
Certifying Deadlock-freedom for BIP Models

Jan Olaf Blech and Michaël Périn
Verimag Laboratory, Université de Grenoble, France

Abstract

The BIP framework provides a methodology supported
by a tool chain for developing software for embedded sys-
tems. The design of a BIP system follows the decomposition
in behavior, interaction and priority. The first step com-
prises the division of desired behavior of a system into com-
ponents. In a second step interactions and their priorities
are added between the components. Finally, machine code
is generated from the BIP model. While adding interactions
it is possible to overconstrain a system resulting in poten-
tial deadlocks. The tool chain crucially depends on an au-
tomatic tool, D-Finder, which checks for deadlock-freedom.

This paper reports on guaranteeing the correctness of
the verdict of D-Finder. We address the problem of for-
mally proving deadlock-freedom of an embedded system in
a way that is comprehensible for third party users and other
tools. We propose the automatic generation of certificates
for each BIP model declared safe by D-Finder. These cer-
tificates comprise a proof of deadlock-freedom of the BIP
model which can be checked by an independent checker. We
use the Coq theorem prover as certificate checker. Thus,
bringing the high level of confidence of a formal proof to
the deadlock analysis results.

With the help of certificates one gets a deadlock-freedom
guarantee of BIP models without having to trust or even
take a look at the deadlock checking tool. The proof of
deadlock-freedom fundamentally relies on the computation
of invariant properties of the considered BIP model which
is carried out by D-Finder and serves as basis for certifi-
cate generation. Encapsulating these invariants into certifi-
cates and checking them is the most important subtask of
our methodology for guaranteeing deadlock-freedom.

1 Introduction

In many areas the development of embedded systems is
shifting to software development methodologies working at
high levels of abstraction known as Model Driven Engineer-
ing. The goal is to develop a model of a system, conduct
analyses, perform simplifications and refinement at a high

abstraction level and finally automatically generate an im-
plementation. The approach crucially depends on the cor-
rectness of the tools used in the development tool chain.

In this paper we present our work on automatic gener-
ation and checking of certificates in the form of machine
checkable proofs ensuring deadlock-freedom, to increase
the reliability of the BIP tool chain used in development of
software for embedded systems.

BIP [BBS06] is a software framework designed for
building embedded systems consisting of heterogeneous
components. It is characterized by three modeling layers:
behavior of components encoded as transition systems ex-
tended with variables, interactions between components re-
alized via communication ports and priority rules which re-
duce non-determinism between interactions (BIP stands for
Behaviors + Interactions + Priorities). Apart from code gen-
eration the BIP tool chain comprises static analyses tools
for checking properties like deadlock-freedom. Deadlock-
freedom can be difficult to establish and is especially crucial
for systems with complex component interaction. There-
fore, BIP models are analyzed using the D-Finder [BBSN08]
tool to discover potential deadlocks. It does either regard a
BIP model as deadlock-free or provide counterexample(s)
comprising configurations in which a BIP model might en-
counter a deadlock. D-Finder consists of a static ana-
lyzer discovering invariant properties of components and a
model-checker guaranteeing the unreachability of potential
deadlock configurations. Among other application areas the
BIP language has been successfully applied in the synthesis
of robot controllers [BGL+08, BGI+09].

We propose a certifying approach to guarantee deadlock-
absence in BIP models. This means that we generate
for each successful run indicating deadlock-freedom of D-
Finder a certificate – a proof of deadlock-freedom. This
proof comprises as a main ingredient a proof that invari-
ants provided by D-Finder for the BIP model hold. Thus,
each successful usage of the D-Finder tool for a particu-
lar system is verified independently after it has been per-
formed. Using this certificate, the BIP model, an easily
human understandable formalization of deadlock-freedom,
and the Coq [The07] theorem prover serving as certificate
checker, developers and users can ensure themselves of the

1

deadlock-freedom without having to trust D-Finder, its al-
gorithms and implementation.

For checking certificates we rely on the proof-checker
of the higher-order theorem prover Coq. Certificates are
proof scripts for Coq. The Coq proof-checker is realized as
a type-checking algorithm based on very few typing rules
which restricts possible deductions to well-formed mathe-
matical reasoning. Hence, the proof is correct if each proof
step respects the typing constraints (see [BD04] for more
details).

