

Parrallel Connecting Component Labeling
Hugo Bantignies

We built an optimized binarization to
generate a binary image using
intrasecs function in C.

Converting a pixel image to a binary
image depending on a threshold.

Binarization

Connecting Component Labeling

Connecting Component Labeling
(CCL) :
Assigning a label to each connected
component -blob- of a binary image.

Algorithm Comparizon

CCL Algorithm is already
implemented. For example, NVIDIA,
built the algorithm with CUDA.

We wanted
to compare our
implementation
idea with them,
about the
execution time.

Labeling execution time of
2048x2048 on GPU, CUDA

References

[1] HAL, A new direct CCL and
CCA Algorithms for GPUs,
Arthur Hennequin and Lionel
Lacassagne

[2] How to speed CCL up with
SIMDRLE algorithms,
Florian Lemaitre, Arthur
Hannqeuin, Lionel Lacassagne

 Parallel and Multithreading

To optimize the execution, we have
to use parallelization and threads.
That is why, for the horizontal
propagation, each line of the image
is associated to a thread.

This allows us the entire scanning of
the image in a short time. The
horizontal propagation is done at the
same time.

Each line is runned by a different thread (t1,t2,t3)

Propagation

Root and Terminaison

During the CCL, there are two
propagation : Horizontal and
Vertical.
Horizontal is the first propagation.
During this step, each thread will
create an array of label for his line
and the next line. Each label will be
connected to another label. At the
end, we have got a horizontal
propagation stored in arrays.

The second propagation is the
Vertical.
An array of root was built during
the horizontal propagation. Our
goal is to propagate each root,
from the bottom to the top, throw
the arrays built during the first step.

This array represents the first pixel line

A root is the start of a component
-blob-, it will be stocked into an array
during the first step of the algorithm.

A terminaison is the end of the
component -blob-.

The root is the green run

The terminaison is the red run

Vertical propagation of the red root

Extended Abstract : Parallel Connecting Component Labelling Algorithm on

Multi-Core CPU

Hugo Bantignies

Supervised by: Dominique Houzet

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature: Bantignies Hugo, 29/08/2020

Abstract

This document is an extended abstract of ”Paral-
lel Connecting Component Labeling Algorithm on
Multi-Core CPU”.

1 Introduction

Currently, in image processing, the direct Connecting Com-

ponent Labeling algorithm (CCL) was recently implemented
in parallel. We wanted to submit our own version of the algo-
rithm -a parallel version- to the OpenCV library and compare
it with other implementations already existing on GPU -like
NVIDIA with CUDA- as a bibliographic review. Before that,
we wanted a Multi-core CPU version of our code in C pro-
gramming language.
CCL is an algorithm consisting in providing a unique label to
each connected component of a binary image used primarily
in image detection. This algorithm can be enhanced in Con-

necting Component Analysis (CCA) to get more information
about the image.

2 Binarization

The CCL algorithm needs a binary image. For this reason,
we implemented our version of an optimized binarization by
thresholding. This is an algorithm to convert a pixelized im-
age into a binary image. We used intrinsics functions from
the instruction set Streaming SIMD Extensions 2 (SSE2) to
optimize it. To read and stock the image, the m128i type
and his logical operations is an example. Also, we applied a
byte compression to recreate the binary image.

3 New Parallel CCL Algorithm

3.1 Definitions

There are some terms to know about the algorithm :
• run : A sequence of ”1” in a row in a line of the binary

image.
• root : The first run encounter of a connected component

during the reading direction. It is the start of the compo-
nent.

• ending : The last run encounter of a connected compo-
nent during the reading direction. It is the end of the
component.

• 4-connectivity : A pixel is only connected -or not- with
his top, right, left and bottom neighbors.

3.2 Label Propagation

Propagation will detect and keep in table every connections
between different run, to find every connected component at
the end. There are two propagations during the execution of
our CCL version : horizontal and vertical.

Horizontal Propagation

To have an optimized propagation we used multithreading.
Each line of the binary image is associated to a thread. Each
thread explores his current line and the next one, to have a
common line with the next thread.
Every run in a binary line is identified by a unique label. The
thread will explore his two lines switching when the end of
a run is farther than the other one on the other line. Two
tables -A and B- will keep all run connections following 4-
connectivity. A root table is filled during this propagation.

Vertical Propagation

Every root stocked in the table, will be propagated through A
and B tables generated by threads during the horizontal prop-
agation. The root propagation will be stopped on a ending
run. There is a particular situation called a conflict, when a
root, during his propagation, arrives on an update run by a
previous root propagation. A conflict notified will be saved
in an equivalence table like that : (updated root, new root)
which means that every run updated by the previous root or
by the current one are in the same component.

3.3 Equivalence table

At the end of propagation, all missing root labels inside the
equivalence table are a unique label of a connected compo-
nent. Otherwise, for each equivalent root, the connected com-
ponent has several equivalent roots but one single label -the
minus one-.

Validation of Presburger Sets operations

How to extract the formula defining an ISL
 set S in order to store it in Z3 format ?

How are ISL Sets stored and defined ?

Objective of the internship: test ISL operations between Presburger sets using Z3 SMT-Solver

How to create an ISL set defined with a Z3 formula and how to test
Operations between and within sets ?

During the internship, ISL and Z3
were used in their python version

Abstract

The Validation of Presburger Sets operations will
be printed from electronic manuscripts submitted
by the authors. The electronic manuscript will also
be included in the online version of the proceed-
ings. This paper provides the style instructions.

1 Introduction

1.1 ISL

Integer Set Library (ISL) is a C library used for storing sets

of vectors of integers, and computing different operations

such as union, intersection and projection on these sets.

1.2 Presburger Set definition

A set can be defined with a logical formula, i.e. , if an object

satisfies the formula, then it belongs to the set.

In ISL, these formulas are defined with the Presburger arith-

metic language.

1.3 Main objective

The main objective of the internship was to validate the

main operations offered by ISL, using an SMT solver (Z3).

During the internship, the python libraries ISLpy and Z3py

were used in order to facilitate the task.

1.4 Main issues

After a projection operation, in many cases the formula ends

up having an existential quantifier. The main problem is that

Z3 may induce an infinite loop when checking the satisfia-

bility of this kind of formula. This is why Cooper’s method

of quantifier elimination had to be implemented. This allows

to find a finite set, in which if the formula is satisfied, then

the original formula is also satisfied.

The “Set” data structure of the ISL library had to be under-

stood in order to program robust tests.

2. Testing the operations

2.1 Creation of Z3 random polyhedra

The first objective of the internship was to create a function

creating a random polyhedron, i.e, an array containing for-

mulas of the form : a1 x1 + … + an xn + an+1 ≥ 0 with every ai

created randomly . The formulas are objects of the class

“Expression” declared in the Z3 library, allowing to keep in

memory operations with variables.

2.2 Creation of ISL sets

Once the polyhedron is created, the conjunction of these in-

equalities is computed. In order to create an ISL set defined

by this formula, it suffices to give as a parameter to the ini-

tializer Set(), the string: “ { [x1 , … , xn] : Conjunction(P) }

”, assuming “Conjunction(P)” computes the conjunction of

the inequalities forming the array P.

2.3 Computing Union and Intersection of ISL sets

Let A = { x : P(x) } and B = { x : Q(x) } . In set theory, the

intersection of A and B corresponds to :

A ∩ B = { x : P(x) and Q(x) }. The ISL operation A.inter-

sect(B) is supposed to keep in memory the simplification of

“P(x) and Q(x)”. The tests consist in seeing if in fact, the

simplification is equal to the expected formula. Idem for the

union of sets (A.union(B)).

2.4 Main idea for the tests

With two sets A and B created with two Z3 random polyhe-

dra PA and PB, the intersection or the union is computed.

