < i′ ⇒ pin′[j] = p′[j])

I1(p2, p
′
2) =

∧5
i=1 φi ∧ pin = p ∧ (pin, length) ≡ (p, l)

I1(p3, p
′
3) = I1(p3, p

′′
3) =

∧5
i=1 φi ∧ pin 6= p ∧ (pin, length) 6≡ (p, l)

In this example, we prove an interesting part of RCR, that is, without any presence
of card tears, for every runR of P1, there is a runR′ of P ′

1 from compatible states, such
that R and R′ are observationally equivalent. We denote by πp,p′ a path from p to p′,
and by πp a trivial path consisting only of point p. We prove that I1 is weakly extendible
by the following reasoning. First, for every run of (P1, P

′
1) from an entry configuration

that satisfies I1(pe, p
′
e), the run can reach (p1, p

′
1) by following the path (πpe,p1 , πp′

e
,p′

1
)

such that the end configuration satisfies I1(p1, p
′
1). From this configuration, the run

can be extended either by following the path (πp1,p3 , πp′

1,p′′

3
) or by following the path

(πp1 , πp′

1,p′′

1
) such that the end configuration satisfies I1. From the configuration that

satisfies I(p1, p
′′
1), the run can be extended either by following (πp1 , πp′′

1 ,p′′

1
), or by

following (πp1 ,p2 , πp′′

1 ,p′

2
), or by following (πp1,p3 , πp′′

1 ,p′

3
). Without any of these paths,

I1 would not be weakly extendible. Thus, we have shown that, using the notion of weak
extendibility, these paths show that the loop in P ′

1 terminates.
Note that every possible transition of P1 is described by the nontrivial paths that

constitute the first elements of all pairs of paths above. Therefore, we have proved that
for every run R of P1, there is a run R′ of P ′

1 from compatible states, such that R and
R′ are observationally equivalent. We can use the same reasoning for proving the other
direction. Indeed, by taking the set of all the above pairs of paths, one can prove that all
assertions of the weak verification condition associated with I1 and the set are valid.

Consider now the righthand pair of transition graphs in Figure 1 is G
a
checkPIN

of
the SPM, on the left of the pair, and G

a
checkPIN

of the FSP on the right of the pair. As
a shorthand, we call the former P2 and the latter P ′

2. The SPM and FSP only have to
guarantee that the validation status is set to false in case of power loss. That is, the only
observable variables are val and its primed counterpart.

We define an assertion function I2 of (P2, P
′
2) such that we have I2(ae, a

′
e) = >

and I2(ax, a
′
x) = (val = val). It is easy to that I2 is weakly extendible, which means

that if a card tear occurs and the configurations of the runs at (ae, a
′
e) satisfies I2, then

both runs will emit the same event, which is AbruptcheckPIN and they both terminate in
compatible states.

Finally we have to prove that for every finite run of P1 with end state σ, there is a
finite run of P ′

1 with end state σ′, and vice versa, such that (σ, σ′) satisfies I2(ae, a
′
e).

Since I2(ae, a
′
e) is satisfied by every state, then we have finished our proof. ut

Proving RCRs between an FSP and a TDS is challenging due to the features of the
language of the TDS. A TDS is written in a subset of Java Card [15], which includes
transient and persistent memory as well as transaction mechanism. When a card tear
occurs, data stored in persistent memory will be kept in the memory, while those stored
in transient memory will be lost. Variables whose values are stored in persistent memory
are called persistent variables, while those whose values are stored in transient memory
are called transient variables.

Transactions are managed by methods beginTransaction, commitTransaction, and
abortTransaction with standard functionalities. The depth of a transaction is at most 1.
When a transaction is in progress, the updates of persistent variables are conditional, in
the sense that the updates will be materialized if commitTransaction is called. Regardless
a transaction is in progress or not, the updates of transient variables are unconditional.
To model card tears and transactions, we use the desugaring method in [9]. Each com-

mand in the TDS is a Java method, and desugaring the command means translating the
method into the same form as that of the FSP, that is, the method has a big try-catch
construct. The catch construct sets all transient variables to their default values, and
cancel the updates of persistent variables if the card tear occurs when a transaction is in
progress.

