Invariants and Robustness of BIP models (on-going work)

Jan-Olaf Blech Thanh-Hung Nguyen Michaël Périn

Université de Grenoble / VERIMAG
WING'09

Context: Certification of Deadlock-Freeness

BIP is used in designing controllers for critical systems: robot and sattelite mission, autonomous systems (drones), airbus cabine.

BIP example: temperature controller (1/2)

BIP example: temperature controller (2/2)

Behavior Interactions Priorities semantics

- Behavior of a component $=$ transition system

$$
\begin{array}{ll}
I \xrightarrow{\text { port guard? } \mathrm{x}:=\mathrm{e}} I^{\prime} & \text { for synchronized action } \\
I \xrightarrow{\text { C guard? } \mathrm{x}:=\mathrm{e}} I^{\prime} & \text { for internal action of comp. C }
\end{array}
$$

- Interation between components $=$ set of ports
$\left\{C_{1}\right\}, \ldots,\left\{C_{n}\right\},\left\{\mathrm{cool}^{2}\right.$, cool $\left._{1}\right\},\left\{\mathrm{cool}^{2}, \mathrm{cool}_{2}\right\},\{$ tick, tick 1, tick 2$\}, \ldots$
- Priorities between interations $=$ partial order on interactions
$\left\{\right.$ tick, tick $_{1}$, tick $\}<\left\{\mathrm{cool}_{2}, \mathrm{cool}_{1}\right\},\left\{\mathrm{cool}, \operatorname{cool}_{2}\right\}<\left\{C_{1}\right\}, \ldots,\left\{C_{n}\right\}$

Proof of Deadlock-Freeness for a BIP model BM

DeadlockFree(s) $\stackrel{\text { def }}{=} \exists s^{\prime} .\left(s, s^{\prime}\right) \in \llbracket B M \rrbracket \wedge s \neq s^{\prime}$
Reachable(s) $\stackrel{\text { def }}{=} s \in \operatorname{Init}_{B M} \vee \exists s^{\prime} .\left(s^{\prime}, s\right) \in \llbracket B M \rrbracket \wedge \underbrace{\text { Reachable }}_{\text {recursive }}\left(s^{\prime}\right)$

proof scheme for \forall s.Reachable(s) \Longrightarrow DeadlockFree(s)

介 transitivity
DFINDER: DG $\left\{\forall s . D G(s) \Longrightarrow\right.$ DeadlockFree(s) [PO $\left.{ }_{1}\right]$ YICES $\forall s$.Reachable $(s) \Longrightarrow D G(s)$

介 transitivity
DFINDER : $\Phi\left\{\begin{array}{lll}\forall \mathbf{s} . \text { Reachable }(\mathbf{s}) \Longrightarrow \Phi(\mathbf{s}) & {\left[\mathrm{PO}_{2}\right]} & \text { COQ } \\ \forall s . \Phi(s) \Longrightarrow D G(s) & {\left[\mathrm{PO}_{3}\right]} & \text { YICES }\end{array}\right.$

DFINDER invariants

- Component and interaction invariants have the shape

$$
\bigvee(@ l o c \wedge \psi(\text { variable }))
$$

- Component invariants are local to component: they only mention the locations of one component $C l_{1} \stackrel{\text { def }}{=}\left(@ I_{1} \wedge t_{1} \geq 0\right) \vee\left(@ l_{2} \wedge t_{1} \geq 3600\right)$
- Interaction invariants are global properties of the system $I_{1} \stackrel{\text { def }}{=}\left(@ I_{1} \wedge t_{1}=0\right) \vee\left(@ l_{3} \wedge t_{2}=0\right)$
$\vee(@ / 5 \wedge 101 \leq \theta \leq 1000)$
$\vee\left(@ /_{6} \wedge(\theta=1000 \vee 100 \leq \theta \leq 998)\right)$

Proof strategy for DFINDER invariants

$$
\Phi=\underbrace{C I_{1} \wedge \ldots \wedge C I_{n}}_{\text {Component inv. }} \bigwedge \underbrace{I I_{1} \wedge \ldots \wedge I_{k}}_{\text {Interaction inv. }}
$$