Then the simplification of the formula F, defining the result-

ing set is extracted as a Z3 expression. Z3, being a SMT-

Solver allows to prove if two formulas are equivalent :

If Xor (F , PA and PB) is unsatisfiable, then the formulas

“F” and “PA and PB” are equivalent. The expected result to

consider that the operation works, is that for each randomly

created PA and PB, its conjunction has to be equivalent to the

resulting F if the tested operation is the intersection, and its

disjunction has to be equivalent to F if the tested operation

is the union.

Validation of Presburger Sets operations

Nicolas Besson
UGA and Verimag
Grenoble, France

nickxbesson@gmail.com

Michael Perin

Michael Perin

Michael Perin

Michael Perin

2.5 Results

As expected, in every tested case (with 10 000 tests), the re-

sult was what was expected. In order to conclude that the

operations always work, the code of the operations has to be

mathematically proven (which was not the point of the in-

ternship).

References

[Aaron Bradley, Zohar Manna, 2007] The Calculus of Com-
putation: Decision Procedures with Application to Veri-
fication

Michael Perin

Effective implementations of Information-Set Decoding algorithms
Dorian Biichlé supervized by Pierre Karpman

Team CASC @ Laboratoire Jean Kuntzmann, University of Grenoble-Alpes

Introduction
Information-Set Decoding forms a class of
exponential probabilistic algorithms whose goal is
to find a low-weight codeword in a given random
linear code.

ISD Algorithms

‘ These algorithms operates on either the gen-
erator or the parity-check matrix of the linear
code.

‘ By manipulating the matrix and checking its
rows, they try to find a codeword (a vector) with
a weight as close as possible to a theoretical
minimum bound.

‘ Two main algorithms have been implemented:
Prange [1] and Stern [3]. Prange idea is to an-
alyze rows of the generator matrix in systematic
form (when the left part of the generator matrix
is the identity), while Stern is an improvement of
Prange using a time-memory trade-off.

‘ Two implementation of Stern have been done;
a first one using only Canteaut and Chabaud
improvements [2], and a second one adding
optimizations and recommended parameters of
Bernstein, Lange and Peters [4]

Implementations
‘ Implementations have been tailored to solve

[1280, 640] binary codes. Thus, many opti-
mizations rely on the fixed size of the code’s
parameters to get faster.

‘ These algorithms have been implemented to
make the most of the AVX-512 instructions set.
Hence, the implementations have been done
in C, using AVX-512 intrinsics.

‘ Some linear algebra operations are done us-
ing the M4RI library, which is specialized in fast
arithmethic operations over F2.

Results
Evaluating performances

‘ Solving the low-weight codeword problem in
practice has implications in cryptography as
some cryptosystems rely on its hardness.

‘ In fact, our implementations have been tested
against decoding-challenge.org’s chal-
lenges, where the goal is to find a codeword
with the smallest weight possible for the given
instance of a random linear binary code.

‘ The purpose of the website is to assert the prac-
tical hardness of the problem, with real-world
cryptographic parameters.

‘ The code has been launched on one of GRI-
CAD’s cluster, Dahu (dahu110 & dahu111
nodes, 2x8 cores Intel(R) Xeon(R) Gold 6244
CPU 3.60GHz).

‘ As ISD algorithms are probabilistic, the problem
is embarassingly parallel, which means one can
run 16 instances of the program simultaneously
on 16 cores without much effort.

Results in numbers

Prange Stern Stern 2
48h runs/core done 16 61 96
evaluated codewords/s 58 400 000 9 800 000 15 295 500
Av. smallest codeword/run 228.4 227.3 225
Smallest codeword found 224 222 219

Figure: Overall stats for each implementations

After many runs, the best codeword found has a
weight of 219 (theoretical minimum bound is 144
for the given instances).

Figure: Average minimum weight found over time for each
implementation

Figure: decoding-challenge.org’s scoreboard

That was close but not enough to get into
decoding-challenge.org’s scoreboard.
‘ The code is accessible on github at

github.com/Antoxyde/isd.

References
Prange, E. The use of information sets in decoding cyclic codes IRE
Transactions IT-8(1962) S5–S9

Canteaut, A., Chabaud,F A new algorithm for finding

minimum-weight words in a linear code: Application to McEliece’s

cryptosystem and to narrow-sense BCH codes of length 511. EEE
Transactions on Information Theory44(1) (January 1998) 367–378

Stern, J. A method for finding codewords of small weight Coding
theory and applications, volume 388 of Lecture Notes in Computer
Science, 1989.

Bernstein, DJ., Lange, T., Peters, C. Attacking and defending the

McEliece cryptosystem 2008

https://bitbucket.org/malb/m4ri/src/master/
https://decodingchallenge.org/low-weight
https://github.com/Antoxyde/isd

Effective implementations of information-set decoding algorithms

Dorian Biichlé, supervised by Pierre Karpman
Team CASC, Laboratoire Jean Kuntzmann, University of Grenoble-Alpes

1 Introduction
ISD (Information-Set Decoding) is a class of probabilistic
algorithms whose goal is to find a low-weight codeword in
a random linear code. This problem is considered hard, as
these algorithms all have an exponential complexity. Some
cryptosystems rely on this hardness. The goal of this work is
to ensure the practical hardness of the low-weight codeword
problem with real-world cryptographic parameters against
ISD algorithms.

1.1 Linear codes
A random linear [n, k] code is a linear subspace C ⇢ Fn

q
of dimension k. We will only consider the binary case, ie
q = 2. C can be characterized by a k ⇥ n generator matrix
G, whose rows forms a basis of C. This matrix is said to be
in systematic form if its in the form G = [Ik|R], where R is
a random k ⇥ (n� k) matrix.

An information set of G is a subset of length k of {1, .., n},
corresponding to indexes of linearly independant columns of
G.

The Gilbert-Varshamov bound on linear codes tells us that
there exist on average a unique codeword of a certain given
weight. By ”low-weight codeword”, we thus means a code-
word whose weight is as close as possible to that bound.

2 ISD algorithms
The first algorithm implemented is Prange [3]. It aims to find
low-weight codewords by using a generator matrix in system-
atic form. It uses the fact the rows have a maximum weight
of n� k + 1 (and expected n�k

2 + 1).
The second algorithm implemented is Stern [4]. The idea

is the same as Prange, but using a time-memory trade-off. It
strives to lower the weight of analysed codewords by finding
linear combinations having the same value on a specific win-
dow. The maximum weight of analysed codewords is thus
n � k � ` + 2p (and expected n�k�l

2 + 2p), where p is the
number of rows in the linear combinations, and ` the size of
the window.

2.1 Improvements
Over the years, researchers have found several improvements
to these algorithms. We implemented some of their ideas:

• Canteaut and Chabaud [1], who lowered the complexity
of Stern algorithm by making single steps of the Gaus-
sian elimination algorithm, instead of all the steps.

• Bernstein, Lange and Peters [2], who gives interesting
optimizations, for instance forcing several windows to
zero in one iteration of the Stern algorithm, instead of
only one.

3 Implementations
Implementations were tailored to decoding-challenge.org’s
challenges, which are [1280, 640] binary codes. That means
that the code heavily rely on the fact that these parameters are
fixed. We strove to make full use of the AVX-512 instructions
set, as the codewords are 1280 bits long. An optimization
made consist of storing only the redundant part of the genera-
tor matrix, meaning storing a single row takes 640 bits, so 512
bits and 128 bits vectors. Some of the linear algebra opera-
tions are done using the M4RI library, which is specialised in
arithmetic over F2. The whole code is accessible on a github
repository at github.com/Antoxyde/isd

4 Results
The code has been launched on one of the GRICAD’s clus-
ter, Dahu (specifically on the dahu110 & dahu111 nodes, 2x8
cores Intel(R) Xeon(R) Gold 6244CPU 3.60GHz).

