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Abstract

Verification techniques have become popular in software and hardware development. They in-
crease confidence and potentially provide rich feedback. However, with increasing complexity verifi-
cation techniques are more likely to contain errors themselves. Many verification tools use invariants
of the considered systems for their analysis. These invariants are often generated by the verification
tools in a first step. The correctness of these invariants is crucial for the analysis results.

In this paper we address the problem of automatically generating realistic and guaranteed correct
invariants. Since invariant generation mechanisms are error-prone, after the computation of invari-
ants by a verification tool, we formally prove that the generated invariants are indeed invariants of
the considered systems using a higher-order theorem prover and automated techniques. We regard
invariants for BIP models. BIP (behavior, interaction, priority) is a language for specifying asyn-
chronous component based systems. Proving that an invariant holds often requires an induction on
possible system execution traces. For this reason, apart from generating invariants that precisely
capture a system’s behavior, inductiveness of invariants is an important goal.

We establish a notion of robust BIP models. These can automatically be constructed from our
original non-robust BIP models and over-approximate their behavior. We motivate that invariants of
robust BIP models capture the behavior of systems in a more natural way than invariants of corre-
sponding non-robust BIP models. Robust BIP models take imprecision due to values delivered by
sensors into account. Invariants of robust BIP models tend to be inductive and are also invariants of
the original non-robust BIP model. Therefore they may be used by our verification tools and it is
easy to show their correctness in a higher-order theorem prover.

The presented work is applied to verify the results of a deadlock-checking tool for embedded
systems after their computations. Thus, gaining confidence in the provided analysis results.

1 Introduction

Verification tools to ensure properties of complex systems have become popular in many application
areas. One major goal is to guarantee safety and security properties of the considered systems. These
can be computed by generating invariants of the considered systems in a first step and analyzing them.
However, as verification tools become more and more complex it is not always easy to see if they are
themselves working correctly. An incorrect verification tool might state a wrong property about a system.

Guided by a case study of automatically verifying invariants of given systems (BIP models) within
a theorem prover, we introduce a notion of robustness for these systems. The invariants that are subject
to this paper are computed and used by the D-Finder [BBNS08] tool that decides deadlock-freedom
of systems modeled in the BIP language [BBS06]. The BIP language is designed for building real-
time embedded systems consisting of heterogeneous components. Invariants that are both inductive and
capture the behavior of systems in an adequate way are highly desirable for analysis and verification
tools.

In our case study, we require invariants to be inductive to be verified automatically and motivate
techniques that are likely to produce inductive invariants. We establish a notion of robust BIP models.
These take imprecision of values due to physical measurements into account. Invariants of robust systems
are aimed at describing a system’s behavior in an adequate way while preserving the necessary precision
to be used as basis for analysis results. We present a mapping from non-robust to robust systems and
prove that invariants of robust systems are also invariants of the original non-robust systems. This allows
us to reuse invariant based analysis results for these systems.
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Figure 1: Our Methodology

1.1 Our Casy Study: Guaranteeing Correctness of the Results of A Verification Tool

Robust BIP models are used to make the process (called certification) of automatically proving the re-
sults of a deadlock-detection verification tool easier thereby guaranteeing the correctness of its verdict.
The overall approach of this tool and the verification process guaranteeing that its results are correct is
described in the following two paragraphs.

1.1.1 The Deadlock-detection Tool D-Finder and the Certification of its Results

The deadlock-detection tool D-Finder takes BIP models as inputs and decides whether they are deadlock
free. In order to do this, in a first step invariants of these are computed. This is the most sophisticated
step within D-Finder. In addition to D-Finder’s algorithms an external tool: Omega [Ome00] is used
in the invariant generation process to perform quantifier elimination. In a second step these invariants
are checked to be deadlock-free by using the external SMT solver Yices [DM06] and a definition of
deadlock-states.

