
Certifying the verdict of a verification tool
Experimentation

Position

Convincing proofs for program
certification

Michaël Périn

joint work with Manuel Garnacho

Verimag - Univerisité de Grenoble

SafeCert’08

M.Périn, M.Garnacho Convincing proofs for program certification 1/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

Formal certification

Context

Working group on certification of eads, ratp and the french
certification authority for security

We consider the highest level of formal certification:
formal evidence of correctness of critical applications

Motivation

Verification tools are used in the design of critical applications

The verdict of a verification tool is not recognised by
evaluators unless the vt has been certified

Long term goal

Using vts during development and getting a high
certification at low cost

M.Périn, M.Garnacho Convincing proofs for program certification 2/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

Certifying the result of a tools (Namjoshi’01 ... Leroy’06)

Too difficult to certify the vt itself but ...

System − vt → Property
↓�� ��checkable certificate of the statement System |= Property

↓
Verifier → yes/no

Certifying the verifier is simpler than certifying the vt

The approach of Foundational Proof-Carrying Code

Certificate = formal checkable proofs in mathematical logic

Verifier = proof-checker that must be certified

M.Périn, M.Garnacho Convincing proofs for program certification 3/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

Certifying the result of a tools (Namjoshi’01 ... Leroy’06)

Too difficult to certify the vt itself but ...

System − vt → Property
↓�� ��checkable certificate of the statement System |= Property

↓
Verifier → yes/no

Certifying the verifier is simpler than certifying the vt

The approach of Foundational Proof-Carrying Code

Certificate = formal checkable proofs in mathematical logic

Verifier = proof-checker that must be certified

M.Périn, M.Garnacho Convincing proofs for program certification 3/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

Certifying the result of a tools (Namjoshi’01 ... Leroy’06)

Too difficult to certify the vt itself but ...

System − vt → Property
↓�� ��checkable certificate of the statement System |= Property

↓
Verifier → yes/no

Certifying the verifier is simpler than certifying the vt

The approach of Foundational Proof-Carrying Code

Certificate = formal checkable proofs in mathematical logic

Verifier = proof-checker that must be certified

M.Périn, M.Garnacho Convincing proofs for program certification 3/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

Certifying the result of a tools (Namjoshi’01 ... Leroy’06)

Too difficult to certify the vt itself but ...

System − vt → Property
↓�� ��checkable certificate of the statement System |= Property

↓
Verifier → yes/no

Certifying the verifier is simpler than certifying the vt

The approach of Foundational Proof-Carrying Code

Certificate = formal checkable proofs in mathematical logic

Verifier = proof-checker that must be certified

M.Périn, M.Garnacho Convincing proofs for program certification 3/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

Certifying the result of a tools (Namjoshi’01 ... Leroy’06)

Too difficult to certify the vt itself but ...

System − vt → Property
↓�� ��checkable certificate of the statement System |= Property

↓
Verifier → yes/no

Certifying the verifier is simpler than certifying the vt

The approach of Foundational Proof-Carrying Code

Certificate = formal checkable proofs in mathematical logic

Verifier = proof-checker that must be certified

M.Périn, M.Garnacho Convincing proofs for program certification 3/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

Formal checkable proofs

Given a set of derivation rules a proof is the application of these
rules that ends with the statement to prove.

A derivation

Φ1 Φ2

Φ4
r1

Φ3

Φ5
r2

Φ4 ∧ Φ5
∧

corresponds to a term

apply (∧, [apply(r1, [Φ1,Φ2],Φ4) ; apply(r2, [Φ3],Φ5)],
Φ4 ∧ Φ5)

Verifying the proof-term:

• check that each step is a correct instantiation of a derivation rule

• needs only recursive traversal of the proof-term and matching

M.Périn, M.Garnacho Convincing proofs for program certification 4/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

Formal checkable proofs

Given a set of derivation rules a proof is the application of these
rules that ends with the statement to prove.

A derivation

Φ1 Φ2

Φ4
r1

Φ3

Φ5
r2

Φ4 ∧ Φ5
∧

corresponds to a term

apply (∧, [apply(r1, [Φ1,Φ2],Φ4) ; apply(r2, [Φ3],Φ5)],
Φ4 ∧ Φ5)

Verifying the proof-term:

• check that each step is a correct instantiation of a derivation rule

• needs only recursive traversal of the proof-term and matching

M.Périn, M.Garnacho Convincing proofs for program certification 4/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

Formal checkable proofs

Given a set of derivation rules a proof is the application of these
rules that ends with the statement to prove.