Coq features the ability to formalize semantics of BIP
models and the notion of deadlock-freedom in a human
readable way. Our Coq representations of BIP models di-
rectly reflect all modeling decisions without containing fur-
ther abstractions. Thus, it can serve as basis to verify vari-
ous transformations and analysis results.

Using our methodology the only parts that have to be
trusted to guarantee deadlock-freedom of a BIP model are
the proof checker of the Coq theorem prover, our notion of
deadlock-freedom and semantics definition. Using certify-
ing techniques has – among others – the following advan-
tages over non certifying verification techniques: Easiness,
we do not need to verify the algorithm and implementation
of the D-Finder tool, but only distinct runs. Robustness,
if the implementation of D-Finder changes slightly there is
often no need to adapt certificate generation. Privacy there
is no need to give access to the D-Finder tool and its algo-
rithms to guarantee deadlock-freedom. Hence, the know-
how of the tool designers does not have to be revealed.

Compared to algorithm verification the drawbacks of
our methodology comprise the fact that we do not have a
proof of completeness: there might be BIP models which
D-Finder regards as deadlock-free, but we can not prove it.

1.1 Our Approach

An excerpt of the BIP methodology is shown in Figure 1.
BIP models are developed using analysis tools including D-
Finder. Finally we generate executable code. In principle
each development process from a BIP model to a deploy-
able embedded system using the sketched tool chain could
be proved correct – including all transformations of BIP
models. The correctness proof could be distributed within
a certificate. In this paper, however, we restrict ourselves to
generating and checking certificates for the analysis results
of D-Finder.

Our methodology for generating certificates for D-
Finder results guaranteeing the absence of deadlocks is de-
picted in Figure 2. BIP models are passed to D-Finder, the
certificate generation (denoted CertGen) and the Coq the-
orem prover. The D-Finder tool computes invariants and
uses them to decide whether a system is deadlock free or
not. The certificate comprises these invariants and a proof

script that is generated by the certificate generator. The Coq
theorem prover uses this proof script to prove that a BIP
model is indeed deadlock-free.

1.2 Proving Deadlock-freedom

Generating and checking D-Finder certificates in a theo-
rem prover means to establish and conduct a formal proof
of deadlock-freedom.

We break the task of verifying deadlock-freedom for
a given BIP model BM down into different subtasks as
shown in Figure 4. The proofs for these subtasks are then
composed to prove the top line. In the figure, we use
the following definition of enabled states capturing BIP
states from which a state transition to a succeeding state is
possible:

EnabledBM (s) def= ∃s′.(s, s′) ∈ JBMKBIP ∧ s 6= s′

The JBMKBIP denotes the set of possible state transitions
of the BIP model BM thereby defining its semantics.
Furthermore, we use the definition shown in Figure 3 of
reachable states of a BIP system BM with s0 as initial state
of BM . It is inductively defined demanding that the initial
state is reachable and each state that can be reached from it
via transitive state transitions.

The task of verifying deadlock-freedom is performed by
using the refinement shown in Figure 4:

1. The top line in the figure shows our notion of deadlock-
freedom for a BIP model. We ultimately want to prove
this line. We demand that all reachable states have at
least one succeeding state. Thus, there is no reachable
state where no transition is possible.

2. Instead of a direct proof, we can conduct the proof
shown in the second line. Furthermore, we have to
prove that whenever one proves the second line cor-
rect the first line is implied. The second line refor-
mulates the notion of enabled states and puts a pred-
icate ¬DISBM instead. DISBM characterizes the
states of a BIP model where no further transition is
possible. It is provided by D-Finder but can be com-
puted in an easy way using the definition of deadlock-
freedom. Thus, we may verify that the second line
holds for a BIP model BM . To show that the first
line is indeed implied – guaranteeing the more human
readable notion of correctness – we have to show that
∀s.¬DISBM (s) −→ EnabledBM (s) holds.