Verifying that invariants hold is used for guaranteeing the absence of deadlocks in our guiding case
study [BP08, BP08a]. The methodology underlying this case study is depicted in Figure 1. BIP models
are passed to D-Finder, the deadlock-detection tool. In this paper, we do not trust D-Finder in a first
place, but want to establish proofs, that it has indeed worked correctly for each run of this tool. Apart
from detecting deadlocks, a certificate is generated by a some part of the tool (denoted CertGen). This
certificate comprises a proof of deadlock-freedom and is passed to a theorem prover. The D-Finder tool
computes invariants and uses them to decide whether a system is deadlock free or not. Most important to
this paper is the fact, that the certificates contain these invariants and a proof script that is generated by
the certificate generator proving that the invariants do indeed hold. The theorem prover uses this proof
script to prove that a BIP model is indeed deadlock-free.

1.1.2 Proving Deadlock-freedom

To verify that a system is indeed deadlock-free in the theorem prover, we have to check the certificates.
We break this task of verifying deadlock-freedom for a given BIP model BM down into different subtasks
as shown in Figure 2. The proofs for these subtasks are composed to prove the top line. In the figure,
we use the following definition of enabled states capturing BIP states from which a state transition to a
succeeding state is possible:

EnabledBM(s)≡ ∃s′.(s,s′) ∈ JBMKBIP
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1. ∀s.ReachableStatesBM(s)−→ EnabledBM(s)

↑ transitivity

2. ∀s.ReachableStatesBM(s)−→¬DISBM(s) and [PO1] ∀s.¬DISBM(s)−→ EnabledBM(s)

↑ transitivity

3. [PO2] ∀s.ReachableStatesBM(s)−→ ΨBM(s) and [PO3] ∀s.ΨBM(s)−→¬DISBM(s)

Figure 2: Verifying Deadlock-freedom: The Meta-Proof

The JBMKBIP denotes the set of possible state transitions of the BIP model BM thereby defining its
semantics. Furthermore, we use the following definition of reachable states of a BIP system with s0 as
initial state of BM:

ReachableStatesBM(s)≡

s = s0
∃s′.ReachableStatesBM(s′)∧ (s′,s) ∈ JBMKBIP

}
smallest fixpoint

It is inductively defined demanding that the initial state is reachable and each state that can be reached
from it via transitive state transitions.

The task of verifying deadlock-freedom is performed by using the refinement shown in Figure 2:

1. The top line in the figure shows our notion of deadlock-freedom for a BIP model. We ultimately
want to prove this line. We demand that all reachable states have at least one succeeding state.
Thus, there is no reachable state where no transition is possible.

2. Instead of a direct proof, we follow the architecture of D-Finder and take advantage of the in-
variants discovered by D-Finder (ΨBM,¬DISBM): we conduct the proof shown in the second line
consisting of two proof goals. The first goal reformulates the notion of enabled states and puts a
predicate ¬DISBM instead. Thus, we may verify that this goal holds for a BIP model BM. The
second proof goal [PO1] (Proof Obligation 1) states that whenever one proves the first goal cor-
rect, the correctness property of the first line is implied – thereby guaranteeing the more human
readable notion of correctness.

3. The third line splits the first proof goal of the second line into two proof goals [PO2] and [PO3].
This line introduces an invariant ΨBM(s) as a transitive step. This invariant is part of the certificate.
To use this line in our proofs we have to show that it also implies the first line.

The ¬DISBM, and ΨBM are provided by D-Finder.
Most tasks in this proof scheme are relatively easy from a technical point of view. It is sufficient to

prove the three proof obligations and construct the proof for the first line via transitivity of the impli-
cation rule. This, as well as proving [PO1] and [PO3] can easily be done automatically. However, the
generation of the invariant ΨBM(s) can be error prone. Therefore the automatic verification that

[PO2] ∀s.ReachableStatesBM(s)−→ ΨBM(s)
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does hold is a challenging tasks of our methodology. It captures the correctness of the main task of
the D-Finder tool: finding invariants. The work presented in the rest of this paper concentrates on gen-
erating realistic invariants, reports on experiences with case studies and suggests ways to improve the
computation of the invariant thereby making the verification task easier.