Figure 1: Average min. weight found over 48h runs
The G-V bound for [1280, 640] binary codes is 144, and af-

ter running our Stern implementation for approximately 192
core-days, the best codewords we obtained has a weight of
219.

https://decodingchallenge.org/low-weight
https://bitbucket.org/malb/m4ri/src/master/
https://github.com/Antoxyde/isd

References
[1] F. Chabaud A. Canteaut. “A new algorithm for find-

ing minimum-weight words in a linear code: Applica-
tion to McEliece’s cryptosystem and to narrow-sense
BCH codes of length 511”. In: IEEE Transactions on
In-formation Theory44 (1998), pp. 367–368.

[2] C. Peters D. J. Bernstein T. Lange. “Attacking and de-
fending the McEliece cryptosystem”. In: (2008).

[3] E. Prange. “The use of information sets in decoding
cyclic code”. In: IRE Transactions IT-8 (1962).

[4] J. Stern. “A method for finding codewords of small
weight”. In: Coding theory and applications 388 (1989).

Lattice based resolution for the Hidden Number Problem

Gaspard Anthoine1 and Pierre Karpman1

Abstract— We are interested in the problem of finding an

unknown value in an interval [0, p � 1] for a prime p given

a small number of relations of the form yi + Aiy0 + Bi ⌘ 0
mod p only partially known and according to a uniform law.

Where Ai and Bi are uniformly random public values and yi
are either well unknown according to a non-uniform law, or

only partially known and according to a uniform law.

I. INTRODUCTION

In cryptography digital signatures are used for verifying
authenticity of a message, a document. They are in reality
widely used for software distribution, financial transactions,
cryptocurrencies, website certificates. Digital signatures re-
lies on asymmetric cryptography, the DSA standard was
proposed by NIST and adopted in 1994. This scheme is based
on modular exponentiation and a discrete logarithm problem.
There is now some new scheme for digital signature for
example based on elliptic curves named ECDSA. Attacking
theses signatures algorithms when a certain amount of bits
leaks can be linked to what is called the Hidden Number
Problem. There are two principals methods used to solve
this problem, the first is called Bleichenbacher [1]. The
Bleichenbacher’s method permits to attack leaks with a small
number of bits but requires a lot of signatures. The method
we will study in this paper will be based on lattices. The HNP
can be solved via lattice as shown by Boneh and Venkatesan
[2]. Howgrave-Graham & Smart [3] showed in 2001 how
to attack DSA using lattice and building an appropriate
basis. The main concern of this work was to replicate the
results of Howgrave-Graham and Smart and to see if the
recent progress of Albrecht et al. [4] for short vector search
in a lattice could improve the parameters (signature size
and number of leaking bits). The advantage of the lattice
approach compared to the Bleichenbacher one is that fewer
signatures are needed but in return more bits have to leak.

II. RELATED WORKS

Lattice based attacks on electronic signature have been
first introduced by Howgrave-Graham & Smart [3] in 2001.
In 2002 Nguyen & Shparlinski [5] improved the results of
Howgrave-Graham & Smart by recovering the private key
on a 160 bits signature with only 3 bit of leaked nonce.
Lattice based attacks have then shown to have real world
application. For example Benger & all [6] showed in 2014
how to attack OpenSSL ECDSA with a side channel on cache
(FLUSH+RELOAD) and lattice based attack to recover the
private key. In 2019 Breitner & Heninger [7] show how

*This work was not supported by any organization
1 Laboratoire Jean kuntzmann

to attack cryptocurrencies using transactions signature with
biased nonce and à lattice based private key recovery.

III. PRELIMINARIES

A. Lattices
Definition 1: A lattice is a discrete subgroup of space,

with a finite rank n. Let v1, . . . , vn 2 m be n linearly
independents vectors. A lattice spanned by {v1, . . . , vn} is
the set of all linear combination of v1, . . . , vn such that :

L =

(
nX

i=1

aivi, ai 2
)

{v1, . . . , vn} will be called the basis of L. When m = n we
can construct a matrix of the basis by the vectors down row
by row.

This formal definition can be seen more simply as a regular
arrangement of points. We will define the dimension of L as
dim(L) = n.

(a) Lattice with basis vector u, v (b) Lattice with basis vector u0, v0

Fig. 1: Same lattice spanned by different vectors

B. Lattice problems
1) Shortest Vector Problem: Given a basis, find the small-

est vector in the lattice. This problem is a problem considered
as difficult (NP-HARD).

Definition 2: We will call an orthogonality defect for a
basis B of a lattice ⇤:

�(B) =
⇧n

i=1kbikp
det(BTB)

=
⇧n

i=1kbik
d(⇤)

In the case of a perfectly orthogonal basis we will have
�(B) = 1.

A SVP problem can however be approached by several
basis reduction algorithms. Notably LLL [8] or BKZ. We
will then call this problem a �-approximation that we will
note SV P� with � > 1 and �(B) < �, for large enough
gamma we can use LLL (of the order of � = 2⌦(n) with n

the size of the lattice). If you want a better reduction you
will have to use BKZ (or even HKZ [4]) but the reduction
will then be slower (will depend on some parameters). If you
use LLL you will have a bad approximation ratio ((2p

3
)n)

but the algorithm will be polynomial.

Fig. 2: Example of basis reduction

As you can see in figure 2 the vector of the basis are
shorter and more orthogonal (closer to the orthogonality
defect) after the reduction.

2) Closest Vector Problem: Given a lattice, find the clos-
est lattice’s vector to a given vector which does not belong
to the lattice. We can define given a target vector t 2 n

and a lattice L ⇢ n :

dist(L, t)
x2L

= kx� tk

The hardness of this problem is known to be NP-complete
(first proved by Emde Boas [9]) and highly related to
hardness of SVP. There is an approximation problem called
�-CVP for any gamma > 1 approximation factor, t 2 n,
a lattice L ⇢ R

n, the goal is to output x 2 L with :

kx� tk � · dist(L, t)

This problem is also known to be NP-complete for any
� > n

c/ log logn for some constant c [10]. This problem can
be solved easily if one has a good base of the lattice with
Babai’s algorithm [11] and the quality of the vector we found
will depend on the quality of the reduction basis.

3) Closest Vector Problem reduction to Shortest Vector
Problem: It’s possible to reduce à CVP problem to an SVP
by building a new lattice with a particular basis :

B
0 =

✓
B 0
u n

◆

Where B is the basis of the lattice for the CVP problem with
vector u which where not in the lattice and B

0 is a basis for
an SVP problem. Applying a basis reduction algorithm to B

will give you �-CVP solution with gamma depending on the
quality of the reduction. In figure 3 you can see an example

of CVP for a lattice L with basis B =

✓
1 0
0 1

◆
and a vector

t =

✓
3.1
4.9

◆
. The solution vector is x =

✓
3
5

◆
.

(a) Vector t 62 L (b) vector x 2 L

Fig. 3: Example of CVP

C. Hidden Number Problem

Definition 3: The hidden problem number can be de-
scribed as follows : considering T = (t1, . . . , tn), ti 2 p,
↵ 2 Fp, and MSBl(↵ti) the l most significant bits of
↵ti. Having T and (MSBl(↵t1 mod p), . . . ,MSBl(↵tn
mod p)) can we found ↵ ?
This model is a generalisation of some attack problems on
DSA (digital signature Algorithm). This problem can be
solved via a lattice as shown by Boneh and Venkatesan [2]
or by Bleichenbacher’s method [1]. The complexity of the
Hidden Number Problem depends on several parameters :

• Time complexity : the runtime of an algorithm to solve
an instance of the problem.

• Data complexity : the number of samples that will be
required to solve an instance.

In this paper we will only study solving HNP with lattice,
this requires less sample than a Bleichenbacher’s method but
will only work for more bits leaking (the parameter l of the
problem).

D. Digital Signature Algorithm

DSA or Digital Signature Algorithm is an algorithm
proposed by NIST and adopted in 1994 as a standard for
digital signatures. The algorithm is in three parts :

1) Alice publish a group of cardinal p (prime) and a
generator g 2 . Alice get a random x and publish
h = g

x. We imagine there is a bijective function
f : ! /p that everybody knows. x will be the
private key of Alice that she has to keep secret.