- Cl and II invariants are claimed to be inductive.
- The proof of $\forall \mathbf{s}$. Reachable $(\mathbf{s}) \Longrightarrow \Phi(\mathbf{s}) \quad\left[\mathrm{PO}_{2}\right]$ can be conducted on each $C l_{i}$ and $I I_{j}$ separately.
- The recursive definition of Reachable leads to $n+k$ simple proofs by induction:

$$
\begin{array}{ll}
\text { (initially) } & \operatorname{Init}_{B M}(s) \Longrightarrow C I_{i}(s) \\
\text { (stability) } & C I_{i}(s) \wedge\left(s, s^{\prime}\right) \in \llbracket B M \rrbracket \Longrightarrow C I_{i}\left(s^{\prime}\right)
\end{array}
$$

- Those implications can be proved by COQ tactics or an SMT-solver

Is that all ?

Thank you for your attention

The claim "DFINDER computes inductive invariants" would be
without the many abstraction steps used in the implementation

Is that all ?

Thank you for your attention

The claim "DFINDER computes inductive invariants" would be true
without the many abstraction steps used in the implementation

DFINDER in brief

- An interaction invariant corresponds to a minimal trap in Petri-net: "a set of locations that cannot be deserted". It is, by construction, inductive, but ...
- A component invariant is computed using the strengthening sequence, until reaching a ϕ_{n} sufficiently precise to prove the desired property φ

$$
\left\{\begin{aligned}
\Phi_{0} & =\text { true } \\
\Phi_{i+1} & =\operatorname{Init}_{B M} \vee \alpha \circ \operatorname{post}_{B M}\left(\Phi_{i}\right)
\end{aligned}\right.
$$

Without abstraction α, all Φ_{i} are inductive invariants.

- This abstraction consists in \exists quantifier elimination from the definition of post:

$$
\operatorname{post}_{B M}(\Phi)(s) \stackrel{\text { def }}{=} \exists \mathbf{s}^{\prime}, \Phi\left(s^{\prime}\right) \wedge\left(s, s^{\prime}\right) \in \llbracket B M \rrbracket
$$

A guiding example

Loop acceleration and \exists elimination

$$
\left(I_{2}\right) \xrightarrow{\theta=100 ?}\left(/_{3}\right) \xrightarrow{\theta<1000 ? \theta:=\theta+2}\left(/_{3}\right)
$$

- The assertion on θ at location I_{3} is captured by the formula:

$$
\begin{aligned}
& \overbrace{\theta_{0}=100}^{I_{2} \rightarrow I_{3}} \wedge \\
& \overbrace{\theta=\theta_{0}}^{0 \text { or } \ldots} \ \overbrace{\exists \mathbf{n}>\mathbf{0}, \theta_{0}+(n-1) \times 2<1000 \wedge \theta=\left(\theta_{0}+n \times 2\right)}^{\ldots . \mathbf{n} \text { times } I_{3} \rightarrow I_{3}})
\end{aligned}
$$

- Elimination of $\exists n$ should produce $2 \mid \theta$. It is needed to get an inductive invariant, but discarded: $2 \mid \theta \notin$ DFinder logic.
- Can be retrieved by recording unrepresentable facts.

The approach

- avoid new costly developments
- at most, modify DFINDER strategy
(1) narrowing
more strengthening steps ?
(2) recording
export additional useful informations to CertGen?
(3) weakening
drive DFINDER to find weaker (strong enough) inductive invariants ?

This talk is about
weakening without modifying the tool

The approach

- avoid new costly developments
- at most, modify DFINDER strategy
(1) narrowing
more strengthening steps ?
(2) recording
export additional useful informations to CertGen?
(3) weakening
drive DFINDER to find weaker (strong enough) inductive invariants ?

This talk is about weakening without modifying the tool

Weakening vs. Strengthening

The intuition: domain specific invariants

BIP is used in several projects to design controllers of critical systems based on measurements by sensors. robot and sattelite mission, autonomous systems, airbus cabine.