1.2 Overview

We introduce the BIP semantics for modeling our systems in Section 2 and present a small example. A
discussion of invariants of BIP models and their properties is given in Section 3. Section 4 introduces
robust BIP models and a motivation for and proofs of their properties. The benefits of robust BIP models
in verifying invariants for our example application scenario is presented in Section 5. Related Work is
discussed in Section 6 .In Section 7 we draw a conclusion and present ideas for future work.

2 BIP Models and Their Semantics

In this section we describe the semantics of BIP models. BIP is a software framework designed for build-
ing embedded systems consisting of heterogeneous components. It is characterized by three modeling
layers: behavior of components encoded as transition systems extended with variables, interactions be-
tween components realized via communication ports and priority rules which reduce non-determinism
between interactions (BIP stands for Behaviors + Interactions + Priorities). Apart from code generation
the BIP tool chain comprises static analyses tools for checking properties like deadlock-freedom.

BIP models are composed of atomic components [BBS06] [BBNS08] that can be composed into
larger components. Components are state transition systems. They communicate via ports with each
other.

Definition 2.1 (Atomic BIP component). An atomic component Bi can be represented by a tuple (Li,Pi,Ti,Vi)
such that

• Vi is a set of variables,

• Li = {l0
i , l1

i , l2
i , ..., lk

i } is a set of control locations,

• Pi is a set of ports,

• Ti ⊆ Li× (Xi → bool)× (Xi → Xi)×Pi×Li is a set of transitions, each one comprising a location,
a guard function g : Xi → bool, an update function f : Xi → Xi, a port, and a succeeding location.
The Xi denote valuation functions: mappings from variables Vi to their values Di.

The guard functions are predicates and are formulated on the variables appearing in an atomic com-
ponent. The following definition describes a language for these predicates:

Definition 2.2 (Guard language). A predicate φ belongs to the guard language iff it is constructed using
the following rules:

φ ::= φ ∧φ | φ ∨φ | ¬φ | e
e ::= e′ < e′ | e′ ≤ e′ | e′ = e′ | e′ 6= e′ | e′ ≥ e′ | e′ > e′

e′ := op | e′+ e′ | e′− e′ | val · e′
op ::= var | val
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Assuming the guard function appears in the ith component, the var ∈ Vi are variables appearing in
it. val ∈ Di denotes some numerical type. The variables var ∈ Vi are mapped to the same type. Typical
types are reals and integers.

The semantic interpretation of the guard language follows the rules of predicate logic and arithmetics.
Note, that the expressability of the guard language corresponds to Presburger arithmetics’ when Di de-
notes integer values.
The atomic components of a BIP model are connected via ports. They communicate via interactions.
Thus, a composed component is defined as a tuple ((B1, ...,Bn), Interactions) comprising the atomic
components and their interactions.
An interaction is a tuple (p1, . . . , pn) where pi is a port of the atomic component Bi or ⊥ if Bi is not
involved in this interaction.
The state of an atomic component Bi is a tuple (li,xi) comprising a location and variables’ valuations.
The state of a BIP model is the product of the state of its atomic components: (L1×X1)× . . .×(Ln×Xn).
A transition relation for BIP models is defined via the following predicate.

Definition 2.3 (Transition Relation). A transition relation for a BIP model BM (denoted JBMKBIP) for
BIP models is defined via the following rule:

(p1, . . . , pn) ∈ Interactions
∀i ∈ {1..n}. (li,gi, fi, pi, l′i) ∈ Bi∧ (gi(xi)∧ x′i = fi(xi))∨ (li = l′i ∧ pi =⊥∧ x′i = xi)

(((l1,x1), ...,(ln,xn)) , ((l′1,x
′
1), ...,(l

′
n,x

′
n))) ∈ JBMKBIP

A state transition from a given reachable state is possible if there is an interaction such that there is in
each component either a possible state transition labeled with the port or the component is not involved
in the interaction. Furthermore, in order to do a transition of an atomic component the appropriate guard
functions must evaluate to true. To derive the succeeding states the update functions are performed on
the valuation functions of the involved atomic components.
Using the transition relation, reachable states of a BIP model are defined in the following definition.