3. The third line introduces as a transitive step invariants
provided by D-Finder: II (interaction invariant) and
CI (component invariant) which characterize the be-
havior of a BIP model. These invariants are part of the

2

Interaction CodeComponent

generation

D−Finder &

other static analysis tools

modeling modeling

Figure 1. BIP Tool Chain (Excerpt)

D−Finder

BIP model

invariants

CertGen

certificate

Theorem Prover

notion of deadlock−freedom

(checked deadlock−freedom)

proved deadlock−freedom

Figure 2. Generating Certificates for D-Finder

ReachableStatesBM (s) def=
s = s0

∨ ∃s′.ReachableStatesBM (s′) ∧ (s′, s) ∈ JBMKBIP

}
smallest fixpoint

Figure 3. Reachable States Definition

1. ∀s.ReachableStatesBM (s) −→ EnabledBM (s)

↑ (∀s.¬DISBM (s) −→ EnabledBM (s))

2. ∀s.ReachableStatesBM (s) −→ ¬DISBM (s)

↑ transitivity

3. (a) ∀s.ReachableStatesBM (s) −→ II(s) ∧ CI(s) and (b) ∀s.II(s) ∧ CI(s) −→ ¬DISBM (s)

Figure 4. Verifying Deadlock-freedom: The Meta-Proof

3

certificate. To use this line in our proofs we have to
show that it also implies the first line.

The decomposition of the proof follows the way D-Finder
computes its results. The correctness of that decompo-
sition is verified within our certificates and is not a hard
task. Most tasks in this proof scheme are relatively easy
from a technical point of view. D-Finder uses a stan-
dard SMT-solver to handle the verification of the property
(3b) ∀s.II(s) ∧ CI(s) −→ ¬DISBM (s) itself.

On the other hand D-Finder computes the invariants II and
CI using sophisticated algorithms in a way that the property
(3a) should hold. However, no a posteriori verification is
conducted. Thus, the automatic derivation of a proof script
to prove that
(3a) ∀s.ReachableStatesBM (s) −→ II(s) ∧ CI(s)

really holds in a time efficient way is a challenging subtasks
of our methodology. It captures the correctness of the main
task of the D-Finder tool: finding invariants. The work pre-
sented in the rest of this paper concentrates on this task.

1.3 Related Work

To the authors’ knowledge certifying deadlock-freedom
with higher-order theorem provers has not been studied be-
fore.

Most related to our work is Proof-Carrying Code
(PCC) [Nec97], a method to guarantee that executable code
fulfills a policy on access and resource management. Ex-
ecutable code is given together with a certificate that is
checked before execution. The checker consists of 23000
lines of C code. Foundational PCC [WAS03] uses a small
set of axioms and a simpler proof-checker (803 lines of C
code). Thus, the size of the trusted computing base is re-
duced. However, the formalization of the statement to be
proved is expressed in pure λ-calculus which is difficult for
humans to read.

Furthermore, the translation validation ap-
proach [PSS98, ZPFG03] generating certificates for
compilation correctness was influential to us. In trans-
lation validation the compiler is regarded as a black box
with at most minor instrumentation. For each compiler
run, source and target program are passed to a separate
checking unit comprising an analyzer generating proofs.
These proofs are checked with a proof checker. A trans-
lation validation approach and implementation for the
GNU C compiler is described in [Nec00]. A translation
validation checker (called validator) has been formally
verified in [TL08]. Compilers generating proof scripts for
Isabelle and Coq as certificates have been studied for code
generation [BG08, BPH07].

The generation of proofs to certify the verdict of verifi-
cation tools was first introduced in [Nam01] for a model

checker. The certificates are given in an ad’hoc proof-
system that is not supported by a proof-checker. Informative
certificates (support sets) are used in [TC02]. They contain
information about a model-checker’s computations. How-
ever, support sets can only be checked using a dedicated
special purpose tool. In [HJM+02], the BLAST model-
checker for C code is extended keeping track of justifica-
tions from some simplification steps performed. A com-
plete proof of correctness is not the goal in this work.

In this paper we focus on achieving three important prop-
erties of certificates and their checking/proving: 1) human
readable specifications, 2) production of complete proofs
in a format supported by 3) a trustable proof/certificate-
checker (Coq is accepted by some certification authorities).

1.4 Overview

The remainder of this paper is structured as follows: Sec-
tion 2 presents our formalization of BIP models in Coq. In
Section 3 we discuss how to verify invariants appearing in
our certificates. Section 4 introduces the certificate gener-
ation mechanism. An evaluation is given in Section 5. We
draw a conclusion and present our directions of future work
in Section 6.