A derivation

Φ1 Φ2

Φ4
r1

Φ3

Φ5
r2

Φ4 ∧ Φ5
∧

corresponds to a term

apply (∧, [apply(r1, [Φ1,Φ2],Φ4) ; apply(r2, [Φ3],Φ5)],
Φ4 ∧ Φ5)

Verifying the proof-term:

• check that each step is a correct instantiation of a derivation rule

• needs only recursive traversal of the proof-term and matching

M.Périn, M.Garnacho Convincing proofs for program certification 4/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

Building the proof-checker of a proof ∇

... requires recursive function and matching

Implementation in prolog by direct translation of each rule

The (∧i) derivation rule:
Φ1 Φ2

Φ1 ∧ Φ2
∧i

and the corresponding prolog clause of the checker:

check(∇, Φ1 ∧ Φ2):-

∇ = apply(∧i, [∇1,∇2], Φ1 ∧ Φ2),

check(∇1, Φ1),

check(∇2, Φ2).

M.Périn, M.Garnacho Convincing proofs for program certification 5/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

6 criteria for a convincing proof
requirements of skeptical evaluators for accepting a formal proof as a certificate

(i) The verifier must have been certified by the evaluators

◦ proof-carrying code : verifier > 23 000 lines of C
◦ no proof-checker has already been certified
• a trusted proof-checker is built in collaboration with the

evaluators during validation of the rules

(ii) The proof must addressed the actual program to certified

◦ vts produce apply many transformations before verification
• the proof is done on the abstract syntax tree of the program

(iii) Evaluators must agree on a logical framework in which
the correctness property can be stated

◦ specific logics (eg. temporal logic) are difficult to grasp
• We rely on the standard background of computer scientists in

mathematics: fol and definition of predicates specific to the
problem

M.Périn, M.Garnacho Convincing proofs for program certification 6/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

6 criteria for a convincing proof
requirements of skeptical evaluators for accepting a formal proof as a certificate

(i) The verifier must have been certified by the evaluators

◦ proof-carrying code : verifier > 23 000 lines of C
◦ no proof-checker has already been certified
• a trusted proof-checker is built in collaboration with the

evaluators during validation of the rules

(ii) The proof must addressed the actual program to certified

◦ vts produce apply many transformations before verification
• the proof is done on the abstract syntax tree of the program

(iii) Evaluators must agree on a logical framework in which
the correctness property can be stated

◦ specific logics (eg. temporal logic) are difficult to grasp
• We rely on the standard background of computer scientists in

mathematics: fol and definition of predicates specific to the
problem

M.Périn, M.Garnacho Convincing proofs for program certification 6/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

6 criteria for a convincing proof
requirements of skeptical evaluators for accepting a formal proof as a certificate

(i) The verifier must have been certified by the evaluators

◦ proof-carrying code : verifier > 23 000 lines of C
◦ no proof-checker has already been certified
• a trusted proof-checker is built in collaboration with the

evaluators during validation of the rules

(ii) The proof must addressed the actual program to certified

◦ vts produce apply many transformations before verification
• the proof is done on the abstract syntax tree of the program

(iii) Evaluators must agree on a logical framework in which
the correctness property can be stated

◦ specific logics (eg. temporal logic) are difficult to grasp
• We rely on the standard background of computer scientists in

mathematics: fol and definition of predicates specific to the
problem

M.Périn, M.Garnacho Convincing proofs for program certification 6/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

6 criteria for a convincing proof
requirements of skeptical evaluators for accepting a formal proof as a certificate

(i) The verifier must have been certified by the evaluators

◦ proof-carrying code : verifier > 23 000 lines of C
◦ no proof-checker has already been certified
• a trusted proof-checker is built in collaboration with the

evaluators during validation of the rules

(ii) The proof must addressed the actual program to certified

◦ vts produce apply many transformations before verification
• the proof is done on the abstract syntax tree of the program

(iii) Evaluators must agree on a logical framework in which
the correctness property can be stated

◦ specific logics (eg. temporal logic) are difficult to grasp
• We rely on the standard background of computer scientists in

mathematics: fol and definition of predicates specific to the
problem

M.Périn, M.Garnacho Convincing proofs for program certification 6/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

6 criteria for a convincing proof
requirements of skeptical evaluators for accepting a formal proof as a certificate

(i) The verifier must have been certified by the evaluators

◦ proof-carrying code : verifier > 23 000 lines of C
◦ no proof-checker has already been certified
• a trusted proof-checker is built in collaboration with the

evaluators during validation of the rules

(ii) The proof must addressed the actual program to certified

◦ vts produce apply many transformations before verification
• the proof is done on the abstract syntax tree of the program

