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Invited talk at tapas’2017 & Coq en Stock’2017

The development of
the Verified Polyhedra Library

made of untrusted parts
mixing Ocaml, C++, threads, ...

and just a little bit of Coq for certification

joint work, started in 2012, with
Sylvain Boulmé, Alexis Fouilhé, Alexandre Maréchal,

David Monniaux, Michaël Périn, Hang Yu

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, France

TAPAS’2017 & Coq en Stock’2017
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The Verimag Verified Polyhedra Library (Features)

ocaml implementation of standard polyhedral operators
of a relational abstract domain (v, t, u, elimination of
variables, ...)

certifying library by a posteriori verification of each
computation

1 ocaml operators generate witnesses
2 witness are checked by a simple coq checker

developed for the coq-certified static analyzer
verasco [Jourdan+, POPL’2015], a companion tool for
CompCert C compiler [Leroy, JAR 2009]

can be used as a standalone ocaml library, e.g. in the
FramaC static analyzer [Buhler+VMCAI’2017]

used in a new coq-tactic for simplifying affine
expressions (S.Boulmé, A.Maréchal) (submitted)
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The Verimag Verified Polyhedra Library (Contributions)

polyhedra library in constraint-only representation
new algorithms

precise polyhedral approximation of polynomial guards
minimization by raytracing
projection via Parametric Linear Programming

novel certification approach using factories
correct by construction (by A.Maréchal, S.Boulmé)

efficiency issues: parallelization, floating-point
computations, external libraries (glpk,gmp,eigen,flint),
reconstruction of the exact solution (on Q)
available at github.com/VERIMAG-Polyhedra

state of the art Parametric Linear Programming Solver
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Topics

Polyhedra: basics
All you need to understand the field of Polyhedra
Farkas combinations and Linear Programming
Why certifying software verification tools?
Certification by result verification
... with as little coq as possible
Why another polyhedra library?
Why are polyhedra expensive?
Revisiting the algorithmic
Experimental results
Will Polyhedra be usable?
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Convex Polyhedra

capture affine relations between program variables such as
inequalities: x1 − 2x2 ≥ 3x3 x1 − 2x2 − 3x3 ≥ 0
boundaries: 2 ≤ x1 ≤ 3  x1−2 ≥ 0

∧
−x1−3 ≥ 0

equalities: x1 = x2 + 2  

{
x1−x2−2 ≥ 0
x2−x1+2 ≥ 0

}
affine form = linear form + constant

Definition
A convex polyhedron is a set of vectors (x1, ..., xn) ∈ Qn

satisfying
a system of affine inequalities between variables x1, ..., xn

Remark (It is convex)

if two points are in the set, the segment also is.
5 / 38
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A 3D polyhedron ...

... as system of constraints

C1 : x1 + 2x2 − 2x3 ≤ 7,
C2 : x1 − 2x2 ≤ −1,
C3 : −3x1 + x2 ≤ 0,
C4 : x3 ≤ 10,
C5 : −x1 − x2 − x3 ≤ −5
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Uses of Polyhedra

Linear Programming
optimization of a cost function under affine inequalities,
decide the existence of a solution fulfilling affine
inequalities

Loop Optimization
“The Polyhedron Model” [Feautrier and Lengauer, 2011]

1 approximate by a polyhedron the cells of a n-dimensions
array to be updated by a loop

2 compute vectors that exactly describe that space of cells
3 generate the optimized loop

Static Analysis of Programs
POPL’78 [Cousot and Halbwachs, 1978]

capture affine relation between variables
discover implicit equalities
more precise than interval analysis but costlier
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Why certifying results of Software Verification
Tools?

An old greek syllogism

Programs contain bugs.
Software Verification Tools are programs.
Thus, ___ s contain ___ s
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Why certifying results of Software Verification
Tools?

