DS Automates – durée 1h

A&G, INFO 3, Polytech'Grenoble

Question 1 \clubsuit Soit A un automate à n états, que peut-on dire de l'automate A^D obtenu par l'algo-	0 0	N'oubliez pas d'indiquer votre numéro d'étudiant en grisant les cases du tableau. Indiquez aussi NOM, Prénom et numéro d'étudiant au format standard
Tous les appareils électroniques sont interdits à l'exception des montres qui ne communiquent pas. Le sujet comporte 27 questions réparties en 7 exercices indépendants. Grisez les cases des bonnes réponses. Un case mal grisée est considérée comme □. Utilisez une encre foncée; pas de crayon à papier ou alors repassez vos réponses à l'encre avant de rendre votre copie. Les questions ♣ peuvent avoir plusieurs propositions correctes. Une mauvaise réponse fait perdre des points. L'absence de réponse vaut 0 point. Exercice 1 : Déterminisation Question 1 ♣ Soit A un automate à n états, que peut-on dire de l'automate A ^D obtenu par l'algorithme de déterminisation? □ la au plus 2 ⁿ transitions □ ses états sont des ensembles d'états équivalents □ il est déterministe □ ses états sont des couples d'états de A □ il a autant d'états accepteurs que A □ il est complémentaire □ il a un seul état initial □ il est minimal □ il a autant d'états initiaux que A □ il a uatant d'états initiaux que A □ il a exactement 2 ⁿ états	Consi	anos
Question 1 Soit A un automate à n états, que peut-on dire de l'automate A^D obtenu par l'algorithme de déterminisation? Question 2 Complétez. Les états de A^D représentent Question 2 Soit A un automate à n états, que peut-on dire de l'automate A^D obtenu par l'algorithme de déterminisations Ses états sont des ensembles d'états équivalents il est complet Question 2 Complétez. Les états de A^D représentent Préservé au correcteur I a au plus 2^n transitions Ses états sont des ensembles d'états de A I a au automate à n états de A I a au automate à n états de A I a au automate à n états équivalents I a au automate A^D représentent Complétez. Les états de A^D représentent Préservé au correcteur I a au automate A^D représentent Préservé au correcteur I a au automate A^D représentent Préservé au correcteur I a au automate A^D représentent Préservé au correcteur I a au automate A^D représentent	 Le sujet comporte 27 questions réparties en 7 exerce Grisez les cases des bonnes réponses. Un case mal gr pas de crayon à papier ou alors repassez vos réponse Les questions & peuvent avoir plusieurs propositions 	cices indépendants. risée est considérée comme . Utilisez une encre foncée; res à l'encre avant de rendre votre copie. res correctes.
Question 1 Soit A un automate à n états, que peut-on dire de l'automate A^D obtenu par l'algorithme de déterminisation? Question 2 Sentent Question 2 Sentent Complétez. Les états de A^D représentent	Exercice 1 : Déterminisation	aucune des réponses proposées n'est correcte
ses états sont des ensembles d'états équivalents il est complet il est déterministe ses états sont des couples d'états de A il a autant d'états accepteurs que A il est complémentaire il a au moins n^2 états il a au moins 2^n états ses états sont des ensembles d'états de A il a un seul état initial il est minimal il a autant d'états initiaux que A il a exactement 2^n états	peut-on dire de l'automate A^D obtenu par l'algorithme de déterminisation?	Question 2 \clubsuit Complétez. Les états de A^D représentent
ses états sont des couples d'états de A il a autant d'états accepteurs que A il est complémentaire il a au moins n^2 états il a au moins 2^n états ses états sont des ensembles d'états de A il a un seul état initial il est minimal il a autant d'états initiaux que A il a exactement 2^n états		
	-	
ses états sont des ensembles d'états de A il a un seul état initial il est minimal il a autant d'états initiaux que A il a exactement 2^n états		
	\square il a au moins 2^n états	
	\square ses états sont des ensembles d'états de A	
	il a un seul état initial	
\square il a exactement 2^n états	il est minimal	
☐ il a un seul état accepteur		
	∐ il a un seul état accepteur	