2 Formalizing BIP Models in Coq

In this section we describe the formalization of BIP mod-
els in the language of the Coq theorem prover. BIP models
are composed of atomic components [BBS06] [BBSN08]
that can be composed into larger components. Components
are state transition systems. They communicate via ports
with each other. An atomic component Bi can be repre-
sented by a tuple (Li, Pi, Ti, Vi) such that

• Vi is a set of variables,

• Li = {l0i , l1i , l2i , ..., lki } is a set of control locations,

• Pi is a set of ports,

• Ti ⊆ Li × (Xi → bool) × (Xi → Xi) × Pi × Li is
a set of transitions, each one comprising a location, a
guard function g : Xi → bool, an update function f :
Xi → Xi, a port, and a succeeding location. The Xi

denote variable valuations: mappings from variables
Vi to their values.

The atomic components of a BIP model are con-
nected via ports. They communicate via interactions.
Thus, a composed component is defined as a tuple
((B1, ..., Bn), Interactions) comprising the atomic com-
ponents and a fixed set of possible interactions. A single
interaction is a tuple (p1, . . . , pn) where pi is a port of the
atomic component Bi or skip if Bi is not involved in this

4

interaction. For consistency reasons (c.p. definition of en-
abled states EnabledBM in Section 1.2) we require that at
least one component is participating in an interaction. Thus,
their is no interaction comprising only skip values. The
state of an atomic component Bi is a tuple (li, xi) compris-
ing a location and variables’ valuations. The state of a BIP
model is the product of the state of its atomic components:
(L1 ×X1)× . . .× (Ln ×Xn).

Figure 5 shows the definition of the reachable states of
a BIP model for a fixed initial state s0. The first rule says
that the initial state is reachable. The second inference rule
captures the entire semantics of BIP. A state transition from
a given reachable state is possible if there is an interaction
such that there is in each component either a possible state
transition labeled with the port or the component is not in-
volved in the interaction. Furthermore, in order to do a tran-
sition of an atomic component the appropriate guard func-
tions must evaluate to true. To derive the succeeding states
the update functions are performed on the variable valua-
tions of the involved atomic components. Not shown in the
definition are priorities of interactions – which can be added
relatively easy. The presented definition is the Coq real-
ization of the reachable states definition from Section 1.2.
Most importantly it contains the definition of the state tran-
sition relation JBMKBIP .

An Example Figure 6 shows a temperature control sys-
tem [BBSN08, ACH+95] modeled in BIP. It controls the
cooling of a reactor by moving two independent control
rods. The goal is to keep the temperature between θ = 100
and θ = 1000. When the temperature reaches the maximum
value one of the rods has to be used for cooling. The BIP
model comprises three atomic components one for each rod
and one for the controller. Each contains a state transition
system. Transitions can be labeled with guard conditions,
variable valuation updates, and a port. The components in-
teract via ports thereby realizing cooling, heating, and time
elapsing interactions. To give a look and feel for the gener-
ated Coq formalization of the example system, the encod-
ing of the set of state transitions in the atomic Controller
component are shown in Figure 7: a set of tuples, each con-
sisting of a location, a guard function, an update function, a
port, and a succeeding location, concatenated by :: is de-
fined. fun X => E is the Coq syntax for a function taking
an argument X and returning some expression E.

Currently neither the D-Finder tool nor our certifying
deadlock-freedom methodology works on the full BIP lan-
guage. Most notably we have omitted hierarchical compo-
sition of components.

3 Proving Inductive Invariants

As described in Section 1.2 the task of showing that an
invariant holds for all reachable states of a BIP model is
an important part of our methodology to prove deadlock-
freedom of a BIP model. In this section we examine a tech-
nique that addresses this task.

Inductive Invariant Verification Invariants of BIP mod-
els are given as state predicates that take a BIP state s and
return a boolean value. A state predicate φ is an invariant
of a BIP model iff ∀s. ReachableStates (s)⇒ φ(s). This is
proved by performing an induction resulting in the follow-
ing subgoals that need to be proved:

• φ(s0) holds,

• ∀s, s′. φ(s) ∧ (s, s′) ∈ [[BM]]BIP −→ φ(s′) holds

Typical predicates used as invariants on our BIP models
have the following form:

φ
def=
∧
CI1(s)

∧
...
∧
CIn(s)

∧
II1(s)

∧
...
∧
IIm(s)

The CI and II predicates are made up of disjunc-
tions of basic properties. The CI predicates are component
invariants: one for each atomic component. The first of the
three component invariants of the example from Figure 6 is
the following fact (ati states that we are at location i):