An old greek syllogism

Programs contain bugs.
Software Verification Tools are programs.
Thus, SVT s contain BUG s

... more than other programs

mostly prototypes developed by several students
complex underlying theory
less users, less tested

8 / 38
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Three ways to gain confidence in SVT

1 No tool is trustable ... but if they agree on the result
Running each tool with (same inputs  same answer)
increases the confidence
Quantifiable? How many tools to reach P.Failure=10−9?

2 Only trust the proof-checker ... which becomes
critical

extend SVT to generate certificates
sat, unsat, =⇒Theory, [[Program]] |= Properties

[[...]] is a formal semantics of the programming language
(e.g. CompCert C semantics in coq)

How long can a bug stay silent in the proof-checker?
(the coq-engine is not as simple as it used to be)

3 Correct by extraction using coq (e.g.CompCert)

proof(algo |= spec)︸ ︷︷ ︸
in coq

extraction−−−−−−→ ocaml program
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Certification versus Result Verification

Full coq-certified development (CompCert, verasco S.A)

time consuming (refactoring the code means adapting the proofs)

requires proof skills
the algorithms must be designed to be easy to prove
correctness of all results guaranteed by a coq-proof

Result verification (CompCert, B.S.A [Besson et al., 2010], vpl)

external libraries (untrusted code)
correctness of each result is checked by coq

1 external code generates witness of correctness
2 verification by a simple coq-certified checker

10 / 38
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What must be proved for over-approximations?

join/union operator (P ′ := P1 t P2) is sound if
P1 v P ′ and P2 v P ′

meet/intersection operator (P ′ := P1 u P2) is sound if
P ′ v P1 and P ′ v P2
minimization operator (P ′ := min (P )) is
sound if P v P ′ and precise if P ′ v P
elimination/projection (P ′ := elim {x} P ) is sound if
P v P ′ and x is unbounded in P ′

Soundness boils down to inclusion [Besson et al., 2010]

P1 v P2 can be proved by Farkas combinations

Each operator must provide Farkas combinations to prove
the required inclusions

11 / 38
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Farkas combinations I

Example

P =
{

C1 : x1 − x2 − 1 ≥ 0,
C2 : x1 + 2x2 + 1 ≥ 0

}
P ′ = {C ′ : 3x1 − 1 ≥ 0}

The Farkas Combination 2×C1 + 1×C2 ... is C ′

2×C1 + 1×C2 = 3x1 − 1 ≥ 0︸ ︷︷ ︸︷ ︸︸ ︷
2x1 − 2x2 − 2 ≥ 0

︷ ︸︸ ︷
x1 + 2x2 + 1 ≥ 0 ≡ C ′

It shows that {C1,C2 } v {C ′ }

12 / 38
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Farkas combinations II

Farkas combination of constraints (linear version)

x ∈ P := {C1, . . . ,Ck } means
x satisfies C1(x) ≥ 0 ∧ . . . ∧Ck(x) ≥ 0 then,
for any non-negative scalars λ1, . . . , λk ∈ Q

λ1 ×C1(x)︸ ︷︷ ︸
≥0

+ . . .+ λk ×Ck(x)︸ ︷︷ ︸
≥0

≥ 0

Now, if C ′ = λ1 ×C1 + . . .+ λk ×Ck then

∀x, C1(x) ≥ 0 ∧ . . . ∧Ck(x) ≥ 0 =⇒ C ′(x) ≥ 0

which is the definition of the geometric inclusion

{C1, . . . ,Ck } v {C ′ }

13 / 38
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Farkas combinations III

How to find the Farkas coefficient λ’s

P =


C1 : 1x1 −1x2 −1 ≥ 0,
C2 : 1x1 +2x2 +1 ≥ 0,
C3 : −1x1 +1x2 +1 ≥ 0


P ′ =

{
C ′ : 3x1 +0x2 −1 ≥ 0

}
∃?λi ≥ 0 λ1 ×C1 + λ2 ×C2 + λ3 ×C3 = C ′

14 / 38
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(x1) λ1 × 1 + λ2 × 1 + λ3 × -1 = 3
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(cst) λ1 × -1 + λ2 × 1 + λ3 × 1 = -1
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Linear Algebra / Linear Programming