2) If Alice wants to sign a message m 2 Z/p she
computes r = f(gy) and s such that :

m ⌘ sy � xr mod p

for some randomly chosen y 22 Z/p .
3) Alice can now send (m, r, s)to Bob.

To verify the signature Bob can compute f(gms�1

h
rs�1

) =
r.

IV. ATTACKING DSA WITH LATTICE

It’s possible to translate an HNP instance into equations
modulo a prime p. You can write MSBl(↵ti mod p) as :

↵ti � bi ⌘ yi mod p

Michael Perin

Michael Perin

with bi the least significant bits of ↵ti.
If we got h signatures of the form :

mi � siyi + xri ⌘ 0 mod p

With x and yi unknown we can write :

yi +Aix+Bi ⌘ O mod p

With Ai = (�si)�1 · ri and Bi = (�si)�1 ·mi. If we know
some of the most significant bits of the yi we now have a
HNP instance : MSBl(�yi � Bi mod p) = MSBl(Aix

mod p) and thus recover x. We can build the basis B for à
lattice L as follows :

B =

0

BBBBB@

p⇥ 2l+1 0 0 . . . 0 0
0 p⇥ 2l+1 0 . . . 0 0
...

. . .
0 p⇥ 2l+1 0

A1 ⇥ 2l+1
A2 ⇥ 2l+1

. . . An ⇥ 2l+1 1 0

1

CCCCCA

And applying Babai algorithm with a vector t = (MSB(↵⇥
A1)⇥2l+1

, . . . ,MSB(↵⇥An)⇥2l+1) which is outside the
lattice will give with good probability a vector y = (. . . ,↵).
As we have seen before we can transform this instance of
a closest vector problem into a shortest vector problem by
building this basis :

B
0 =

0

BBBBBBB@

p⇥ 2l+1 0 0 . . . 0 0
0 p⇥ 2l+1 0 . . . 0 0
...

. . .
0 p⇥ 2l+1 0

A1 ⇥ 2l+1
A2 ⇥ 2l+1

. . . An ⇥ 2l+1 1 0
t1 ⇥ 2l+1

t2 ⇥ 2l+1
. . . tn ⇥ 2l+1 0 p

1

CCCCCCCA

If we apply a basis reduction algorithm on B
0 we get a

good probability to find y
0 = (y,�p) as one of the vectors

of the basis.
It’s also possible to slightly improve the dimension of the

matrix by rearranging the diffrents yi +Aix+Bi as follow
:

• x ⌘ �A
�1
n yn �A

�1
n Bn mod p

• so we have yi + Ciy0 + Di ⌘ 0 mod p with Ci =
�A

�1
n ·Ai, Di = �A

�1
n Bn +Bi and y0 = yn

At the end we have n � 1 equations so this reduce the
dimension of the lattice.

V. RESULTS

This results are the bests results we got using 100 signa-
tures samples.

Nombre de bits CVP LLL CVP BKZ SVP
160 6 5 4
192 6 5 5

For the 4 bits of nonce leak and a 160 bits signature we
got à 50% success.For the 5 bits of nonce leak and a 192
bits signature we got à 100% success.

VI. CONCLUSIONS
To conclude we we managed to get better results than

Howgrave-Graham & Smart [3] but not as good as Nguyen
& Shparlinski [5] who managed to have 100% success on a
4 bits leak for a 160 bits signature and even some success
for 3 bits leak. Maybe we could try to understand more how
the scaling factor is working in the basis (2l+1). We got also
another idea would be to use the knowledge about hn with
the last optimisation to get a bigger advantage. Further work
should be done to understand how the different factors works
with the algorithm.

REFERENCES

[1] D. Bleichenbacher, “Chosen ciphertext attacks against protocols based
on the rsa encryption standard pkcs #1,” in Advances in Cryptology
— CRYPTO ’98 (H. Krawczyk, ed.), (Berlin, Heidelberg), pp. 1–12,
Springer Berlin Heidelberg, 1998.

[2] D. Boneh and R. Venkatesan, “Hardness of computing the most
significant bits of secret keys in diffie-hellman and related schemes,”
in Advances in Cryptology — CRYPTO ’96 (N. Koblitz, ed.), (Berlin,
Heidelberg), pp. 129–142, Springer Berlin Heidelberg, 1996.

[3] N. A. Howgrave-graham and N. P. Smart, “Lattice attacks on digi-
tal signature schemes,” Designs, Codes and Cryptography, vol. 23,
pp. 283–290, 1999.

[4] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postleth-
waite, and M. Stevens, “The general sieve kernel and new records in
lattice reduction,” in Advances in Cryptology - EUROCRYPT 2019 -
38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part II (Y. Ishai and V. Rijmen, eds.), vol. 11477 of
Lecture Notes in Computer Science, pp. 717–746, Springer, 2019.

[5] P. Q. Nguyen and I. E. Shparlinski, “The insecurity of the digital sig-
nature algorithm with partially known nonces,” Journal of Cryptology,
vol. 15, pp. 151–176, 2000.

[6] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom, “"ooh aah... just
a little bit" : A small amount of side channel can go a long way,” in
CHES, pp. 75–92, Springer, 2014.

[7] J. Breitner and N. Heninger, “Biased nonce sense: Lattice attacks
against weak ecdsa signatures in cryptocurrencies.” Cryptology ePrint
Archive, Report 2019/023, 2019. https://eprint.iacr.org/
2019/023.

[8] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring polynomials
with rational coefficients,” MATH. ANN, vol. 261, pp. 515–534, 1982.

[9] P. Boas, “Another np-complete problem and the complexity of com-
puting short vectors in a lattice,” 1981.

[10] I. Dinur, G. Kindler, R. Raz, and S. Safra, “Approximating cvp to
within almost-polynomial factors is np-hard,” Combinatorica, vol. 23,
p. 205–243, Apr. 2003.

[11] L. Babai, “On lovász’ lattice reduction and the nearest lattice point
problem,” in STACS 85 (K. Mehlhorn, ed.), (Berlin, Heidelberg),
pp. 13–20, Springer Berlin Heidelberg, 1985.

https://eprint.iacr.org/2019/023
https://eprint.iacr.org/2019/023
Michael Perin

Curve-based stylization of 3D animations
⇤

FARHAT Amine

Under the supervision of
VERGNE Romain • THOLLOT Joëlle

I understand what plagiarism entails and I declare that this report
is my own, original work.
Name, date and signature:

Abstract

Expressive rendering can be done in multiple ways.
One of them involves the repetition of a simple 2D
mark. The usage of a map of 3D positions as an in-
put allows for a placement of these marks that fol-
lows the geometry of the objects, and stays coher-
ent with their deformations as well as with the posi-
tion of the camera. This aspect makes this method
extremely effective for the stylization of 3D anima-
tions. In this project, these marks are procedurally
generated in order to follow the shape of a curved
path, which facilitates the reproduction of brush-
based or line-based art styles. The path is computed
from a series of points and directions sampled from
the tangent map of the scene. This computation
is done by fitting a quadratic function. Since the
sampled point are determined by the geometry, the
path remains coherent with the movements of the
objects, while still maintaining a 2D painted aspect.

1 Introduction

When it comes to rendering images on a computer, one might
seek to stray away from the usual pursuit of photo-realism,
aiming instead for a stylized appearance. In computer graph-
ics, the process of stylization usually consists in taking a pho-
tograph and applying a series of filters – that can be imple-
mented as programmable shaders – in order to recreate the
desired art style. The past two decades have witnessed an
ever-increasing mainstream usage of these stylization algo-
rithms, notably in real time photo manipulation.

While most of these methods yield more than satisfying
results, their main limitation manifests itself when being ap-
plied to animated scenes. Since the stylization process is gen-
erally applied to one frame at a time, this can lead to impor-
tant discrepancies between two consecutive images. For ex-
ample, an oil-paint filter might represent an object with hori-
zontal strokes in one frames and vertical strokes in the next,

⇤These match the formatting instructions of IJCAI-07. The sup-
port of IJCAI, Inc. is acknowledged.

which leads to a noticeable increase in popping. This issue
was formalized as the temporal coherence by Bénard et al.
[4].