Definition 2.4 (Reachable States). The set ReachableStatesBM(s0) of reachable states of a BIP model
BM with an initial state s0 ∈ (L1×X1)× . . .× (Ln×Xn) is defined via the following inductive rules:

s0 ∈ ReachableStatesBM(s0)

s ∈ ReachableStatesBM(s0) (s,s′) ∈ JBMKBIP

s′ ∈ ReachableStatesBM(s0)

The first rule says that the initial state is reachable. The second inference rule captures the transition
behavior of BIP using the transition relation.

An Example Figure 3 shows a temperature control system [BBNS08, ACH+95] modeled in BIP. It
controls the cooling of a reactor by moving two independent control rods. The goal is to keep the
temperature between θ = 100 and θ = 1000. When the temperature reaches the maximum value one of
the rods has to be used for cooling. The BIP model comprises three atomic components one for each rod
and one for the controller. Each contains a state transition system. Transitions can be labeled with guard
conditions, valuation function updates, and a port. The components interact via ports thereby realizing
cooling, heating, and time elapsing interactions.

5



Invariants and Robustness of BIP Models Blech, Nguyen, Périn
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Figure 3: Temperature Control System

3 Invariants of BIP Models

In this section we discuss invariants for BIP models and motivate desired properties.

Definition 3.1 (Invariant). A predicate I over the states of a BIP model BM is an invariant of BM iff
∀s.ReachableStatesBM(s)−→ I(s)

The invariant ΨBM is composed of component invariants (CI) and interaction invariants (II):

ΨBM
def= CI1∧ ...∧CIn∧ II1∧ ...∧ IIm

The following invariants are computed by D-Finder to approximate the behavior of the components
(component invariants) in the example from Figure 3:

• CI1 = (atl1∧ t1 ≥ 0)∨ (atl2∧ t1 ≥ 3600)

• CI2 = (atl3∧ t2 ≥ 0)∨ (atl4∧ t2 ≥ 3600)

• CI3 = (atl5∧100 ≤ θ ≤ 1000)∨ (atl6∧100 ≤ θ ≤ 1000)

ati is a predicate denoting the fact that we are at location i in a component. In addition to component in-
variants D-Finder computes interaction invariants capturing the behavior induced by interactions between
the atomic components. In addition to component invariants D-Finder generates interaction invariants
which capture the behavior of components interacting with each other. An example for an interaction
invariant for the given BIP model is shown below:

II1 = (atl1∧ t1 = 0)∨ (atl3∧ t2 = 0)∨ (atl5∧101≤ θ ≤ 1000)∨ (atl6∧ (θ = 1000∨100≤ θ ≤ 998))

Definition 3.2 (Inductive Invariants). An invariant I is inductive for a BIP model BM iff

1. It holds for each initial state s0 of BM: I(s0)

2. ∀s s′.I(s)∧ (s,s′) ∈ JBMKBIP −→ I(s′)
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By using the definition of reachable states we can prove the following theorem which is independent of
concrete BIP models:

Theorem 3.1. Every inductive invariant of a BIP model BM is also an invariant of BM.

Both CI1 and CI2 are inductive. CI3 is not inductive because it evaluates to true for a state where
we are at control location l6 (atl6) and θ = 101. But, it does not hold for the succeeding state atl6 and
θ = 99. Note, that since a state where atl6 and θ = 101 is never reached within a real system run, CI3 is
still an invariant.

For verifying invariants during certificate checking we perform an induction on the set of reachable
states. For this reason, it is highly desirable if invariants are inductive.