Gauss Resolution (Linear Algebra)

It gives solutions of the systems of equalities

(x1) λ3 = −3 + λ1 + λ2
(x2) λ2 = 1
(cst) 0× λ1 = 0 λ1 is free, thus choose λ1 ≥ 0

But some are not Farkas Combinations i.e. satisfying λi ≥ 0

(λ1, λ2, λ3) = {(0, 1,−2), (1, 1,−1), (2, 1, 0), (3, 1, 1), . . .}

∃?λi≥ 0 . . . is not in the realm of Linear Algebra
but that of Linear Programming

15 / 38
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Linear Algebra / Linear Programming

The Simplex Algorithm (Linear Programming)

It’s a way to choose pivots in Gauss elimination

(x1) λ1 = 3− λ2 + λ3
(x2) λ2 = 1
(cst) 0× λ3 = 0 λ3 is free, thus choose λ3 ≥ 0

It focuses on Farkas Combinations i.e. satisfying λi ≥ 0

(λ1, λ2, λ3) = {(2, 1, 0), (3, 1, 1), (4, 1, 2), (5, 1, 3), . . .}

15 / 38



Verimag
Verified
Polyhedra
Library

Introduction
The VPL

Convex Polyhedra

Certification
Why ? How ?

vpl correctness

Farkas Lemma

The certified
checker
Certification in coq

Usage in vpl

Computation
Representation of
Polyhedra

New algorithms

Experiments

Ongoing Work

Conclusion
Related work

From efficient floating-point solver to exact
solutions in Q

Efficient floating-point simplex algorithms (such as glpk)
do not provide exact solution (due to rounding)

(λ1, λ2, λ3) = (1.99..., 1.0, 0.0...1)

But they are trustable on variables that must be null (e.g.
λ3 = 0) from which we can use fast linear algorithm over
the rationals (flint) to solve the simplified system and
obtain an exact solution (λ1, λ2, λ3) = (2, 1, 0)

∃?λi ≥ 0 λ1 ×C1 + λ2 ×C2 + 0×C3 = C ′

(x1) λ1 × 1 + λ2 × 1 = 3
(x2) λ1 ×−1 + λ2 × 2 = 0
(cst) λ1 ×−1 + λ2 × 1 = −1
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Polyhedra inclusion checker in coq

1 Original work in 2010 [Besson et al., 2010]
results checking of Bytecode Static Analyzer
operations are performed by NewPolka
[Jeannet and Miné, 2009]
witnesses are computed afterwards by solving Linear
Programming problems

2 VPL, started in 2012
produces witnesses on-the-fly (no duplicate computation)
constraint-only representation
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The inclusion checker (coq code) (Definitions & Lemma)

Definition Polyhedra := list (cstr Q).

Definition sat (x : Vec) (p : Polyhedra) : Prop :=
List.Forall p (fun (c : csrt Q) → c(x) ≥ 0).

Definition (infix v) (p1 p2 : Polyhedra) : Prop :=
∀x : Vec, sat x p1 ⇒ sat x p2.

Lemma Farkas : ∀ (Λ : list (list Q)) (p1 p2 : Polyhedra)
(∀λ ∈ Λ, λ ≥ 0) ∧ ( combine︸ ︷︷ ︸

'matrix-product

Λ p1) = p2 =⇒ p1 v p2
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The inclusion checker (coq code) (Program & Extraction)

Definition inclusion_checker
(Λ : list (list Q)) (p1 p2 : Polyhedra) : option (p1 v p2) :=
let nn := (non_negative Λ) in
let eq := (equal (combine Λ p1) p2)
in match (nn,eq) with

| (Some proof_nn, Some proof_eq)
→ Some (Farkas Λ p1 p2 proof_nn proof_eq)

| (_,_) → None
end

coq inclusion_checker : (Λ, p1, p2)→
{

Some (p1 v p2)
None

↓
�� ��extraction

ocaml inclusion_checker : (Λ, p1, p2)→ bool
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Using the coq checker in ocaml code