According to Bénard, a stylization method can be ap-
praised on three distinct factors : Flatness, Motion coherence
and Temporal continuity. But since these three factors are un-
elikely to be achieved at the same time, each method has to
settle on a compromise [figure 1].

Figure 1: Visual representation of the Temporal coherence
problem.

Last year, during my internship, I briefly contributed to the

development of a new stylization method, the groundwork of
which was laid down by my supervisors.

Our method ensures motion coherence by taking 3D scenes
as an input instead of 2D images. Since the input is a 3D
scene, it can provide more information on what is to be rep-
resented on the canvas, including but not restricted to the ob-
jects on the scene, their positions, the orientation of their sur-
faces, the textures and colors of their materials, etc. This data
is stored in a stack of images, referred to as G-buffers: In a
normal rendered image, each pixel is a projection of a section
of a 3D scene onto the 2D screen. Usually, the pixel takes the
color of the object it is representing, such as to be understood
by the human brain. However, it is also possible to store other
kinds of information in that pixel, such as the orientation of
the corresponding point in the 3D space.

In broad terms, this process will procedurally create a 3D
cloud of “anchor” points, generated within the volume of the
objects on the scene. These anchor points are thus coherent
with the transformations of the objects, since they are gener-
ated from the information gathered from the G-buffers. Then,
the image is recreated by exclusively “pasting” a simple im-
age on the canvas, depending on the position of the anchor
points on the screen. These images, henceforth referred to as
”splats”, can vary in terms of shape, size, color, and texture.
These parameters are the defining factors of the type of art
style that is going to be outputted.

This information can also be used throughout the styl-
ization pipeline to obtain different results depending on the
user’s will. This allows for an extremely wide scope of art
styles, ranging from pointillism to watercolor.

However, the splats themselves are limited to 2D square
images, which can be too restrictive in certain scenarios: For
example, when representing a moving object, some artists
rely on motion lines - an artistic abstraction of motion blur
- to better express the trajectory of the object. Additionally,
many styles rely on long, uninterrupted strokes that bend and
twists depending on the geometry of the object.

By building on this method, it is possible to allow the splats
to be molded by a curved path, the shape of which could be
determined by a number of factors based on the characteris-
tics of the object. And since the splats are placed on the can-
vas depending on the geometrical properties of the objects,
we can ensure a satisfying level of motion coherence.

2 Related Work

The field of non-photorealistic rendering offers a good
amount of attempts at curve-based stylization methods. Ren-
dering algorithms, and according to Bénard’s survey[4], they
can be divided in two categories: texture and mark based.

When it comes to mark based approaches, we will focus
on two papers with comparable process. Hertzmann et al.
proposed an algorithm where the brush strokes are gener-
ated in a path that follows the directions with the least color
difference[1] on a blurred version of the input. Huang et al.
[2] had a similar approach, where the strokes are instead gen-
erated by a grid of features. The cells of this grid have vari-
able sizes, and each one of them regroups small clusters of
pixels with similar values. The stroke once again follows the

neighboring paths with the least color difference. In both of
these methods, the shape of the strokes can thus only be de-
fined by the colors on the input 2D image. However, since
the splatting method is always based on a 3D scene, we have
a wider range of data to choose from. One possible solution
would be to use the tangent information on each pixel. In that
way, the brush strokes would follow the general shape of the
object - the principal curvature of the object - which might be
close to the painting process of a human artist.

Figure 2: The sampling process with a high and a low density
value

Schmid et al. [3] proposed a groundbreaking technique
to draw paint-looking brushes in 3D space, by allowing the
artists to draw 3D curves directly on the 3D geometry. These
curves are transformed into stripes of polygons, which are
then used to map the texture of the brush. The resulting
meshes can then be rendered as any classic textured object.

However, the process is not automated, since every strokes
needs to be hand drawn. Which means that the result cannot
be easily animated. Additionally the curves are oriented in
3D space, which can limit the movements of the camera, and
negatively impacts the flatness of the result

3 Method

The objective of our method is to recreate the scene using
a set of brush strokes on a 2D canvas. Each brush stroke
follows a path that represents the shape of an object on the
screen. As such, these curves are constructed from points that
are sampled from the surface of these objects. The process is
done in for steps. First, for each anchor point given as an
input, we need to sample a number of points in the 3D space
that follow the general shape of the geometry. Second, these
points are projected onto a 2D canvas, and transformed into a
curve. Thirdly, we generate a stripe that follows the shape of
the curve. Finally, we can map the input splat onto the shape
in order to obtain the final render.

3.1 Point sampling

The sampling process is the first and most important step of
our stylization method. In order to draw a curve, one must
first determine the points it is going to follow. We must en-
sure that these points are coherent with the geometry, and re-
main coherent when the object moves or when the camera is
animated. Additionally, since each anchor point is going to
generate a curve, we must ensure that the silhouette cases -
the cases where a curve cannot be fully drawn, if at all - are
taken into consideration.

Description

Sampling is done in three steps: First, the 2D coordinates of
the anchor point on the screen is projected onto the surface of
the 3D object using the world position map. The resulting 3D
coordinate corresponds to the point on the geometry of the
object that appears on the position of the anchor point to the
viewer. This point also carries the value of the tangent of the
surface at that position. This tangent is then used to perform
a ”step” in the 3D space in that direction, with an offset d
determined by the user [figure 4]. The resulting 3D step is
then reprojected onto the 2D canvas. Since the whole process
started with a 2D coordinate, we can re-iterate using that last
point, and keep drawing the rest of the curve. A single step
can be described with the following formula:

V0 = Vanchor

Vx = Mmvp ⇤ (M�1
mvp ⇤ Vx�1 + T (Vx+1) ⇤ d)

where Vx is the xth sampled point, Vanchor is the 2D po-
sition of the anchor on the screen, T () the function that re-
turns the value of the tangent map at a given 2D position, and
Mmvp the projection matrix.

Once the process is complete, a series of 2D points is ob-
tained, one that follows the geometry of the object in a curve-
like pattern [figure 3].

Tangent map

The use of a tangent map was mentioned in the previous para-
graph. The tangent map is a G-buffer that stores, for each
pixel on the map, the tangent on the surface of the corre-
sponding point in the 3D scene. These tangent vectors can
be painted by the artist himself directly on the geometry, or
globally computed from the normal map and a direction vec-
tor.

Fidelity and precision

The steps are performed using a user-defined offset. This
offset determines how spaced out are the sampling points in
3D space. The density of the sampling points directly affects
the shape of the curve [figure 3]: The higher the density, the
closer the curve is to the actual geometry of the object. The
reason for such a phenomenon arises from the re-projection
step. Indeed, when projecting a 2D point into 3D coordinates
and vice-versa, the projection is done on a vector that orig-
inates from the camera. [figure 4] The error gets higher the
more the object’s surface is curved, i.e the higher the differ-
ence between the normals of the origin point and the arriving
point. The camera position is also critical in determining the
intensity of the error. However, a high precision may nega-
tively impact the flatness of the result. This is why this factor
is left to the user’s discretion, as these sampling errors might
be desirable.

Figure 3: The sampling process with a high and a low density
value

3.2 Curve fitting

Once the sampling parameters are satisfactory, the points
need to be processed in order to obtain a continuous path.
Note that there is no single method for processing a series of
points into a path. The following methods are simply three
different approaches with their own advantages and draw-
backs. They have been chosen mainly for exploratory pur-
poses, and alternative methods can always be proposed.

Polyline interpolation

This is one of the simplest ways to convert a series of points
into a continuous line. The path is a compound of straight
segments linking every two consecutive points. This fitting
method offers the highest fidelity possible, since the path goes
through every single point available.

Figure 4: A 2D explanation of the sampling error on a cross-
section of a spherical object.