Exercice 2 : Produit d'automates	Question 7 \clubsuit Cochez le(s) état(s) accepteur(s) de $A \times B$
Question 3 \clubsuit Cochez les propositions correctes. Soit A et A' deux automates à n états chacun. les états de $A \times A'$ sont des couples $A \times A'$ accepte les mots reconnus par A et par	
A'	Question 8 - Cochez le(s) automate(s) complet(s)
$A \times A'$ accepte les mots reconnus par A ou par A' $A \times A'$ est un automate $A \times A'$ accepte tous les mots reconnus par A' $A \times A'$ est déterministe	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$A \times A'$ a au plus n^2 états $A \times A'$ peut avoir jusqu'à 2^n états	Exercice 4 : Automates à nombre
$A \times A'$ accepte tous les mots reconnus par A	d'états fini (АЕF)
les états de $A \times A'$ sont des ensembles	
aucune des réponses proposées n'est correcte	Question 9 Cochez les propositions correctes.
	La fermeture de Kleene, L^* , d'un langage L donne forcément un langage infini.
Exercice 3 : Calculez $A \times B$ avant	Tout AEF a un équivalent déterministe et minimal.
de répondre aux ques-	un Aef sans transition ϵ ne peut pas reconnaître
tions.	le mot ϵ Toute expression régulière correspond à un AEF.
	Toute expression regularite correspond a diffAEF. $[a]^* \text{ est un langage infini.}$
$A \hspace{1cm} B$	Tout AEF doit avoir au moins un état initial.
	La méthode de Thompson permet de construire
a (1) b (2) a,b $(1')$ $(2')$	l'expression régulière associée à un AEF. Tout AEF doit avoir au moins un état accepteur. Tout AEF pout être déterminée
	Tout AEF peut être déterminisé. aucune des réponses proposées n'est correcte
Question 4 & Cochez le(s) automate(s) non-	Question 10 A Pour détecter qu'un automate E re- connaît des mots qui ne sont pas reconnus par l'auto- mate A, on doit vérifier que
déterministe(s)	$\square \mathcal{L}(E) \setminus \mathcal{L}(A) = \{\}$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
Question 5 \clubsuit Cochez le(s) état(s) initiaux de $A \times B$	$\bigsqcup_{\mathcal{L}} \mathscr{L}(A) \subseteq \mathscr{L}(E)$
	$ \Box E - A = \to \bigcirc \Box \mathcal{L}(A) \cap \mathcal{L}(E) = \{\} $
	$\square \mathcal{L}(E \times A^C) \neq \{\}$
aucune des réponses proposées n'est correcte	$\overline{ \qquad } \overline{\mathscr{L}(A)} \cap \mathscr{L}(E) \neq \{\}$
Question 6 4 Cochez le(s) état(s) accessible(s) de	aucune des réponses proposées n'est correcte
$A \times B$	Question 11 & Cochez les propositions correctes.
	$\square \mathscr{L}(B \times A^C) = \mathscr{L}(A) \setminus \mathscr{L}(B)$
aucune des réponses proposées n'est correcte	$\square \mathscr{L}(A^C) = \Sigma^* \setminus \mathscr{L}(A)$