CI1
def= (atl1 ∧ 0 ≤ t1) ∨ (atl2 ∧ 3600 ≤ t1)

The II predicates capture invariant properties of in-
teractions thereby putting some constraints on the entire
system. In the example from Figure 6 the synchronization
through interactions makes some component locations
incompatible (for instance assuming an initial state of
the form (l1, , l5, , l3,), any state (l1, , l6, , l3,) is not
reachable). Instead of considering the whole conjunction
φ, we prove each CI i, II i independently, since smaller
invariants are easier automatically verified. Note, that
component invariants only contain information on the
behavior of the corresponding components. For verifying
interaction invariants all components involved have to
be regarded. Nevertheless, for each component, these
invariants only contain information indicating whether an
interaction is triggered or not. Thus, for each component
involved in an interaction they can contain less information
than in the corresponding component invariants. This keeps
interaction invariants small and makes the verification
feasible. Invariants are verified using a case distinction to
cope with the disjunction of basic properties appearing in
the invariant. Specialized Coq tactics are applied to verify
the different cases.

5

ReachableStates (s0)
where s0 ∈ (L1 ×X1)× . . .× (Ln ×Xn)

ReachableStates ((l1, x1), ..., (ln, xn)) (p1, . . . , pn) ∈ Interactions
∀i ∈ {1..n}. (li, gi, fi, pi, l

′
i) ∈ Ti ∧ (gi(xi) ∧ x′

i = fi(xi)) ∨ (li = l′i ∧ pi = skip ∧ x′
i = xi)

ReachableStates ((l′1, x
′
1), ..., (l

′
n, x

′
n))

Figure 5. Definition of Reachable States in Coq

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1
t1 := 0

rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2
t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1 Controller Rod2

Figure 6. Temperature Control System

Definition Controller : list (L * (X -> Prop) * (X -> X) * P * L) :=
(L5, fun X => X(theta)=1000, fun X => X, cool, L6)::
(L5, fun X => X(theta)<1000, fun X => fun v => if v==theta then X(theta)+1 else X(v), tick, L5)::
(L6, fun X => X(theta)=100 , fun X => X, heat, L5)::
(L6, fun X => X(theta)>100 , fun X => fun v => if v==theta then X(theta)-2 else X(v), tick, L6)::
nil.

Figure 7. Coq Representation of an Atomic Component

6

A more detailed version of this algorithm is described in
a technical report [BP08].

4 Generating the Certificates

The certificates stating deadlock-freedom of a BIP model
are generated for each BIP-model individually. They are
provided in a textual representation and formulated in the
description and proof language of the Coq theorem prover.
The specification part of this language has expressional fea-
tures similar to those of functional programming languages
plus logical formulae. Proof scripts consist of tactic appli-
cations. Tactic applications transform proof goals into other
proof goals, split proof goals into several subgoals, or solve
a prove goal. They can be combined in various ways result-
ing in new tactics. Most notably are sequential composition
and the application of tactics to all subgoals of another tac-
tic.

A certificate, written in the Coq specification and prov-
ing language, comprises three parts:

1. A Coq representation of the BIP model,

2. A lemma stating an invariant definition accompanied
by a proof script. The proof script algorithmically
encapsulates the proof that the invariant does indeed
hold,

3. A lemma stating correctness of deadlock-freedom ac-
companied by a proof script. This proof script refer-
ences the lemma stating the invariants from above.

Most interesting to this paper is the second item. The proof
scripts for it are automatically generated by a small pro-
gram as shown in Figure 2. It takes the BIP model (more
precisely the number of atomic components, their transi-
tion rules, possible interactions between components) and
the definition of the invariant to be proved correct as argu-
ments. These arguments come with various name and type
definitions appearing in the BIP model which are used in the
script generation, too. The following parts are generated by
the certificate generator denoted CertGen in Figure 2:

1. First we state the actual property to be proved in a
lemma: Figure 8 shows the Coq statement to prove for
establishing that the property CI1 stated in Section 2
is indeed an invariant. The definition of the invariant
is provided by D-Finder and can be used with minor
syntactical modifications for our purposes.

2. The proof starts with an induction on the definition of
reachable states. The base case is resolved by a spe-
cial tactic without any system specific adaptation of
the proof script.