Since the polyline has a high fidelity to the input data, the
result is more satisfying with a high number of points, that
are close to each other on the 2D space. Lowering the number
of points can lead to apparent straight lines, which might be
interesting only for a handful of art-styles.

3.3 Spline iterpolation

This time, the path is no longer a series of lines, but a series
of cubic splines linking the points. There are many ways of
obtaining a spline interpolation of a series of points, one of
which is centripetal Catmull-Rom interpolation. The result is
a continuous path where each point is an anchor point to two
consecutive splines. Even though the splines are different,
the formula ensures that the transition from one to the other is
consistent, thanks to the usage of the previous anchor point as
a control point. However, it is interesting to note that, by op-
position to the polyline interpolation, the spline interpolation
does not benefit from a high number of input points. Since
each segment can result in the formation of one to two bumps,
having to many points may lead to a path with a jagged ap-
pearance. Instead, it is wiser to reduce the number of input
points, as well as spacing them out. On the other hand, we
demonstrated in the previous section that increasing the dis-
tance between the sampling points may lead to an increased
error factor. Thus, the correct way to proceed is to simplify
the input data, by using a curve decimation algorithm such as
the Ramer-Douglas-Peucker algorithm (see Algorithm 1).

This way, we ensure that the remaining points are still on
the geometry. The number of iterations of the algorithm and
the intensity of the decimation is once again left to the user
[figure 6].

Polynomial curve fitting

Another way to proceed would be to rely on an approximate
function instead of an interpolation. The main difference is
that, contrary to an interpolation, an approximation does not

Algorithm 1: Ramer–Douglas–Peucker algorithm
Result: A decimation of the input set of points
dmax = 0;
index = 0;
end = length(PointList);
for i = 2 to (end - 1) do

d = perpendicularDistance(PointList[i],
Line(PointList[1], PointList[end]));

if d >dmax then

index = i;
dmax = d;

end

ResultList[] = empty; // If max distance is greater
than epsilon, recursively simplify;

if dmax >epsilon then

// Recursive call;
recResults1[] =
DouglasPeucker(PointList[1...index],
epsilon);

recResults2[] =
DouglasPeucker(PointList[index...end],
epsilon);

// Build the result list;
ResultList[] =
recResults1[1...length(recResults1) - 1],
recResults2[1...length(recResults2)];

else

ResultList[] = PointList[1], PointList[end];
end

// Return the result return ResultList[]
end

necessarily pass by all the points. Its shape is instead defined
by the rough distribution of the available data.

3.4 Splat aspect

Parametrization

The final step is to find a satisfying parametrization of the
path in order to map a 2D texture on it. While there are many
approaches to this problem, the objective is always to gener-
ate a 2D map where each pixel corresponds to a position on
the final render.

The parametrization process is always roughly the same,
and can be sumarized in the following formula:

↵x =
x

Nsegments
⇤Npoints

Vx = Pb↵xc + '(Cb↵xc, {↵x})
where Ns the number of segments, Np the number of poly-

gons, Px the xth sampled point,and '() a local parametriza-
tion function that depends on the nature of the chosen fitting.
For example, 'polyline() is a simple linear equation, while
'spline() is a cubic curve parametrization function.

Splat Mesh

We use the parametrization function to build a mesh that fol-
lows the path previously computed.

Figure 5: The resulting three sampling points after a Ramer-
Douglas-Peucker decimation compared to the same 3 points
obtained after a basic sampling

Figure 6: Fitting attempts with curves of different degrees

The number of polygons can be determined by the user,
and affects the performances of the algorithm and the smooth-
ness of the end result.

Mapping

Each vertex in the generated mesh has an UV value, that
maps it to a point in the 2D texture of the splat. From that,
many mapping options are available. The first and most
basic method would be the simple mapping. It stretches the
splat on the mesh with no further processing. This mapping
is extremely cost efficient but may lead to the formation of
undesirable artifacts due to the low resolution of the splat
image. One other way to proceed would be to use the basic
stamp. [ref] The idea is to keep the aspect ratio of the input
image, and recreate the shape of the mesh by continuously
repeating it and blending the consecutive sprites with one
another. This technique is most commonly used in digital
painting software.

The whole brush construction pipeline is summarized
in [figure 2].

4 Implementation

The whole stylization process runs entirely on the GPU, using
OpenGL 4.3 in the node-based compositing system ”Gratin”
[[5]]. The generation of the anchor points is done on a com-
pute shader. The anchor points are stored in an array which
is then passed to a vertex shader. In my implementation, the
vertex shader serves no purpose beside liking an anchor point
to a single vertex and fetching its attributes. This attribute
list can contain the position of the anchor point in 3D and 2D
spaces, its color, depth, opacity, and so on. These vertices are
then passed as primitives to a geometry shader. The geometry
shader is tasked with creating a mesh for each anchor point
on the screen, which means that every step from the sampling
to the parametrization is done in the geometry shader. The
geometry shader will also assign, to each vector, a uv coor-
dinate. Since these coordinates are interpolated between the
vertices, we can directly call the fragment shader and map the
splat with ease.

5 Limitation

Although the process is done in interactive time, it still suffers
from performance issues that prevents it from running in real
time. The use of a geometry buffer forces the shader to rely
heavily on polygons, the number of which is set to an upper
limit by the GPU. Moreover, since all the inputs are in 2D
space, some of the spacial information is ineluctably lost, ei-
ther because the corresponding points are hidden behind other
objects or outside the view space.

Silhouette cases

Some of the anchor points are generated near the silhou-
ettes of the objects they are attached to. In most mark-based
stylization methods, this is one of the main causes of pop-
ping. Popping is an umbrella term describing any sudden ap-
pearance, disappearance or jittery movement that a mark can
make from one frame to another. A stylization process with a
lot of popping can be considered to have a low motion coher-
ence, since the movements of the marks lack in fluidity, or are
no longer characteristic of the movement they are supposed to
be describing.

Our method is not immune to this issue. Since the number
of sampled points is defined by the used offset as the precision
factor, the sampler will often find itself in a situation where
no spacial value is available, since the projected tangent lands
on a pixel outside of the object’s silhouette. When such a case
arises, it is once again left to the user whether or not the lines
should stop at the silhouette, or overshoot the boundaries of
the object.

Another issue that arises with our sampling method is quite
similar to the silhouette cases. Since the sampling is done on
a 2D image, it is possible that the projected tangent lands on
a pixel that does have a value, but that represents a different
object than the one the anchor point originated from. Further-
more, two sampled points might land on the same object, but
with depth or color discontinuities that are too significant to
be painted on the with the same brush stroke.

6 Results

Using our method, it is possible to obtain a wide range of art
styles by varying the input parameters. [figure 7] is a demon-
stration of our stylization method on simple sphere. The im-
ages on the top row are generated with a low mark density
for clarity. The first render is generated using a procedural
stroke that changes in thickness as it gets further along the
curves. The curves themselves follow a normal directional
map: the directional vectors that are perpendicular to the sur-
face of the object. The second one in a simple attempt at a
oil-paint art style. The marks are this time made to follow the
latitude lines of the sphere, and assume the aspect of a pain
brush stroke.

[figure 8] showcases how we can easily stylize a 3D model
into a 2D-looking painting. The strokes are thick and the
curves are short, which is supposed to emulate an oil-painting
style. The figure also show the same object, but where the pa-
rameters dictate more precision in the rendering of the lines.
The lines closely follow the geometry, which looks closer to
what an artist would do with a pen.

Figure 7: Stylization of a simple sphere using different di-
rection maps : On the left, a normal map, on the right, an
horizontal tangent map.

7 Future work

My internship still extends for a a month. I wish to tackle
the approximation errors during the sampling process. More-
over, there are still a few popping issues that would require
some attention. The idea would be to lower the opacity of
the curves as they approach the limits of the object. The us-
age of curves as the main stylization technique also extends
the possibilities of animation stylization, particularly when it

Figure 8: Stylization of a fish model with different thickness,
length and precision parameters

comes to motion lines. Overall, this technique still offers a
lot of possibilities that need to be explored, notably in terms
of input parameters and possible art styles.