(iii) Evaluators must agree on a logical framework in which
the correctness property can be stated

◦ specific logics (eg. temporal logic) are difficult to grasp
• We rely on the standard background of computer scientists in

mathematics: fol and definition of predicates specific to the
problem

M.Périn, M.Garnacho Convincing proofs for program certification 6/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

6 criteria for a convincing proof
requirements of skeptical evaluators for accepting a formal proof as a certificate

(i) The verifier must have been certified by the evaluators

◦ proof-carrying code : verifier > 23 000 lines of C
◦ no proof-checker has already been certified
• a trusted proof-checker is built in collaboration with the

evaluators during validation of the rules

(ii) The proof must addressed the actual program to certified

◦ vts produce apply many transformations before verification
• the proof is done on the abstract syntax tree of the program

(iii) Evaluators must agree on a logical framework in which
the correctness property can be stated

◦ specific logics (eg. temporal logic) are difficult to grasp
• We rely on the standard background of computer scientists in

mathematics: fol and definition of predicates specific to the
problem

M.Périn, M.Garnacho Convincing proofs for program certification 6/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

(iv) Evaluators must validate all logical and semantic rules

◦ in vts, the semantics is hard coded, not available

• all rules are examined during the validation of proof-checker

(v) Few and obvious derivation rules

◦ general purpose minimal theorem provers: large and over
detailed description

• semantics of the instructions used in the program and a
specific logic

(vi) The proof must address the exact verification problem

◦ vts carry the problem into their framework

• the actual statement program |= property appears explicitly at
the root of the proof

M.Périn, M.Garnacho Convincing proofs for program certification 7/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

(iv) Evaluators must validate all logical and semantic rules

◦ in vts, the semantics is hard coded, not available

• all rules are examined during the validation of proof-checker

(v) Few and obvious derivation rules

◦ general purpose minimal theorem provers: large and over
detailed description

• semantics of the instructions used in the program and a
specific logic

(vi) The proof must address the exact verification problem

◦ vts carry the problem into their framework

• the actual statement program |= property appears explicitly at
the root of the proof

M.Périn, M.Garnacho Convincing proofs for program certification 7/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

(iv) Evaluators must validate all logical and semantic rules

◦ in vts, the semantics is hard coded, not available

• all rules are examined during the validation of proof-checker

(v) Few and obvious derivation rules

◦ general purpose minimal theorem provers: large and over
detailed description

• semantics of the instructions used in the program and a
specific logic

(vi) The proof must address the exact verification problem

◦ vts carry the problem into their framework

• the actual statement program |= property appears explicitly at
the root of the proof

M.Périn, M.Garnacho Convincing proofs for program certification 7/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

(iv) Evaluators must validate all logical and semantic rules

◦ in vts, the semantics is hard coded, not available

• all rules are examined during the validation of proof-checker

(v) Few and obvious derivation rules

◦ general purpose minimal theorem provers: large and over
detailed description

• semantics of the instructions used in the program and a
specific logic

(vi) The proof must address the exact verification problem

◦ vts carry the problem into their framework

• the actual statement program |= property appears explicitly at
the root of the proof

M.Périn, M.Garnacho Convincing proofs for program certification 7/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

(iv) Evaluators must validate all logical and semantic rules

◦ in vts, the semantics is hard coded, not available

• all rules are examined during the validation of proof-checker

(v) Few and obvious derivation rules

◦ general purpose minimal theorem provers: large and over
detailed description

• semantics of the instructions used in the program and a
specific logic

(vi) The proof must address the exact verification problem

◦ vts carry the problem into their framework

• the actual statement program |= property appears explicitly at
the root of the proof

M.Périn, M.Garnacho Convincing proofs for program certification 7/15

Certifying the verdict of a verification tool
Experimentation

Position

Trustable proof-checkers
6 criteria for convincing proofs

(iv) Evaluators must validate all logical and semantic rules

◦ in vts, the semantics is hard coded, not available

• all rules are examined during the validation of proof-checker

(v) Few and obvious derivation rules

◦ general purpose minimal theorem provers: large and over
detailed description

• semantics of the instructions used in the program and a
specific logic

(vi) The proof must address the exact verification problem

◦ vts carry the problem into their framework

• the actual statement program |= property appears explicitly at
the root of the proof