3. Based on the structure of the invariant the proof script
is generated in a way that it splits the invariant into
independently verifiable subgoals.

4. Based on the interactions defined in the BIP model,
each subgoal is split again into further subgoals real-
izing a case distinction on the possible interactions be-
tween components.

5. Most crucial in the generation of the proof script is
another splitting of subgoals into additional subgoals.
This realizes a case distinction on possible transitions.
In principle we have to examine every combination of
transitions from each atomic component to fulfill the
semantics state transition rule (cp. Figure 5 of Sec-
tion 2). The proof script is generated such that we
exploit the previous case distinctions to resolve con-
tradictions in the assumptions as soon as possible to
prevent an exponential blowup of cases.

6. Each remaining case represents a very distinct execu-
tion step of a BIP model. Showing that the invariant
holds afterwords is done by some specialized proof
tactics which depend on the class of guards used in the
BIP model. In the examples we encountered, guards
are arithmetic (in-)equalities and the subgoals are dis-
carded by calls to the Coq inequality and quantifier
elimination solver, called omega.

An excerpt of the generated proof script realizing the fifth
generation step for the example BIP model from Section 2
is shown in Figure 9. We present it to show that the case dis-
tinctions follow the shape of the BIP model and to highlight
the regularity of proof scripts. Three blocks for the main
part realizing case distinctions for the three components can
be distinguished. The ... contains a number of definition
names occurring in component and invariant definitions. In-
side the three blocks the case distinctions – triggered by the
innermost destruct tactic calls – on possible transitions
inside the three components takes place: the handling of the
four possible transitions can be observed. Each component
in a tuple from a transition rule defintion is assigned a name
using the tactic injection. Since we are dealing with
one transition at a time, we reuse the names in the handling
of different transitions. At the end of each block, contra-
dictions that have occurred so far are resolved via the try
congruence tactic.

Note, that there is no need for humans to read the proof
script to validate a certificate. To be convinced, a sceptical
human evaluator who trusts the Coq proof checker, only has
to check the formalization of the BIP semantics, the formal-
ization of deadlock-freedom and the automatic translation
of BIP models into their Coq representation. If something
declared by D-Finder as invariant of a BIP model turns out
not to be invariant, the proof fails. Our certification process

7

Lemma CI1_invariant:
forall s,
ReachableStates s -> (at_l1 s /\ 0 <= val_t1 s) \/ (at_l2 s /\ 3600 <= val_t1 s).

Figure 8. Generated Proof Script: Stating the Lemma

cbv delta[...] in I;
try injection I as Iport3 Iport2 Iport1 ;
(destruct C1 as [(C1a,(C1b,x1behavior))|(C1a’,(C1b’,x1behavior))];
[

unfold set_In in C1a;
unfold Rod1transrel in C1a; cbv delta[...] in C1a;
unfold In in C1a;
destruct C1a as [C1a1 | [C1a1 | [C1a1 | [C1a1 | False]]]] ;
[

injection C1a1 as succlabel1 port1 f1behavior g1behavior prevlabel1 |
injection C1a1 as succlabel1 port1 f1behavior g1behavior prevlabel1 |
injection C1a1 as succlabel1 port1 f1behavior g1behavior prevlabel1 |
injection C1a1 as succlabel1 port1 f1behavior g1behavior prevlabel1 |
try contradiction]

|
idtac]); try congruence;
(destruct C2 as [(C2a,(C2b,x2behavior))|(C2a’,(C2b’,x2behavior))];
[

unfold set_In in C2a;
unfold Rod2transrel in C2a; cbv delta[...] in C2a;
unfold In in C2a;
destruct C2a as [C2a1 | [C2a1 | [C2a1 | [C2a1 | False]]]] ;
[

injection C2a1 as succlabel2 port2 f2behavior g2behavior prevlabel2 |
injection C2a1 as succlabel2 port2 f2behavior g2behavior prevlabel2 |
injection C2a1 as succlabel2 port2 f2behavior g2behavior prevlabel2 |
injection C2a1 as succlabel2 port2 f2behavior g2behavior prevlabel2 |
try contradiction]

|
idtac]); try congruence;
(destruct C3 as [(C3a,(C3b,x3behavior))|(C3a’,(C3b’,x3behavior))];
[

unfold set_In in C3a;
unfold Controllertransrel in C3a; cbv delta[...] in C3a;
unfold In in C3a;
destruct C3a as [C3a1 | [C3a1 | [C3a1 | [C3a1 | False]]]] ;
[

injection C3a1 as succlabel3 port3 f3behavior g3behavior prevlabel3 |
injection C3a1 as succlabel3 port3 f3behavior g3behavior prevlabel3 |
injection C3a1 as succlabel3 port3 f3behavior g3behavior prevlabel3 |
injection C3a1 as succlabel3 port3 f3behavior g3behavior prevlabel3 |
try contradiction]

|
idtac]); try congruence;