8 Academic Acknowledgments

I would like to extend my sincerest gratitude to Joelle Thollot
and Romain Vergne, who accepted to supervise my intern-
ship for the second time. I would also like to thank Maxime
Garcia, Pierre Bénard, and Maxime Isnel, without whom this
work would not have been possible. Lastly, I would like to
thank the whole MAVERICK team for their warm welcome
among their ranks, and all the advice and encouragements
they’ve given me throughout these two years.

References

[1] HERTZMANN, A. Painterly rendering with curved brush
strokes of multiple sizes.

[2] HUA HUANG, TIAN-NAN FU, C.-F. L. Painterly
rendering with content-dependent natural paint strokes.
Springer-Verlag 2011 (2011).

[3] JOHANNES SCHMID, MARTIN SEBASTIAN SENN, M.
G. R. W. S. Overcoat: An implicit canvas for 3d paint-
ing.

[4] PIERRE BÉNARD, A. B., AND THOLLOT, J. Computer
Graphics Forum.

[5] VERGNE, R., AND BARLA, P. Designing gratin - a gpu-
tailored node-based system. Journal of Computer Graph-
ics Techniques (JCGT) (2015).

Relationships between Scheduling and Autonomic
Computing Techniques Applied to Parallel Computing

Resource Management

Manal BENAISSA
Master 2 MOSIG Data Infrastructure

Université Grenoble Alpes

Supervisors: Raphaël BLEUSE and Eric RUTTEN
Team CTRL-A

This Masters research project will be defended before a jury composed of:
Bruno RAFFIN (President of the jury)

Martin HEUSSE (Examiner)
Olivier RICHARD (External Expert)

Raphaël BLEUSE (Supervisor)

Abstract
The scheduling field regroups various methods by which work
is distributed across available computational resources. Con-
sidering the complexity of modern infrastructures, particu-
larly in Cloud and HPC computing, schedulers might face
di�culties to propose an e�cient scheduling while fitting to
the system reality and it implied uncertainties. The auto-
nomic computing field suggests a more practical approach,
by controlling constantly a system and adjusting taken deci-
sions at runtime, via feedback loops. Applying this strategy
in the scheduling context bring a less complex model with
a more modular structure. Likewise, scheduling community
may bring a new vision of autonomic computing challenges.
This work presents some possible models, from the most ba-
sic scheduling algorithm, to the most complex Cloud infras-
tructures.

Le domaine de l’ordonnancement regroupe diverses méth-
odes, où le travail est distribué à travers les di↵érentes unités
de calcul disponibles. En considérant la complexité des in-
frastructures actuelles, particulièrement dans le domaine du
Cloud et du HPC, les ordonnanceurs peuvent rencontrer des
di�cultés à concilier la proposition d’ordonnancements ef-
ficaces et les incertitudes liées à la réalité du système. Le
domaine de l’informatique autonome propose une approche

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

plus pratique, en contrôlant régulièrement un système et en
ajustant les décisions prises durant l’exécution, par l’intermédiaire
de boucles de rétroaction. Appliquer cette stratégie dans le
contexte de l’ordonnancement apporte un modèle moins com-
plexe et une structure plus modulaire. De même, la com-
munauté de l’ordonnancement pourrait apporter un regard
nouveau sur les problèmes que rencontre la communauté de
l’informatique autonome. Ce travail présente quelques mod-
èles possibles, du plus basique algorithme d’ordonnancement
aux plus complexes infrastructures Cloud.

1. CONTEXT
Cloud and HPC computing are both based on a complex

infrastructure composed of servers, data storage units, net-
work connections and even software, dedicated to users. The
system o↵er platform access as a service, for personal or
professional purpose in Cloud computing, and mainly for
scientific purpose in HPC context. More and more tech-
nologies in these fields need complex and time-consuming
computations, which require to parallelize several tasks in
highly complex infrastructures. Using classical scheduling
algorithms that only take in account the amount of work
and the number of compute units is not realistic in such
systems. In fact, many other parameters like the cost of
communications, dependencies between tasks or elasticity of
the infrastructure bring complications in the search of opti-
mal scheduling. Typically, Cloud infrastructure is generally
composed of tens of data-centers scattered around the world
and inter-connected by wide area networks (WAN). Every
days, each data-center has to process some data, and exe-
cute many jobs. Most of the time, these jobs are dependent
of each others, and need data from a far away data-center.
Scheduler function is to distribute these jobs across di↵erent
resources, taking into account Quality of Service and infras-
tructure constraints.

In 2000s, IBM proposed the autonomic computing ap-

10.1145/1235
Michael Perin

Michael Perin

proach to address such challenges. A controller is added
to monitor the system and adjust decision when this one is
no more adapted. This implies a constant checking of the
system state and the computation of an adapted response
of a non desired evolution, forming a feedback loop. Even
if this strategy exists in Cloud computing, it is not always
clearly defined. Most of the time, a static analysis is done,
despite uncertainties due to the overall architecture. Never-
theless, the control loop concept can even be found in HPC
systems, where the adopted approach is based on a more
theoretical performance analysis. In this work, after a brief
definition of each community politic, some possible strate-
gies that promote collaboration between scheduling and au-
tonomic community will be explored.

2. STATE OF THE ART: SCHEDULING
More and more computer science fields require to solve

complex and time-consuming problems in short time, and
the idea of dividing these kinds of problems in small blocks
distributed across several compute units came quite intu-
itively. However, the parallelization of algorithms implies
other problems like dependencies between these blocks, dis-
tribution between all available compute units, time and re-
source constraints and so on. R.L Graham [1] was the first to
formalize scheduling constraints and to propose an approach
in 1966 with the List Scheduling. After that, many strategies
were explored, particularly in operational research, HPC and
Cloud computing.

2.1 Scheduling problem
Scheduling problems are a part of constrained optimiza-

tion problems, widely known in operational research field.
Scheduling regroups methods by which work is distributed
across available computational resources. Infrastructure is
considered by following a model where work can be a task
(block of code in program) or a job (an entire program). This
work can be distributed across physical nodes like CPU, ma-
chines or even clusters, or logical nodes like threads.

Hence this notation allows to formalize the associated
problem, by considering three aspects:

↵ the state of the system where parallelism is applied: Num-
ber of compute units, and whether all of them are iden-
tical.

� constraints on work: Number of task/job, dependencies
between them, and processing time.

� desired objective: minimizing execution time over all tasks,
maximizing the total amount of work per time unit, or
limiting lateness when a deadline is defined for exam-
ple.

Graham gathered all these constraints in a notation system,
the Graham notation [2]. In this work, only the main cri-
teria will be described. SchedulingZoo [3] gathers a more
complete description about this notation. Here, < ↵|�|� >
is chosen depending of the criteria described in Table 1 (this
table is only an extract of the Graham notation).
For example, to describe a scheduling problem that min-

imizes the execution time and work on n identical parallel
nodes, with k jobs linked by precedence constraints, we will
write:

Machine environment ↵
1 Single node
2 Two nodes
m m nodes
P All nodes are identical, aka execution time is the

same, no matter the chosen node
R Nodes are unrelated, which means execution time

is not the same
Constraints �
prec Dependencies exist between tasks, which means

task T1 has to be finished before starting task
T2, if T2 is dependent of T1.

pj = p Each task has the same processing time p.
pmtn Allows preemption, tasks can be suspended and

continued later, possibly by an other node.
Objective function �
Cmax Makespan, the total execution time between the

start of the first job and the end of the last job.

Table 1: Criteria in Graham notation [2].

