Invariants and Robustness of BIP models (on-going work)

Jan-Olaf Blech Thanh-Hung Nguyen Michaël Périn

Université de Grenoble / VERIMAG

WING'09

Context: Certification of Deadlock-Freeness

BIP is used in designing controllers for critical systems: robot and sattelite mission, autonomous systems (drones), airbus cabine.

BIP example: temperature controller (1/2)

BIP example: temperature controller (2/2)

Behavior Interactions Priorities semantics

• Behavior of a component = transition system $I \xrightarrow{port \ guard? \ x:=e} I' \quad for \ synchronized \ action$

$$I \xrightarrow{\underline{C} \text{ guard? } x := e} I'$$
 for internal action of comp. C

• Interation between components = set of ports

$$\{\textit{C}_1\}, \ldots, \{\textit{C}_n\}, \{\textit{cool}, \textit{cool}_1\}, \{\textit{cool}, \textit{cool}_2\}, \{\textit{tick}, \textit{tick}_1, \textit{tick}_2\}, \ldots$$

• Priorities between interations = partial order on interactions

$$\{\textit{tick}, \textit{tick}_1, \textit{tick}_2\} < \{\textit{cool}, \textit{cool}_1\}, \{\textit{cool}, \textit{cool}_2\} < \{\textit{C}_1\}, \ldots, \{\textit{C}_n\}$$

Proof of Deadlock-Freeness for a BIP model BM

$$\begin{aligned} \textit{DeadlockFree}(s) &\stackrel{\textit{def}}{=} \exists s'. \ (s,s') \in \llbracket BM \rrbracket \land s \neq s' \\ \textit{Reachable}(s) &\stackrel{\textit{def}}{=} s \in \textit{Init}_{BM} \ \lor \ \exists s'. (s',s) \in \llbracket BM \rrbracket \land \underbrace{\textit{Reachable}(s')}_{\textit{recursive}} \end{aligned}$$

```
proof scheme for \forall s.Reachable(s) \Longrightarrow DeadlockFree(s)
\uparrow transitivity
DFINDER: DG \begin{cases} \forall s.DG(s) \Longrightarrow DeadlockFree(s) & [PO_1] \text{ YICES} \\ \forall s.Reachable(s) \Longrightarrow DG(s) \\ \uparrow transitivity \end{cases}
DFINDER: \Phi \begin{cases} \forall s.Reachable(s) \Longrightarrow \Phi(s) & [PO_2] \text{ COQ} \\ \forall s.\Phi(s) \Longrightarrow DG(s) & [PO_3] \text{ YICES} \end{cases}
```

DFINDER invariants

Component and interaction invariants have the shape

$$\bigvee$$
 (@loc $\wedge \psi$ (variable))

- Component invariants are local to component: they only mention the locations of one component $CI_1 \stackrel{def}{=} (@I_1 \wedge t_1 \geq 0) \vee (@I_2 \wedge t_1 \geq 3600)$
- Interaction invariants are global properties of the system $II_1 \stackrel{\text{def}}{=} (@I_1 \wedge t_1 = 0) \vee (@I_3 \wedge t_2 = 0) \\ \vee (@I_5 \wedge 101 \leq \theta \leq 1000) \\ \vee (@I_6 \wedge (\theta = 1000 \vee 100 \leq \theta \leq 998))$

Proof strategy for DFINDER invariants

$$\Phi = \underbrace{CI_1 \wedge \ldots \wedge CI_n}_{Component \ inv.} \wedge \underbrace{II_1 \wedge \ldots \wedge II_k}_{Interaction \ inv.}$$

- CI and II invariants are claimed to be inductive.
- The proof of $\forall \mathbf{s}$. $Reachable(\mathbf{s}) \Longrightarrow \Phi(\mathbf{s})$ [PO₂] can be conducted on each CI_i and II_j separately.
- The recursive definition of Reachable leads to n + k simple proofs by induction:

(initially)
$$Init_{BM}(s) \Longrightarrow CI_i(s)$$

(stability) $CI_i(s) \land (s,s') \in \llbracket BM \rrbracket \Longrightarrow CI_i(s')$

 Those implications can be proved by COQ tactics or an SMT-solver Is that all?

Thank you for your attention

The claim "DFINDER computes inductive invariants" would be true

without the many abstraction steps used in the implementation

Is that all?

Thank you for your attention

The claim "DFINDER computes inductive invariants" would be true without the many abstraction steps used in the implementation

DFINDER in brief

- An interaction invariant corresponds to a minimal trap in Petri-net: "a set of locations that cannot be deserted".
 It is, by construction, inductive, but ...
- A component invariant is computed using the strengthening sequence, until reaching a ϕ_n sufficiently precise to prove the desired property φ

$$\left\{ \begin{array}{lcl} \Phi_0 & = & \textit{true} \\ \Phi_{i+1} & = & \textit{Init}_{BM} \vee \alpha \circ \textit{post}_{BM}(\Phi_i) \end{array} \right.$$

Without abstraction α , all Φ_i are inductive invariants.

 This abstraction consists in ∃ quantifier elimination from the definition of post:

$$post_{BM}(\Phi)(s) \stackrel{\text{def}}{=} \exists s', \Phi(s') \land (s, s') \in \llbracket BM \rrbracket$$

A guiding example

Loop acceleration and ∃ elimination

$$(I_2) \xrightarrow{\theta=100?} (I_3) \xrightarrow{\theta<1000? \ \theta:=\theta+2} (I_3)$$

• The assertion on θ at location l_3 is captured by the formula:

$$\overbrace{\theta_0 = 100}^{l_2 \rightarrow l_3} \wedge \underbrace{\begin{array}{c} \dots \text{ n times } l_3 \rightarrow l_3 \\ (\theta = \theta_0) \sqrt{\exists \mathbf{n} > \mathbf{0}, \theta_0 + (n-1) \times 2 < 1000 \wedge \theta = (\theta_0 + n \times 2)} \end{array}}_{}$$

- Elimination of $\exists n$ should produce $2|\theta$. It is needed to get an inductive invariant, but discarded: $2|\theta \notin \mathbf{D}_{\text{FINDER}}$ logic.
- Can be retrieved by recording unrepresentable facts.