M.Périn, M.Garnacho Convincing proofs for program certification 7/15

Certifying the verdict of a verification tool
Experimentation

Position

Application to a communication protocol
Future work

Application to a communication protocol

developed for avionic systems

for implementing multi-task data-flow real-time system

onto an event-based operating system with preemption and
priority

written in C

presented at Emsoft’2005

S.Tripakis, C.Sofronis, N.Scaife, P.Caspi

“semantics-preserving and memory-efficient implementation of
inter-task communication under static priority or EDF
schedulers”

M.Périn, M.Garnacho Convincing proofs for program certification 8/15

Certifying the verdict of a verification tool
Experimentation

Position

Application to a communication protocol
Future work

Buffering protocol using arrays

priority
priority level

time
(out[w])k

Bh2l[w][r]

0 1

(out[w])k+1

tk+2
w

f
p+1
r

t
p
r

sk
w f

p
r

tk
w

fk
w s

p
r

t
p+1
r

s
p+1
r

tk+1
w
sk+1
w

(inp[r][w])p+1 = (out[w])k+2

sk+2
w

(out[w])k (inp[r][w])p

fk+1
w fk+2

w

Correctness property: always get the latest output

t
k
w .. tp

r .. tk+1
w ⊆ σ ⇒ (inp[r][w])p = (out[w])k

M.Périn, M.Garnacho Convincing proofs for program certification 9/15

Certifying the verdict of a verification tool
Experimentation

Position

Application to a communication protocol
Future work

Proof based on equalities on symbolic value

The semantics of the c instructions
t = x ; x = y ; y = t

is the conjunction of equalities

t1 = x0 ∧ x1 = y0 ∧ y1 = t1

which implies

x1 = y0 ∧ y1 = x0

M.Périn, M.Garnacho Convincing proofs for program certification 10/15

Certifying the verdict of a verification tool
Experimentation

Position

Application to a communication protocol
Future work

Semantics rules for the c instruction (excerpts)

〈V, v=e,V ′〉
eval(V ′,v) = eval(V,e)

asg1

〈V, v=e,V ′〉
ac(V ′, v) = ac(V, v) + 1

asg3

〈V, for(i=0; i<n ; i=i+1){P(i)} ,V ′〉 n > 0

〈V, for(i=0; i<n−1; i=i+1){P(i)} ;P(n) ,V ′〉
for2

M.Périn, M.Garnacho Convincing proofs for program certification 11/15

Certifying the verdict of a verification tool
Experimentation

Position

Application to a communication protocol
Future work

Validation of the derivation rules

natural deduction for fol + equality + induction:
22 standard rules

definitions of predicates on traces: 9 rules

C semantics: 11 rules

definition of the system semantics and priority mechanisms:
8 rules

relating events and task triggering: 8 rules

mathematical property of =, <,≤,+ on naturals numbers:
12 rules

The proof-checking function is the direct translation of those 70
rules into 70 prolog clauses.

M.Périn, M.Garnacho Convincing proofs for program certification 12/15

Certifying the verdict of a verification tool
Experimentation

Position

Application to a communication protocol
Future work

Proof sketch

The proof consists in

inductions on sequence of events and on the number of
occurrence of the triggering event t

k
w

followed by a case study

reduced using non-interference lemma to 6 possible
interleavings of events

t
k
w .. s

k
w .. f

k
w .. t

k+1
w .. s

k+1
w .. f

k+1
w with t

p
r .. s

p
r .. f

p
r

These proofs done with the help of an instrumented symbolic
interpreter.

M.Périn, M.Garnacho Convincing proofs for program certification 13/15

Certifying the verdict of a verification tool
Experimentation

Position

Application to a communication protocol
Future work

Future work

Proof generation by instrumentation of a verification tool
must solve the gap problem:

vts reason on an abstraction of the system

whereas proofs deals with the actual system

the proof does not follow the vt computations

Reduction of the size of proof-terms is needed

using lemmata

compact proof representation using reversible proof
transformations

M.Périn, M.Garnacho Convincing proofs for program certification 14/15

Certifying the verdict of a verification tool
Experimentation

Position

Position

Goals

1 confronting the evaluators with evidence they cannot reject

2 reducing the Trusted Computing Base

3 relying on standard mathematical knowledge of Bachelors in
Computer science ... because the proof activity is a social
discipline: do we agree on the proof steps and axioms ?

Lobbying

Evaluators don’t (shouldn’t) care how you produced the proof

Evaluators don’t have to read the proofs (proofs are huge!)

if

1 they validate the derivations rules of the proof system

2 they validate the proof-checker

M.Périn, M.Garnacho Convincing proofs for program certification 15/15

	Certifying the verdict of a verification tool
	Trustable proof-checkers
	6 criteria for convincing proofs

	Experimentation
	Application to a communication protocol
	Future work

	Position