Figure 9. Generated Proof Script: Case Distinction on Transitions

8

revealed some weaknesses of D-Finder such as over simpli-
fications due to external simplifiers used in D-Finder.

5 Evaluation

We have implemented a generator for Coq representa-
tions of BIP models in Java using the abstract syntax tree
representation provided by the BIP tool chain. The proof
script generation is implemented in Ocaml.

Most component and interaction invariants are inductive
and can be verified by the sketched principle. However,
some approximations are performed by D-Finder that can
result in non-inductive invariants. In such cases, we manu-
ally strengthen them by adding further constraints thereby
making them inductive.

At the moment, we are able to prove the correctness of
generated invariants for several case studies including the
example in Section 2 and classical textbook examples for
potentially deadlock prone systems like different variations
of the dining philosophers. Proving some of the invari-
ants from the example correct requires their strengthening
to make them inductive. We had to add the following prop-
erties to the invariants: t1 ≥ 0, t2 ≥ 0, and the fact that
if we are at location l6, θ is even. The missing properties
where discovered by manually analyzing the feedback of
the Coq theorem-prover. D-Finder generates for the ex-
ample three components and seven interaction invariants
(see [BBSN08] for a more detailed description of their gen-
eration). The time to verify them takes a few minutes using
the proof scripts from our certificates. However, the second
part, the proof that the invariants imply deadlock-freedom
fails for this example, since it indeed contains a deadlock.
Up till now, our work did reveal that some of the gener-
ated invariants are not as strong as expected. This leads
to the detection of a larger number of potential deadlocks,
but is no safety critical error since no BIP model is asserted
deadlock-free that does contain deadlocks.

6 Conclusion and Perspectives

In this paper we extended the BIP tool chain such that
it generates certificates proving deadlock-freedom of BIP
models. We identified the process of proving invariants pro-
vided by D-Finder as the main task of certifying deadlock-
freedom. We implemented a first solution to conduct this
task that consists in automatically generating proof scripts
establishing the validity of the verdict provided by D-Finder.
We use the Coq higher-order theorem prover as certifi-
cate checker. In addition to its high-reliability, it enables
a human readable formalization of the notion of deadlock-
freedom and BIP semantics.

We implemented a certificate generator that produces
proof scripts proving invariants on BIP models which is the

most challenging task in certifying D-Finder computations.
Furthermore, we implemented the translation of BIP models
into Coq representations.

As central contribution of this paper, we showed that it
is possible to increase the confidence in a verification tool
which is part of a tool chain for the synthesis of embedded
systems by generating independently checkable certificates.
Directions for future work comprise but are not limited to
the following topics:

• Extension of D-Finder, our semantics formalization,
and the proof-generator such that they are able to work
on hierarchical components and use typed ports be-
tween them. Furthermore, the possibility to enrich BIP
expressions with C++ code demands the development
of Coq tactics to deal with the most commonly used
features as a long term goal.

• Implement the other tasks as shown in our meta-proof
(cp. Figure 4). For efficient large scale certificate gen-
eration and checking this might involve the extension
of Yices, a SMT-solver, to produce certificates that are
compatible with and can be used inside Coq certifi-
cates. This work could be reused in other certificate
generating scenarios involving SMT-solvers.

• Non-inductiveness of invariants obstructs their auto-
matic verification. The development of automated
techniques to deal with this problem such as strength-
ening of invariants by adding additional constraints is
also a subject we want to address in the future.

• To achieve a fully certifying tool chain including code
generation for BIP models we identified the following
tasks:

1. Proving the conformance of the BIP engine to the
formal BIP semantics.

2. Establishing a certifying code generation phase
for BIP. This could be a very long term goal. It
does not only involve to deal with optimizations
appearing during code generation, but also han-
dling language features like multi threading for
which to the authors’ knowledge up till now no
practicably applicable methodology exists.