Making Invariants Inductive by Strengthening We can make invariants inductive by strengthening
them. Given an invariant I we can add some strengthening constraints C to create a stronger invariant
I′. The proof that I′ implies that I holds for a given state s is a trivial application of the conjunction
elimination rule:

I′(s) def= I(s)∧C(s)−→ I(s)

For example CI3 can be made inductive by adding a constraint that at location l6, θ is always divisible
by two (2|θ ). We can now verify the inductive invariant and show that it implies the weaker non-inductive
one. Thus, the non-inductive one, is proven to be an invariant, too.

We have experimented with techniques to strengthen invariants automatically. In many cases it is
possible to “guess” the C constraints that make invariants inductive. The additional constraint could
be constructed following the general method presented in [BM08] that refines the invariant to reach an
inductive one.

However, sometimes strengthening invariants seems artificial. Adding the divisibility constraint men-
tioned above to a variable that represents a physical measure could also indicate some design flaw of the
original system. We should not base the verification of a system on the fact that the temperature measured
by some sensors is an even number.

So, instead of strengthening the constraints on physical measures, we introduce in this paper a way to
model the uncertainty of measurement. We concentrate on finding slightly weaker invariants of systems
that represent the nature of variables depending on physical measurements in a more natural way.

For each invariant there is always a weaker invariant that is inductive: I ≡ true is the weakest invariant
for all BIP models and is inductive.

4 Robust BIP Models

In this section we introduce robust BIP models. Robust BIP models and their invariants are aimed at
describing systems in a more natural way. Specifically, the target of our approach are systems whose
values represent physical measurements. These are performed by sensors, which are usually not exact
but have some tolerance range of imprecision associated with them. The measured value can vary within
this range differing from the actual value. To capture the behavior in BIP models that are based on this
unprecise information, we introduce special sets of measurement variables. Guard functions depending
on an exact measurement variable in a BIP model are changed in a way that they evaluate to true – i.e.
may perform a transition – within a range of unpreciseness to achieve robust BIP models.

Robust BIP models are realized by exchanging guards by robust guards described by a robust guard
language:
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J(φ1∧φ2)K2 = Jφ1K2∧ Jφ2K2 J(φ1∨φ2)K2 = Jφ1K2∨ Jφ2K2
J(e′1 < e′2)K2 = Je′1K2 < Je′2K2 J(e′1 ≤ e′2)K2 = Je′1K2 ≤ Je′2K2
J(e′1 ≥ e′2)K2 = Je′1K2 ≥ Je′2K2 J(e′1 > e′2)K2 = Je′1K2 > Je′2K2
J(e′1 = e′2)K2 = Je′1K2 = Je′2K2 J(e′1 6= e′2)K2 = Je′1K2 6= Je′2K2
J(e′1 + e′2)K2 = Je′1K2 + Je′2K2 J(e′1− e′2)K2 = Je′1K2− Je′2K2
J(val · e′)K2 = val · Je′K2 JvalK2 = val

JmK2 = m+δm if m ∈VR

JvarK2 = var else

Figure 4: Function for introducing the δm

Definition 4.1 (Robust guard language). A robust guard language describing predicates φ is defined for
a set of measurement variables VR ⊆Vi if the guard appears in the ith component in the following way:

φ ::= φ ∧φ | φ ∨φ | ¬φ | e
e ::= e′ < e′ | e′ ≤ e′ | e′ = e′ | e′ 6= e′ | e′ ≥ e′ | e′ > e′

e′ ::= op | e′+ e′ | e′− e′ | val · e′
op ::= var | val | m+δm

var ∈ (Vi\VR), m ∈VR, val denotes some numerical type var like reals or integers.

Each reference to a measurement variable within a robust guard function is accompanied by some
unknown constant δm which captures its imprecision. Compared to the original guard language, the
interpretation of the δm in the robust guard language requires some non-trivial definitions.

The semantical interpretation of guard functions is adapted in a way that a robust system is an ab-
straction of a non-robust system. This means that due to non-determinism it allows more possibilities
of transition but preserves the transition possibilities of the non-robust system. Given a set of measure-
ment variables VR, for each m ∈VR there is some unknown δm within some fixed range −∆m ≤ δm ≤ ∆m

(∆m ≥ 0). This range captures the level of imprecision which a value that represents a physical measure-
ment can have.