One might have to relax Definition 2.2 of RCRs to prove RCRs between an FSP and
a TDS. Let us consider the following toy commands:

P1:

x := 5;
y := 6;

P2:

ε

P ′
1:

if (inTrans) return ERROR;
xb := x′;
yb := y′;
inTrans := >;
x′ := 6;
y′ := 5;
inTrans := ⊥;

P ′
2 :

if (inTrans) {
x′ := xb;
y′ := yb;

}

The programs (or transition graphs) P1 and P2 constitute the try and catch parts
of the FSP, respectively. (P2 has no instruction.) Similarly for P ′

1 and P ′
2 of the desug-

ared form of the TDS. Suppose that x′ and y′ are observable persistent variables that
correspond to x and y, respectively. The variables xb and yb are back-up variables for
x′ and y′. The boolean variable inTrans indicates whether a transaction is in progress or
not; assume that it is false at the entry of P ′

1. In case of abrupt terminations, we want to
ensure that the above correspondence holds. To this end, we have to assert at the entries
of P2 and P ′

2 the assertion φ below:

(¬inTrans ⇒ x = x′ ∧ y = y′) ∧ (inTrans ⇒ x = xb ∧ y = yb)

For every finite runR′ of P ′
1 from a state satisfying inTrans = ⊥, there is a finite runR

of P1 such that the final configurations of the runs satisfy φ. For example, if R′ reaches
the middle of transaction, e.g., the entry of y′ := 6, thenR simply stays at the entry of
P1. However, showing the other way around is not possible. When a run R reaches the
entry of y := 6, then there is no finite run R′ of P ′

1 such that the final configurations
satisfy φ. Thus, according to Definition 2.2 there is no RCR between the commands.

To handle such an above case, one can relax Definition 2.2. That is, we only require
that for every run R of P T from a configuration γ, there is a run R′ of PS from a
configuration γ′, where γ and γ ′ are compatible, such thatR andR′ are observationally
equivalent. The drawback of this relaxed definition is that if P T does not terminate
and the assertion at the entries of abrupt graphs is valid, then there is always an RCR
between P T and PS . Nevertheless, with this relaxed definition, we can still preserve
security properties for S in T , as shown in the following section.

5 Property Preservation

In this section we show how security properties of the SPM can be preserved in the FSP
using RCRs. Property preservation between the FSP and the TDS can be explained in
the same way. We are only concerned with security properties that can be characterized
as partial correctness properties: a procedure P is partially correct with respect to a

precondition α and a postcondition β, denoted by {α}P{β}, if for every run of P from
a state satisfying α and reaching an exit configuration, this configuration satisfies β.

Consider again the application models S and T and the one-to-one correspondences
Obsp, Obsf , Obsa, Obsc described at the beginning of Section 4. We show property
preservation by the following theorem:

THEOREM 5.1 Let α and β be, respectively, a precondition and a postcondition for a
procedure P S such that {α}P S{β}. Let α′ and β′ be, respectively, a precondition and
a postcondition for a procedure P T such that the assertions

Obsc ⇒ (α⇔ α′)
(Obsp ∧ ε = PassP) ∨ (Obsf ∧ ε = FailP) ∨ (Obsa ∧ ε = AbruptP) ⇒ (β ⇔ β′)

are valid. If there is an RCR between P S and P T , then {α′}P T{β′}. ut

As an example, consider again the command and assertions in Example 4.1. Sup-
pose that the property that we want to preserve is as follows: for any run of checkPIN,
the value of variable val at the exit configuration of the run is true if and only if the run
emits a PasscheckPIN event.