3. Proving the race-freedom between components.
Race conditions are eliminated using priorities in
BIP.

Furthermore, we want to investigate, if we can take advan-
tage of the structure of a BIP model comprising subsystems
to improve the structure and checking of certificates.

Acknowledgements Many thanks to Saddek Bensalem,
Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis for
helpful discussions.

9

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs,
T. A. Henzinger, P. H. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Com-
puter Science, 138(1):3–34, 1995.

[BBSN08] S. Bensalem, M. Bozga, J. Sifakis, and T-
H. Nguyen. Compositional Verification for
Component-based Systems and Application.
ATVA 2008 6th International Symposium on
Automated Technology for Verification and
Analysis, October 20-23, 2008, Seoul, South
Korea.

[BBS06] A. Basu, M. Bozga, and J. Sifakis. Modeling
heterogeneous real-time components in BIP. In
SEFM, pages 3–12, 2006.

[BD04] Y. Bertot and P. Castéran. Interactive The-
orem Proving and Program Development.
Coq’Art: The Calculus of Inductive Construc-
tions. Springer-Verlag, 2004.

[BG08] J. O. Blech and B. Grégoire. Certifying code
generation with coq. In Proceedings of the
7th Workshop on Compiler Optimization meets
Compiler Verification (COCV 2008), Budapest,
Hungary, ENTCS. April 2008.

[BGI+09] S. Bensalem, M. Gallien, F. Ingrand, I.
Kahloul, T-H. Nguyen. Toward a More
Dependable Software Architecture for Au-
tonomous Robots. IEEE Robotics and Automa-
tion Magazine. to appear

[BGL+08] A. Basu, M. Gallien, C. Lesire, T-H. Nguyen,
Saddek Bensalem, Felix Ingrand and Joseph
Sifakis. Incremental Component-Based Con-
struction and Verfication of a Robotic System.
ECAI 2008 The 18th European Conference on
Artificial Intelligence, Patras, Greece, July 21 -
25, 2008.

[BP08] J. O. Blech and M. Périn. Towards certifying
deadlock-freedom for BIP models. Technical
Report TR-2008-1, Verimag, September 2008.

[BPH07] J. O. Blech and A. Poetzsch-Heffter. A certi-
fying code generation phase. In Proceedings
of the 6th Workshop on Compiler Optimiza-
tion meets Compiler Verification (COCV 2007),
Braga, Portugal, ENTCS, March 2007.

[HJM+02] T. A. Henzinger, R. Jhala, R. Majumdar, G. C.
Necula, G. Sutre, and W. Weimer. Temporal-
safety proofs for systems code. Proc of CAV
’02, 2002. Springer-Verlag.

[Nam01] K. S. Namjoshi. Certifying model checkers.
Proc of CAV ’01, 2001. Springer-Verlag.

[Nec97] G. C. Necula. Proof-carrying code. In POPL
’97, pages 106–119, New York, NY, USA,
1997. ACM.

[Nec00] G. C. Necula. Translation validation for an
optimizing compiler. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI),
pages 83–95, 2000.

[PSS98] A. Pnueli, M. Siegel, and E. Singerman. Trans-
lation validation. Lecture Notes in Computer
Science, 1384:151+, 1998.

[TC02] L. Tan and R. Cleaveland. Evidence-based
model checking. Proc of CAV ’02, London,
UK, 2002. Springer-Verlag.

[TL08] J-B. Tristan and X. Leroy. Formal Verifica-
tion of Translation Validators: A Case Study
on Instruction Scheduling Optimizations. In
POPL ’08: Conference record of the 35th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, New York, NY, USA,
2008. ACM Press.

[The07] The Coq Development Team. The Coq Proof
Assistant Reference Manual – Version 8.1,
2007. http://coq.inria.fr.

[WAS03] D. Wu, A.W. Appel, and A. Stump. Foun-
dational proof checkers with small witnesses.
Proceedings of the 5th ACM SIGPLAN inter-
national conference on Principles and practice
of declaritive programming, 2003.

[ZPFG03] L. Zuck, A. Pnueli, Y. Fang, and B. Gold-
berg. VOC: A methodology for the transla-
tion validation of optimizingcompilers. Journal
of Universal Computer Science, 9(3):223–247,
March 2003.

10