A robust guard is constructed from a non-robust guard in two steps:

• In the first step, negations are eliminated by putting them to the lowest level thereby changing
(in)equalities by a function J...K1. This function is defined inductively on the term structure of the
guards and performs e.g. the following transformations:

– J¬(φ1∧φ2)K1 = J¬φ1K1∨ J¬φ2K1

– J¬(e′1 > e′2)K1 = (e′1 ≤ e′2)

– J¬(e′1 = e′2)K1 = (e′1 6= e′2)

Thus, it eliminates all cases of ¬φ .

• The second step introduces the δm for the measurement variables and is performed by a function
J...K2 which is shown in Figure 4.

Consider as an example the guard ¬θ = 1000. It is transformed into JJ¬θ = 1000K1K2 = Jθ 6= 1000K2 =
θ +δθ 6= 1000 for a measurement variable θ .
The semantic interpretation of such a guard φ is done in the following way for measurement variables
m1...mn:
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∃δm1 ...δmn .φ with −∆m1 ≤ δm1 ≤ ∆m1 ... −∆mn ≤ δmn ≤ ∆mn .

Thus, in the above example, we have ∃δθ .θ +δθ = 1000 with −∆θ ≤ δθ ≤ ∆θ .

The existential quantification of the δm ensures that the robust guard function over approximates the
corresponding non-robust guard function. We need the first transformation step eliminating the nega-
tions, because our methodology only works, if we eliminate all negations: an existential quantification
over a negated δm would result in an under approximation.

Note, that robust guards can be transformed back into the non-robust guard language while preserving
their semantics. θ +δθ 6= 1000 can be equivalently written as 1000−∆θ > θ ∨1000 +∆θ < θ by only
using the constant ∆θ . For practical applications, the computations performed in D-Finder can be done,
using either the robust guards having been translated back into the non-robust guard language, or with
slight modifications in D-Finder, by using the robust guard language directly.

A non-robust guard function can be constructed from a robust guard function by setting each δm to
zero.

Definition 4.2 (Robust BIP Models). A BIP model is considered robust for a set of variables VR iff all
guard functions depending on a variable m ∈VR are formalized in the robust guard language.

Each guard can be substituted by a robust guard by replacing each occurrence of m ∈ VR by m + δm

in a guard as shown above. We define a function RobustVR for a set of measurement variables VR to map
BIP models to robust BIP models by replacing the guard functions by robust ones.

Theorem 4.1 (Reachable State Inclusion). For a robust BIP model BM∆ and a BIP model BM with
BM∆ = RobustVR(BM), given a set of measurement variables VR the following property holds :
ReachableStatesBM ⊆ ReachableStatesBM∆

Proof:
We have to show that the robust guard functions allow at least all state transitions that the non-robust
guard functions allow. We do an induction on the term structure of φ to show:

JJ...K1K2 evaluates at least in all cases to true where δm1 ...δmn fixed to 0 would evaluate to true.

An example robust BIP model constructed from our temperature controller example (cp. Figure 3)
for a measurement variable θ is shown in Figure 5.

Theorem 4.2 (Invariant Preservation). Each Invariant I of a robust BIP model BM∆ is an invariant of a
BIP model BM for a given set of measurement variables VR if BM∆ = RobustVR(BM)

Proof:
∀s ∈ ReachableStatesBM∆

.I(s) (since I is an invariant of BM∆) and
ReachableStatesBM ⊆ ReachableStatesBM∆

(reachable states inclusion) implies
∀s ∈ ReachableStatesBM.I(s) 2

5 Application of Robust BIP Models

In this section we discuss the deadlock checking of robust BIP models with D-Finder and summarize
and extend our comparison of invariants used in the process of certifying the deadlock freedom of a BIP

model for usage with a higher-order theorem prover after D-Finder has provided its verdict.
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Figure 6: Relation Between Invariants