Let ψ be the assertion (val = > ⇔ ε = PasscheckPIN) and ϕ be the conjunction
of the following assertions: (1) MAX > 0, (2) 0 ≤ trial ≤ MAX, and (3) trial <

MAX ⇒ val = ⊥. The above property can be expressed as a partial correctness property
{ϕ}checkPIN{ψ}. One can use standard Floyd-Hoard proof technique [6, 8] to prove
the property for both the SPM and the FSP.

Suppose that we have proved that the property holds for the SPM. We have shown
in Example 4.1 that there is an RCR between the command checkPIN of the SPM and
of the FSP. Let P be the command checkPIN in the FSP. Recall again the assertions
φ1, . . . , φ6 in the example. Given an assertion α, let us denote by p(α) the assertion
obtained from α by replacing each variable in α with its primed notation. Now, since
the following assertions

∧5
i=1 φi ⇒ (ϕ ⇔ p(ϕ))

(
∧6

i=1 φi ∧ (ε = PassP ∨ ε = FailP)) ∨ (φ2 ∧ ε = AbruptP) ⇒ (ψ ⇔ p(ψ))

are valid, then by Theorem 5.1 we have {p(ϕ)}P{p(ψ)}.

6 Related Work and Conclusion

We developed a method for proving RCRs in the CC EAL7 certification of smart-card
applications. We presented a modelling framework by which the representations of the
SPM, the FSP, and the TDS can be modelled uniformly. Our framework is an exten-
sion of the modelling framework of procedural programs in [18], in the sense that we
model abrupt behavior of procedures. Our definition of RCRs is mutual simulations be-
tween two application models. We apply the theory of inter-program properties in [16]
for proving RCRs and providing certificates about them. The theory has been used for
proving properties in translation validation approach to compiler verification [13, 19,
16]. In this paper we have shown another venue for the application of the theory. The
application is beneficial since the theory provides a notion of certificate, which is es-
sential in the CC EAL7 certification.

There have been a few works on formal specification and verification in the CC
framework; closely related to ours is [4]. Their work is based on B method. Their defi-
nition of RCRs is similar to ours, in the sense that, for each command, they have a map-
ping between input-output relationships of two application models. Their work does
not address complex data abstractions like our PIN, and their commands do not con-
tain loops. However, their work has gone beyond ours in the sense that they included a
model of Java Card API for APDU commands [15].

Another related work is by Heitmeyer et. al. on verifying enforcement of data sepa-
ration in the kernel of a software-based embedded device [7]. Similar to ours, their work
uses a state machine model consisting of events as a specification. Concrete code is par-
tition into event code, trusted code, and other code. Event code corresponds to an event
in the state-machine specification and such code is annotated with preconditions and
postconditions. Their work construct two mappings: one is between events of the state
machine and of the code, and the other is between assertions describing preconditions
and postconditions of corresponding events. RCRs are proved for each corresponding
events, that is, the precondition and the postcondition of an event in the code imply,
respectively, the precondition and postcondition of the corresponding event in the spec-
ification. In their work, event code contains no loops, and they do not prove the relation
between the code and its precondition and postcondition. Moreover, the mapping be-
tween assertions is based only on syntactic matching. Unlike ours, their work deals with
real C code.

Other works on the CC certification have not addressed RCRs, or have only given
little efforts on RCRs [3, 17]. One distinguish feature in our work that has not been
addressed by others is proving property preservation using RCRs.

There has been some work related to the specification and verification of smart-
card applications, but not in the CC certification. Paper [14] describes a verification of
Mondex electronic purse based on abstract state machine (ASM). The work is not in the
CC, but it uses a notion of refinement simulation between ASMs to show correctness of
a concrete implementation. The operations (similar to commands) in Mondex are simple
and contains no loops and no complex data abstractions. The work in [2] describes
a case study in the specification and verification of an electronic purse application.
The work is concerned only with the specification and verification of commands in the
implementation code. The work can complement our work in proving properties of the
implementation code.