- A sensor returns a value t corresponding to the actual value θ with an error δ in $[-\Delta,+\Delta]: \mathbf{t}=\theta+\delta$
- We are looking for invariants that resist to variation of δ in $[-\Delta,+\Delta]$.

Definition: Φ is a robust invariant of $B M$

$$
\text { if } \forall \delta \in[-\Delta,+\Delta], \quad \Phi[\mathbf{t} / \theta+\delta] \text { is an invariant of BM }
$$

- The idea of robustness appears in tube semantics of timed automata [Gupta, Henzinger, Jagadeesan, HRTS'97]

How to drive DFINDER toward robust invariants ?

Over-approximating the guard of BM wrt. \triangle

$$
\overbrace{t=100}^{\mathrm{BM}} \rightsquigarrow \theta+\delta=100 \rightsquigarrow \overbrace{100-\Delta \leq \theta \leq 100+\Delta}^{\mathrm{BM}_{\Delta}}
$$

V $2 \mid \theta \wedge @ / 6 \wedge 100 \leq \theta \leq 998$ inductive, \neg robust

$\mathbf{I I}_{\mathbf{1}} \stackrel{\text { def }}{=} \ldots \bigvee @ I_{6} \wedge 100 \leq \theta \leq 998$ DFINDER inv.

inductive, robust
φ

Desired property to prove

How to drive DFINDER toward robust invariants ?

Over-approximating the guard of BM wrt. \triangle

$$
\overbrace{t=100}^{\mathrm{BM}} \rightsquigarrow \theta+\delta=100 \rightsquigarrow \overbrace{100-\Delta \leq \theta \leq 100+\Delta}^{\mathrm{BM}_{\Delta}}
$$

V $2 \mid \theta \wedge @ /_{6} \wedge 100 \leq \theta \leq 998$ inductive, \neg robust

$\mathrm{I}_{1} \stackrel{\text { def }}{=} \ldots \bigvee \mathrm{V}_{6} \wedge 100 \leq \theta \leq 998 \quad$ DFINDER inv. \neg inductive

inductive, robust
φ

Desired property to prove

How to drive DFINDER toward robust invariants ?

Over-approximating the guard of BM wrt. \triangle

$$
\overbrace{t=100}^{\mathrm{BM}} \rightsquigarrow \theta+\delta=100 \rightsquigarrow \overbrace{100-\Delta \leq \theta \leq 100+\Delta}^{\mathrm{BM}_{\Delta}}
$$

V $2 \mid \theta \wedge @ / \sigma \wedge 100 \leq \theta \leq 998$ inductive, \neg robust

$\Downarrow \quad \uparrow \quad$ strengthening: recording
$\mathbf{I I}_{1} \stackrel{\text { def }}{=} \ldots \bigvee @ /_{6} \wedge 100 \leq \theta \leq 998$
DFINDER inv. \neg inductive
$\vee 0 / 6 \wedge 99-\Delta \leq \theta \leq 998+\Delta$
inductive, robust
\Downarrow
φ

Desired property to prove

How to drive DFINDER toward robust invariants ?

Over-approximating the guard of BM wrt. \triangle

$$
\overbrace{t=100}^{\mathrm{BM}} \rightsquigarrow \theta+\delta=100 \rightsquigarrow \overbrace{100-\Delta \leq \theta \leq 100+\Delta}^{\mathrm{BM}_{\Delta}}
$$

$\ldots \bigvee 2 \mid \theta \wedge @ \|_{6} \wedge 100 \leq \theta \leq 998$
\Downarrow
$\|_{1} \stackrel{\text { def }}{=} \ldots V @ I_{6} \wedge 100 \leq \theta \leq 998$
V $06 \wedge 99-\Delta \leq \theta \leq 998+\Delta$
\Downarrow
φ Desired property to prove

How to drive DFINDER toward robust invariants ?