Invariants of Robust and Non-robust BIP models and D-Finder The relations between different
invariants of BIP models BM and its robust counter-part BM∆ is shown in Figure 6

Starting from the weakest inductive invariant (true), DFinder computes a sequence of stronger in-
variants using the initial conditions and the provided BIP model BM. Due to abstractions performed by
DFinder this process can provide an invariant ΨBM that is not inductive. Using non-robust BIP models
in our certification process the proof of the (dashed) implication can not be established for non-inductive
invariants and the certificate generation fails. The critical abstraction used in DFinder is in elimination
of existential quantifiers in the logical formula that defines the successors of a state which becomes part
of the provided invariant. DFinder uses the Omega library for that step [Ome00]. A closer look at the
original formula and its abstraction reveals the constraints that were lost during abstraction. The loss of
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precision is due to the fact that (1) some facts are implicit (e.g., for a variable x, the fact x ≥ 0 is elim-
inated if x is of type nat), or (2) facts cannot be represented in the logic (this is the case of divisibility
constraints in the Omega library). The addition of these lost constraints leads to an inductive invariant.
The divisibility constraints can be useful for variables of the program that range over discrete domains
(e.g., counters). However it produces inductive but unrealistic invariants for variables that represent
physical measurements provided by sensors.

Furthermore, Figure 6 shows the goals sketched in the introduction and in Section 3 on invariants. In
order to conduct the proof we seek for an inductive invariant ΨInductive that contains the (non-computable)
sets of reachable states and that entails the deadlock-freedom property (EnabledBM), such that the fol-
lowing implications holds:

ReachableStatesBM ⇒ ΨInductive ⇒ EnabledBM

To build ΨInductive we can try to strengthen the invariant provided by DFinder by guessing a suitable
constraint such that ΨBM ∧Guess is inductive. The certificate then encapsulates the proof of the right-
most chain of implications. Otherwise we can try the approach promoted in this paper for building
an inductive invariant weaker than ΨBM but still strong enough to entail the deadlock-freedom. This
approach comprises the ΨBM∆

invariant of the robust BIP model and corresponds to the left-most chain
of implications of Figure 6.

Each approach can lead to a certificate based on a proof by induction which can be automatically
generated and then provided to a higher-order theorem prover for checking.

Evaluation In contrast to non-robust BIP models, D-Finder produces inductive invariants of robust
BIP models in the case studies that we examined so far. The model of Figure 5 is the robust version
of our running example of Figure [?]. In all guards the uncertainity δ is added to the θ variable that
corresponds to the measure of the temperature. This transformation prevents the generation of over
constrained invariants. Obviously, the generated invariants are less precise than those obtained for the
original model. Hopefully, in our experimentations this did not introduce new deadlock possibilities.
Actually, it is highly desireable that the deadlock-freedom property of a system be not dependant to the
sensitivity of sensors.

Figure 7 summarize our approach on the running example. It shows the invariant CI3 generated by
D-Finder on the original BIP model BM (in the middle) compared to the corresponding stronger invariant
obtained by strengthening (on the left) and the weaker but robust invariant generated by D-Finder from
the robust model BM∆ (on the right).

The CI3 invariant relates the value of θ to the location of the controller state machine. The original
invariant is not inductive. It can be either strengthened by adding the additional constraint, 2|θ , then
leading to an inductive but unrealistic invariant. A more realistic invariant is obtained by running D-
Finder on the robust model. The resulting invariant is inductive and strong enough to conduct the last
step of the deadlock analysis. The final result are as precise as the ones obtained with the two other
invariants; no false deadlocks are generated by robust invariants.

Not all invariants of robust BIP models have to be necessarily inductive. It may be possible that we
need to strengthen them sometimes e.g. by using the technique discussed in [BM08]. These techniques,
however, must not add constraints bearing unnatural facts on the measuring process of the measurement
variables.
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Figure 7: Handling the Example Invariant

6 Related Work

This paper describes the modification of systems in order to generate realistic inductive invariants for a
verification tool. These invariants are verified to hold by a higher-order theorem prover for certifying the
results of the verification tool. The inductiveness is most important for the certification process. To our
knowledge this particular subject has not yet been studied before.