Illustration on the convex-hull operator of the vpl

The convex-hull operator P := P1 t P2 is sound if

P1 v P and P2 v P

which is proved using two Farkas inclusion witnesses Λ1 and Λ2
using

inclusion_checker (Λ1, P1, P ) = Some(P1 v P )

inclusion_checker (Λ2, P2, P ) = Some(P2 v P )
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The convex-hull (ocaml code)

type polyhedra = { ocaml: (rat cstr) list ; coq: (Q cstr) list }

let convex_hull (p1 :polyhedra) (p2 :polyhedra) : polyhedra =
let (f1 , f2 , pOcaml) =

untrusted_convex_hull p1 .ocaml p2 .ocaml

}
compute

in let Λ1 = rat_to_Q f1
Λ2 = rat_to_Q f2
pCoq= rat_to_Q pOcaml

in if (inclusion_checker Λ1 p1 .coq pCoq)
&& (inclusion_checker Λ2 p2 .coq pCoq)

then { ocaml = pOcaml ; coq = pCoq }
else error "convex_hull"


check
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What is guaranteed by result verification?

The checker is extracted in ocaml but still uses coq
representations (trustable but inefficient)
type nat = O | S of nat
type positive = B1 of positive | B0 of positive | BH

e.g. 5 ' S(S(S(S(S(O))))) ' B1(B0(B1(BH))
12% overhead when the coq checker is activated
(conversion into coq representation then computations)
The coq checker can be de/activated.
The equality (p.ocaml = p.coq) cannot be
guaranteed
Guaranty: the coq side mimics the computations of the
untrusted side and the coq side checks soundness
S.Boulmé noticed that "the coq type of polyhedra can
even be an opaque abstract data type or a generic type
’α" leading to new certification means using factories.
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The Double Description of Polyhedra

used in most Polyhedra Libraries (NewPolka, PPL, Cudd, ...) as constraints as generators
{C1,C2,C3,C4 } , {v1,v2,v3 } + {R1 }

vertices + rays
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Why are polyhedra expensive ? I

Polyhedra as generators: G u {C ′ }

The intersection with one constraint can double the number
of generators.

Example (A sliced tube unbounded in one direction)

G ={v1, . . . ,vn }+ {r1 }
G u {C ′ }={v1, . . . ,vn }+ {v′1, . . . ,v

′
n }
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Why are polyhedra expensive ? II

Polyhedra as constraints: elim (x3,C ) = projection on (x1, x2)

The elimination of one variable can double the number of
constraints

Example (An orange segment)

C ={C ′,C ′′, C1, . . . ,Cn }
elim (x3,C )={C ′1, . . . ,C

′
n,C

′′
1 , . . . ,C

′′
n }

elim ({x3, x2 } ,C )={b ≤ x1, x1 ≤ b′ }
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Choosing the good representation C ? G ?

The polyhedra representation can double on basic
operations (u, elim )
Sequential eliminations of variables is exponential on
constraints elim [x1 ; . . . ; xn] C
based on Fourier-Motzkin’s elimination of one variable

sequential intersections is exponential on generators

G u [C1 ; . . . ; Ck]

based on Chernikova’s intersection with one cutting plane

C is needed for intersection and widening, used for
inclusion and minimization
dd can choose the best algorithm or an even better
algorithm using (C ,G )
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Why a polyhedra library in constraint-only?

no polynomial algorithm to check equivalence (C ,G )
(it probably does not exists)
DD would have meant

implementing a naive version of Chernikova’s conversion
algorithm in COQ,
proving it correct then
extracting to ocaml to get a correct but inefficient
algorithm

out of curiosity: no conversion, less memory space,
can it be as efficient as DD?
could we do better than Fourier-Motzkin one-variable
elimination algorithm?
[Howe and King, 2012]: Parametric Linear Programming can
elimate several variables simultaneously
could we improve minimization?
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Minimization by Raytracing