In this paper we do not address RCRs between the TDS and the implementation
code. We assume that existing work on certified and certifying compilers [11, 13] can be
used to provide RCRs between the TDS and the implementation code. We are currently
developing certification tools based on the method described in this paper. We take JML
approach [10] to specifying assertion function. That is, we use special comments to put
labels denoting program points in the programs, and write the assertion function in a
separate file. We use off-the-shelf data-flow analyses, such as global value numbering,
to assist users in defining assertion functions, so that users only concentrate on one-to-
one correspondences between observable variables. We are developing heuristics based
on observable events to alleviate the burdens of specifying paths in weak verification

conditions; this is the topic of our future work. Assertions in the verification conditions
can then be proved using SMT solvers, such as Yices [5].

References

1. Common Criteria for Information Technology Security Evaluation, 2007. Version 3.1,
CCMB-2007-09-003.

2. C.-B. Breunesse, N. Cataño, M. Huisman, and B. Jacobs. Formal methods for smart cards:
an experience report. Sci. Comput. Program., 55(1-3):53–80, 2005.

3. Boutheina Chetali and Quang-Huy Nguyen. Industrial use of formal methods for a high-level
security evaluation. In Formal Methods, pages 198–213, 2008.

4. Frédéric Dadeau, Marie-Laure Potet, and Régis Tissot. A B formal framework for security
developments in the domain of smart card applications. In Security Conference, pages 141–
155, 2008.

5. Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic solver for
DPLL(T). In Computer Aided Verification, pages 81–94, 2006.

6. Robert W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Proceedings of
Symposium in Applied Mathematics, pages 19–32, 1967.

7. Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John McLean. Formal spec-
ification and verification of data separation in a separation kernel for an embedded system.
In CCS ’06: Proceedings of the 13th ACM conference on Computer and communications
security, pages 346–355, New York, NY, USA, 2006. ACM.

8. C. A. R. Hoare. An axiomatic basis for computer programming. CACM, 12(10):576–580,
1969.

9. E.-M.G.M. Hubbers and E. Poll. Reasoning about card tears and transactions in Java Card.
In M. Wermelinger and T. Margaria-Steffen, editors, Fundamental Approaches to Software
Engineering, 7th International Conference, FASE 2004, volume 2984 of LNCS, pages 114–
128. Springer-Verlag, 2004.

10. G. Leavens and Y. Cheon. Design by contract with JML, 2003.
11. Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with

a proof assistant. SIGPLAN Not., 41(1):42–54, 2006.
12. Iman Narasamdya and Michaël Périn. Certification of smart-card applications in common

criteria. Technical Report TR-2008-14, Verimag, September 2008.
13. M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of the FLoC

Workshop on Run-Time Result Verification, Trento, Italy, July 1999.
14. Gerhard Schellhorn, Holger Grandy, Dominik Haneberg, and Wolfgang Reif. The mondex

challenge: Machine checked proofs for an electronic purse. In FM, pages 16–31, 2006.
15. Sun Micro systems, Inc, Palo Alto, California. Java Card 3.0 Platform Specification, 2008.

http://java.sun.com/javacard/3.0/.
16. A. Voronkov and I. Narasamdya. Proving inter-program properties. Technical Report TR-

2008-13, Verimag, 2008.
17. M. Wilding, D. A. Greve, and D. Hardin. Efficient simulation of formal processor models.

Formal Methods in System Design, 18(3):233–248, 2001.
18. Anna Zaks and Amir Pnueli. CoVaC: Compiler validation by program analysis of the cross-

product. In FM, pages 35–51, 2008.
19. Lenore D. Zuck, Amir Pnueli, and Benjamin Goldberg. VOC: A methodology for the trans-

lation validation of optimizing compilers. J. UCS, 9(3):223–247, 2003.