Certification The certification of analysis results is an important aspect of this work. We generate
certificates in the form of proof-scripts for a higher-order theorem prover. The generation of proofs
to certify the verdict of a model-checker was first introduced in [Nam01]. Other important work for
certifying the results of verification tools comprise the use of support sets for a model checker [TC02]
and keeping track of justifications for the BLAST model-checker [HJM+02]. Further related is Proof-
Carrying Code (PCC) [Nec97], a method to guarantee that executable code fulfills a policy on access
and resource management and Foundational PCC [WAS03] characterized by a small set of axioms and
a simpler proof-checker . In this paper we concentrate on certifying invariants via a formal proof done
by induction.

Generation of Inductive Invariants Automatic generation of invariants has been studied for a long
time. For the invariants considered in this paper the papers [BLS96] and [SDB96] where most influential.
[BLS96] describes many principles that have been implemented in our deadlock-verification tool D-
Finder.

[BM08] focuses on techniques to incrementally generate inductive invariants. The main idea is to
use counter-examples to refine an invariant until it becomes provable by induction. The paper features
in addition to the description of general techniques, further valuable techniques to refine invariants by
splitting large conjunctions into subparts and refine selected subparts independently. This method has
been successfully used in the refinement of boolean invariants. The presented techniques require a deep
knowledge of the class of systems in consideration, in order to cleverly take advantage of the presented
counter-example guided refinement approach of invariants.

In this paper we regard strengthening of non-inductive invariants by taking advantage of our knowl-
edge of the verification tools D-Finder – we know when the invariant can lose their inductiveness quality
– as one possibility to achieve inductive invariants.
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Robustness Another feature of this paper is robustness. Robustness of timed automata is described
in [GHJ97]. This notion is similar to our notion and has been introduced for real-time systems in or-
der to cope with properties that e.g. occur when transforming continuous signals to discrete values or
problems due to imprecision of sensors. The theory of verification of systems is enriched with a so
called tube-semantics to capture uncertainty. Similarly, [AM95] introduces the notion of finite variabil-
ity for properties of continuous systems to capture semantics intervals of continuous time. The presented
procurement allows proving properties of a continuous semantics by reasoning on a discrete semantics
which is more appropriate for automated verification and deductive reasoning. A constrained solving
based method for generating inductive invariants for hybrid systems is presented in [SSM04].

In contrast to these work, we do not consider real-time system with continuous semantics. The BIP

system has a discrete semantics and acquires information about the physical quantities through sensors.
One of our our goals is introducing uncertainty about the sensors measurements while reusing DFinder
invariant generation techniques based on a discrete semantics.

7 Conclusion and Future Work

In this paper we have introduced the notion of robust BIP models for systems containing values repre-
senting the results of physical measurements. Robust BIP models can be obtained from non-robust BIP

models and over aproximate their behavior. We proved that each invariant of the robust BIP model is also
an invariant of the corresponding non-robust BIP model. We motivated that invariants that have been au-
tomatically generated by the deadlock detection tool D-Finder for robust BIP models tend to be inductive
while those of non-robust systems are likely to be non-inductive. Inductivity of invariants allows for easy
formal verification that they do indeed hold in a higher-order theorem prover. Our technique is applied
for certifying the results of D-Finder at runtime.

Future works involves the analysis of further case studies to discover more benefits and potential
limitations of our approach. More technical challenges comprise the addition of dynamic ranges of un-
preciseness. These can be modeled as functions depending on measured values and have to be integrated
in our guard languages (e.g. for expressing a certain percentage of unpreciseness). This is difficult since
our used SMT-solver Yices can only deal with invariants generated from guard functions formalized in
Presburger arithmetics. Fixing invariants by adding constraints in order to make them inductive is also
an area of future work. Such constraints might be generated by using hints from unresolved theorem
prover goals created during the process of trying to prove an invariants correct.
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