Over-approximating the guard of BM wrt. \triangle

$$
\overbrace{t=100}^{\mathrm{BM}} \rightsquigarrow \theta+\delta=100 \rightsquigarrow \overbrace{100-\Delta \leq \theta \leq 100+\Delta}^{\mathrm{BM}_{\Delta}}
$$

$\ldots \bigvee 2 \mid \theta \wedge @ / 6 \wedge 100 \leq \theta \leq 998$ inductive, \neg robust
\Downarrow
$\|_{1} \stackrel{\text { def }}{=} \ldots V @ I_{6} \wedge 100 \leq \theta \leq 998$
V $06 \wedge 99-\Delta \leq \theta \leq 998+\Delta$
\Downarrow
φ
$\uparrow \quad$ strengthening: recording
DFinder inv. \neg inductive weakening: \triangle
inductive, robust

Desired property to prove

How to drive DFINDER toward robust invariants ?

Over-approximating the guard of BM wrt. \triangle

$$
\overbrace{t=100}^{\mathrm{BM}} \rightsquigarrow \theta+\delta=100 \rightsquigarrow \overbrace{100-\Delta \leq \theta \leq 100+\Delta}^{\mathrm{BM}_{\Delta}}
$$

$\ldots \bigvee 2 \mid \theta \wedge @ / 6 \wedge 100 \leq \theta \leq 998$ inductive, \neg robust
$\Downarrow \quad \uparrow \quad$ strengthening: recording
$\|_{1} \stackrel{\text { def }}{=} \ldots V @ I_{6} \wedge 100 \leq \theta \leq 998$
\Downarrow
V $06 \wedge 99-\Delta \leq \theta \leq 998+\Delta$
\Downarrow
φ

DFInder inv. \neg inductive weakening: Δ
inductive, robust

Desired property to prove

How to drive DFINDER toward robust invariants ?

Over-approximating the guard of BM wrt. \triangle

$$
\overbrace{t=100}^{\mathrm{BM}} \rightsquigarrow \theta+\delta=100 \rightsquigarrow \overbrace{100-\Delta \leq \theta \leq 100+\Delta}^{\mathrm{BM}_{\Delta}}
$$

$\ldots \bigvee 2 \mid \theta \wedge @ /_{6} \wedge 100 \leq \theta \leq 998$ inductive, \neg robust
\Downarrow
$\mathbf{I I}_{1} \stackrel{\text { def }}{=} \ldots \bigvee @ /_{6} \wedge 100 \leq \theta \leq 998$
\Downarrow
$\ldots \bigvee @ /_{6} \wedge 99-\Delta \leq \theta \leq 998+\Delta$
\Downarrow
φ
$\uparrow \quad$ strengthening: recording
DFinder inv. \neg inductive weakening: Δ inductive, robust

Desired property to prove

How to drive DFINDER toward robust invariants ?

Over-approximating the guard of BM wrt. \triangle

$$
\overbrace{t=100}^{\mathrm{BM}} \rightsquigarrow \theta+\delta=100 \rightsquigarrow \overbrace{100-\Delta \leq \theta \leq 100+\Delta}^{\mathrm{BM}_{\Delta}}
$$

$\ldots \bigvee 2 \mid \theta \wedge @ / 6 \wedge 100 \leq \theta \leq 998$ inductive, \neg robust
$\Downarrow \quad \uparrow \quad$ strengthening: recording
$\|_{1} \stackrel{\text { def }}{=} \ldots \bigvee @ /_{6} \wedge 100 \leq \theta \leq 998 \quad$ DFINDER inv. \neg inductive $\Downarrow \quad \downarrow \quad$ weakening: Δ
$\ldots \bigvee @ I_{6} \wedge 99-\Delta \leq \theta \leq 998+\Delta$ inductive, robust
φ

Relation between invariants

weaker \& robust likely inductive
non-inductive invariant
stronger \& \neg robust inductive

Conclusion \& Open questions

Intuition \& benefits

- Invariants of systems with sensors must be robust
- More appropriate invariants without modifying the tool
- Less precise guards \rightsquigarrow less sensitive to abstraction \rightsquigarrow inductive invariants
- A guess that is a posteriori certified by CertGen
- by automatic generation of a deductive proof by induction

Open questions for future work

- Robustness: Just a trick? or a sound notion?
- Less precise property $\stackrel{?}{\Longrightarrow}$ inductiveness

A realistic example