$ \square \mathcal{L}(A \times B) = \mathcal{L}(A) \cup \mathcal{L}(B) \square \mathcal{L}(A^C \times B) = \mathcal{L}(B) \setminus \mathcal{L}(A) \square \mathcal{L}(A^C) = \mathcal{L}(C) \setminus \mathcal{L}(A) \square \mathcal{L}(A \times B) = \mathcal{L}(B \times A) \square \mathcal{L}(A \times A^C) = \{\} \square \mathcal{L}(A \times B) = \mathcal{L}(A) \cap \mathcal{L}(B) \square \mathcal{L}(A + B) = \mathcal{L}(A) \cup \mathcal{L}(B) $	Question 14 \clubsuit Cochez le(s) états accessible(s) de A_1^D .
$\square \mathscr{L}(A \times B) = \mathscr{L}(A) \times \mathscr{L}(B)$	Question 15 \clubsuit Lesquels des états représentent des états puits de A_1^D ?
☐ aucune des réponses proposées n'est correcte Question 12 ♣ Complétez : Le langage reconnu par un automate A est non-vide si réservé au correcteur	
	Question 16 \clubsuit Cochez les mots reconnus par A_1
	aa baba aaa ba aab abab abba b aaba aucune des réponses proposées n'est correcte
	Question 17 A_1^D est-il complet?
Question 13 ♣ Cochez les propositions correctes. Le langage reconnu par un automate A (déterministe, sans ε-transition, complet) est vide si A contient un état puit infini si A contient un cycle vide si A n'a pas d'état accepteur fini si A ne contient pas de cycle non vide si A contient au moins un état accep-	oui non Question 18 Lesquels des états sont accepteurs? $ \begin{bmatrix} $
teur aucune des réponses proposées n'est correcte	Exercice 6 : Minimisation
uncane aes reponses proposees n est correcte	On note ${\cal A}^M$ la version minimisée de ${\cal A}$
Exercice 5 : Déterminisez l'auto- mate A_1 ci-dessous avant de répondre aux	Question 19 \clubsuit Complétez : Les états de l'automate minimisé A^M représentent
questions	
On note A_1^D la version déterminisée de A_1 .	
$A_1: a,b$ $ $ $ $ $\underbrace{ 2 } $ $\underbrace{ a,b } $ $\underbrace{ 3 } $	

Question 20 4 Cochez les affirmations correctes :	Exercice 7 : Minimisez l'automate
un état puit	A_2 avant de répondre
peut être supprimé sans changer le langage re-	_
connu par l'automate	aux questions
n'est pas accepteur	
ne permet plus d'atteindre un état accepteur	
n'est pas accessible	$A_2 \parallel 1_i \mid 2^a \mid 3 \mid 4 \mid 5 \mid 6 \mid 7^a \mid 8 \mid$
n'est pas accessible depuis un état accepteur	a 3 4 8 3 8
n'a pas de nom	b 4 2 3 7 3 4 2 5
est accessible depuis l'état initial	c 6 7 8 6 3 1 7 8
aucune des réponses proposées n'est correcte	
Question 21 & Cochez les propositions correctes :	
La minimisation d'un automate A	Question 24 🌲 Cochez les équivalence entre états
\Box élimine les ϵ -transitions	de l'automate A_2
introduit des transitions supplémentaires	
produit un automate complet	
fusionne certains états de même statut	$4 \sim 8$ $3 \sim 8$ $3 \sim 5$
fusionne les états initiaux	
elimine les états inaccessibles	aucune des réponses proposées n'est correcte
dépend des états accepteurs	
dépend de l'état initial	Question 25 4 Combien d'états puits a l'automate
ne doit pas fusionner les états qui n'ont pas le	A_2 ?
même statut	
fusionne les états accepteurs	0 2 5 6
elimine les états puits	4 3 7 1
fusionne les états puits	aucune des réponses proposées n'est correcte
aucune des réponses proposées n'est correcte	
Question 22 Un automate A peut avoir plusieurs	Question 26 Combien d'états a l'automate minimal
états puits?	équivalent à A_2
non oui	\square 4 \square 1 \square 6 \square 7
Question 23 \clubsuit Cochez les propositions correctes : L'automate minimisé A^M	5 3 8 2
	0 4 07 0 1: 1/4 1/4 1/4 1/4
reconnaît le même langage que A $\mathcal{L}(A) \subseteq \mathcal{L}(A^M)$	Question 27 Combien d'états a l'automate $minimal$ et $complet$ équivalent à A_2 ?
$\square \mathscr{L}(A^M) \subseteq \mathscr{L}(A)$	
reconnaît uniquement les mots minimaux de A aucune des réponses proposées n'est correcte	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$