Launch a ray orthogonally to each constraint

the first constraint hit by the ray is irredundant
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When raytracing fails

We use the Standard Minimization Algorithm
= inclusion testing
= existence of a Farkas Combination

{C3,C5 } ⊆ {C4 }? yes
{C1,C2 } ⊆ {C6 }? no

Finally,
C1,C2,C3,C5 were determined without solving LP problems,
it only costs a matrix-matrix product:

matrix of constraints × matrix of rays
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Experiments

We compared three algorithms:

1 The standard algorithm (SMA)
Detecting redundancies by finding Farkas combinations.
Requires one Linear Programming for each constraint.
Each Linear Programming contains all the constraints.

2 Raytracing with rationals (RRT)
using a rational simplex for finding Farkas combination

3 Raytracing with floating points (FRT)
using a floating simplex (glpk) then reconstruction
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Experiments on random polyhedra

We generated random polyhedra to study the sensitivity of
algorithms to

the number of variables
the number of constraints
the number of generators
the redundancy rate
the density

Example (6 variables, density 50%)
0x1 + 21x2 + 0x3 + 26x4 + 0x5 − 13x6 ≤ 20
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Experimental results

Time (ms) when varying then number of constraints, with
10 variables, a redundancy rate of 50%, and a density of 50%.
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Comparison with Chernikova’s conversion algorithm

Time (ms) in log scale
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Ongoing Work I (Alexandre MARÉCHAL)

Experimentation is not easy

Comparing libraries: How to be fair?
dd delay some operations (conversion, minimization)
start by a conversion to build (C ,G ),
n-dimenions hypercubes (2n generators) kill them

Using which analyzer?
static analyzers have been designed for intervals,
not ofr polyhedra (Frama-C, verasco)

too much (useless) variables involved
duplication of computations
(P t P ′) = P ′ instead of P v P ′

33 / 38



Verimag
Verified
Polyhedra
Library

Introduction
The VPL

Convex Polyhedra

Certification
Why ? How ?

vpl correctness

Farkas Lemma

The certified
checker
Certification in coq

Usage in vpl

Computation
Representation of
Polyhedra

New algorithms

Experiments

Ongoing Work

Conclusion
Related work

Ongoing Work I (Alexandre MARÉCHAL)

An experimental setup is under development
Goal: Profile each operator on random polyhedra to study
sensitivity to the number of variables, of constraints, of
generators, of redundancies, and the density (number of
nonzero coefficients)

record the call to polyhedral operators during analysis of
realistic programs with a polyhedra-aware static analyzer
extract significant sequences of operations, e.g.

DD ; timer-start ; (v ; u ; := ; t)∗ ; min ; timer-stop

run the sequence on each library with random inputs
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Ongoing Work II (Hang YU)

Parallelization, floating-point computations then reconstruction

minimization by raytracing
independant determination of each constraint
the Solver of Parametric Linear Problems
(C, C++, glpk, flint, eigen, coq, ocaml)
new algorithm for inclusion
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Will someday Polyhedra be usable?

May be with
a polyhedra-aware static analyzer
polyhedra used in a second phase where intervals failed
dynamic packing of variables, removal of useless variable
algorithms in constraint-only can benefit libraries in DD:
the costly Chernikova’s conversion can be delayed
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Will someday Polyhedra be usable?

The field of polyhedra still makes progress
Nice result by [Singh et al., 2017] based on [Halbwachs et al., 2006]
to cope with the hypercube phenomenon:

H = DD(
∧n

i=1−1 ≤ xi ≤ 1)
= (2× n constraints, 2n generators)

The Fast Polyhedra Abstract Domain automatically splits
polyhedra into a cartesian product during the analysis.

Fast polyhedra almost behave like intervals when variables are
not related.

Cartesian product of polyhedra [Halbwachs+1996, Singh+2015]

H = P1 × . . .× Pn where Pi = ( {− 1 ≤ xi ≤ 1} , {− 1, 1} )
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