The approach

- avoid new costly developments
- at most, modify DFINDER strategy
 - narrowing more strengthening steps ?
 - export additional useful informations to CERTGEN?
 - weakening drive DFINDER to find weaker (strong enough) inductive invariants?

This talk is about weakening without modifying the too

The approach

- avoid new costly developments
- at most, modify DFINDER strategy
 - narrowing more strengthening steps ?
 - export additional useful informations to CERTGEN?
 - weakening drive DFINDER to find weaker (strong enough) inductive invariants?

This talk is about weakening without modifying the tool

The intuition: domain specific invariants

BIP is used in several projects to design controllers of critical systems based on **measurements by sensors**. robot and sattelite mission, autonomous systems, airbus cabine.

- A sensor returns a value **t** corresponding to the actual value θ with an error δ in $[-\Delta, +\Delta]$: $\mathbf{t} = \theta + \delta$
- We are looking for invariants that resist to variation of δ in $[-\Delta, +\Delta]$.

Definition: Φ is a robust invariant of BM

if
$$\forall \delta \in [-\Delta, +\Delta], \ \Phi[\mathbf{t}/\theta + \delta]$$
 is an invariant of BM

 The idea of robustness appears in tube semantics of timed automata [Gupta, Henzinger, Jagadeesan, HRTS'97]

Over-approximating the guard of BM wrt.
$$\Delta$$

$$\overbrace{t=100}^{\text{BM}} \quad \rightarrow \quad \theta + \delta = 100 \quad \rightsquigarrow \quad 100 - \Delta \leq \theta \leq 100 + \Delta$$

$$\begin{array}{c} \dots \bigvee 2|\theta \wedge @l_6 \wedge 100 \leq \theta \leq 998 \\ & \downarrow \\ \\$$

Over-approximating the guard of BM wrt.
$$\Delta$$

$$\overbrace{t=100}^{\text{BM}} \quad \rightarrow \quad \theta + \delta = 100 \quad \rightsquigarrow \quad 100 - \Delta \leq \theta \leq 100 + \Delta$$

Over-approximating the guard of BM wrt.
$$\Delta$$

$$\overbrace{t=100}^{\text{BM}} \quad \rightarrow \quad \theta + \delta = 100 \quad \rightsquigarrow \quad 100 - \Delta \leq \theta \leq 100 + \Delta$$

$$\begin{array}{c} \dots \bigvee 2|\theta \wedge @l_6 \wedge 100 \leq \theta \leq 998 & \text{inductive,} \neg \text{ robust} \\ & \downarrow & \uparrow & \text{strengthening: recording} \\ \text{II}_1 \stackrel{\text{def}}{=} \dots \bigvee @l_6 \wedge 100 \leq \theta \leq 998 & \text{DFINDER inv.} \neg \text{ inductive} \\ & \downarrow & \text{weakening: } \triangle \\ \dots \bigvee @l_6 \wedge 99 - \Delta \leq \theta \leq 998 + \Delta & \text{inductive, robust} \\ & \downarrow & \\ & \varphi & \text{Desired property to prove} \end{array}$$

Over-approximating the guard of BM wrt. Δ $\underbrace{\mathsf{BM}}_{t=100} \quad \rightsquigarrow \quad \theta + \delta = 100 \quad \rightsquigarrow \quad \underbrace{100 - \Delta < \theta < 100 + \Delta}_{}$

Over-approximating the guard of BM wrt. Δ $\underbrace{\mathsf{BM}}_{t=100} \quad \rightsquigarrow \quad \theta + \delta = 100 \quad \rightsquigarrow \quad \underbrace{100 - \Delta < \theta < 100 + \Delta}_{}$

 $\widetilde{t} = 100 \quad \rightsquigarrow \quad \theta + \delta = 100 \quad \rightsquigarrow \quad 100 - \Delta < \theta < 100 + \Delta$

Over-approximating the guard of BM wrt. Δ **BM** BM_{Δ}

↓ ↑ strengthening: recording $\downarrow \downarrow$ weakening: \triangle

Desired property to prove

Over-approximating the guard of BM wrt. $\boldsymbol{\Delta}$

$$\underbrace{t = 100}_{\text{BM}} \quad \Leftrightarrow \quad \theta + \delta = 100 \quad \Leftrightarrow \quad \underbrace{100 - \Delta \leq \theta \leq 100 + \Delta}_{\text{BM}}$$

Over-approximating the guard of BM wrt. $\boldsymbol{\Delta}$

$$\underbrace{t = 100}_{\text{BM}} \quad \Leftrightarrow \quad \theta + \delta = 100 \quad \Leftrightarrow \quad \underbrace{100 - \Delta \leq \theta \leq 100 + \Delta}_{\text{BM}}$$

Relation between invariants

weaker & robust likely inductive

non-inductive invariant

stronger & ¬ robust inductive

Conclusion & Open questions

Intuition & benefits

- Invariants of systems with sensors must be robust
- More appropriate invariants without modifying the tool
- Less precise guards → less sensitive to abstraction → inductive invariants
- A guess that is a posteriori certified by CERTGEN
- by automatic generation of a deductive proof by induction

Open questions for future work

- Robustness: Just a trick? or a sound notion?
- Less precise property → inductiveness

A realistic example