< Pn|prec|Cmax >

A way to visualize this problem is to consider n identical
nodes Pi, 1 i n and m tasks Tj , 1 j m with de-
pendencies. These dependencies are specified with � order
relation: Ti � Tj if Tj is dependent of Ti, which means that
Tj can not start its execution if Ti is not finished. Each task
needs a certain amount of time to be executed, given by the
function µ. With this data, we obtain a dependency graph
G(�, µ), where each vertex indicates a task and its process-
ing time, and each edge gives existing dependency between
two tasks.

Figure 1: Dependency graph example [1]

For such a problem where the set of tasks and execution
time are given, solutions exists and they are well known.
Given a dependency graph G(�, µ),a certain number of com-
puting nodes n and possibly some other elements, a Gantt
diagram ⇠ can be obtained (cf Figure 2). This diagram
will depend on the following algorithm, and must respect
all specified constraints.

Online Scheduling

In online scheduling, the scheduler receives jobs that arrive
over time, and generally must schedule the jobs without
any knowledge of the future. The lack of knowledge of the
future precludes the scheduler from guaranteeing optimal
schedules[4]. The easiest way to understand scheduling is to
imagine a finite set of tasks where we know duration of each
tasks. These problems where all constraints are fixed are
well known. However, many systems don’t know in advance

http://schedulingzoo.lip6.fr/

Figure 2: A possible Gantt diagram[1] of the dependency
graph in the Figure 1, for n = 3

neither the number of tasks, nor their duration. In Cloud
context for example, each client request come as a job, and
they might arrive one by one as an input stream. On top
of that, we distinguish non-clairvoyant problems which job
computation time is not known. Despite this lack of informa-
tion, solution exists and they are based on o✏ine algorithm
approximation. More precisely, we compare an online algo-
rithm A to an optimal o✏ine algorithm OPT that knows
the entire input in advance.

Clairvoyant.

Clairvoyant scheduling constitutes a part of online schedul-
ing, where processing requirement of each job is specified,
but existence of jobs stay unknown until a certain release
time.The jobs characteristics are not known until they ar-
rive, restricting the scheduler to schedule jobs only with cur-
rent information. However, once these ones are released, the
job size (µ function) is known.

Non-Clairvoyant.

In more realistic models, the processing requirement of
each job is also unknown, and can only be determined by
processing the job and observing its execution time.

2.2 Scheduling algorithms

2.2.1 Offline scheduling

In the o✏ine scheduling context, the List Scheduling is the
most intuitive solution, particularly for the< Pn|prec|Cmax >
problem described in section 2.1. Given a dependency graph
G(�, µ), a certain number of processing nodes n, and an or-
dered list L, an optimal scheduling can be obtained by fol-
lowing some rules. We consider that a task Tj is available,
and can be executed by a node if:

• It is not taken by an other node.

• It is not dependent of an other task.

• It is dependent, but all preceding tasks are already
executed and finished.

The processing node Pi takes the first available task Tj in
the list L. If no task is available in L, Pj become idle, by
executing an empty task 'k. This task ends when an other
task finishes in an other node. We obtains the following
Gantt diagram in the figure 3.

Figure 3: Gantt diagram[1] of the dependency graph in the
Figure 1, for n = 4 and L = [T1, T2, T3, T4, T5]

FIFO scheduling is the most used algorithm in Cloud com-
puting. It’s a variant of the List Scheduling, where the or-
dered list L is fixed: tasks are treated with the order they
arrive. They are ordered in L by they release date, and the
first task to be executed is the one with the earliest release
time.

2.2.2 Online clairvoyant scheduling

To adapt o✏ine solutions to an online model, Schmoys
described in 1995 a method to converts algorithms that need
complete knowledge of the input data into ones that need
less knowledge. The idea is to use an o✏ine algorithm (such
as List Scheduling) to schedule a subset of jobs, released
at each time interval. The system is defined by a set of
computing nodes and a waiting queue for arriving jobs.
At time t = 0, a certain number S0 of jobs was queued in
the system queue. At t = 0, a snapshot of the queue state
is taken by the scheduler. Since we are in a clairvoyant
scheduling, we know the execution time of each jobs, and
then we can estimate Cmax of the S0 scheduling. The o✏ine
scheduler schedules only these S0 jobs in the queue, until
this queue is considered empty by the snapshot view. In the
same time, some jobs arrive in the queue and wait until S0

schedule ends. These waiting jobs compose S1 session. So
when S0 schedule ends (i.e at t = Cmax(S0)), S1 jobs are
captured in an other snapshot and they are scheduled while
S2 jobs arrive in system queue. In the Figure 4, the release
of S0, S1 etc (in red) corresponds to the moment when the
snapshot is taken by the scheduler. Only jobs taken in each
snapshot are scheduled (in green), the other arriving jobs
wait until the next session.

2.3 Resources and Jobs Management System
Resources and Jobs Management Systems (RJMSs) [6] [7]

are specific software specialized in distribution of computing
power to user jobs within a parallel computing infrastruc-
ture. RJMS has a key role in HPC infrastructures: it collects
all requests from users and scheduling them, while managing
all resources of the system. An application (or executable) is
grouped with some data like an estimation of the computa-
tion time and needed resources. All applications are queued
to be scheduled next. The RJMS must manage these two
part, to satisfy users demands for computation on one hand,

Figure 4: Shmoys algorithm [5]

and achieve a good performance in overall system utilization
by e�ciently assigning jobs to resources on the other hand.

Figure 5: RJMS in HPC infrastructure [8]

The work of a RJMS is classically divided in three parts
[8] [7] :

• Transforming a user request into an application, where
all needed characteristics are specified.

• Scheduling these applications.

• Placement and execution of these applications in their
allocated resources.

These three parts are respectively managed by the jobs man-
ager, the scheduler and the resources manager (cf Figure 5).

2.3.1 Resource Manager

This part is responsible to collect and provide all informa-
tion concerning computing nodes. This information is used
by the scheduler and by users to inform about the avail-
ability and the state of the cluster. Resource Manager is
responsible of these tasks:

Resource Treatment This part collect information about clus-
ter structure and node characteristics. In fact, clus-
ters are currently heterogeneous systems with di↵er-
ent hardware components and di↵erent levels of hi-
erarchies inside one node (cpu, core, thread...), for a
given network.

Resource Deployment Resource Manager takes information
about jobs from the Job Manager and the Scheduler,
and initializes required resources.

Task placement Nowadays, a single computing node can have
multiple cpu. In Cloud context particularly, since sev-
eral users can share the same computing node, tasks
need to be placed correctly, to avoiding collisions.

Resource Management Advanced Features Includes faults con-
trol and energy optimization.

2.3.2 Job Manager

Job Manager manages tasks related to the declaration and
control of users jobs. Its role is decomposed in these func-
tions:

Job declaration Users use RJMS interface to describe their
jobs characteristics and select the resources of their
preference. A job can be interactive (user want to be
directly connected to the node, to launch his exper-
iment manually), a batch job (used for direct script
execution upon the allocated computing node), bulk
jobs (one large job can be decomposed into smaller
jobs, for a better scheduling), best-e↵ort job (this kind
of job has a low priority and can be killed if a normal
job demands the resource) etc...

Job Control users can keep control on submitted jobs that
are not executed yet, by changing initial parameters
(priority, input/output files...).

Job Monitoring and Visualization Allows users to follow the
execution of jobs upon the cluster.

Job Management Advanced Features Includes job preemption,
faults control and security features.

2.3.3 Scheduler

The scheduler constitutes the main part of the RJMS: it
assigns user jobs with chosen parameter to available nodes
that match with the demands.

Scheduling Algorithms Di↵erent kind of scheduling policies
(described in the section 2) can be used, but the most
common in this context is FIFO, with which some op-
timization like the backfilling are possible.

Queues Management All tasks are placed in one queue or
more, waiting to be scheduled. These tasks can be
grouped in a specific queue when they sharing some
similar characteristics. The scheduler takes task in
these queues, depending of its policy. An important
point is to avoid famine: tasks in the lowest priority
queue might be never executed if the highest priority
queue is always filled. A solution to bypass this prob-
lem is to set an increasing priority depending on the
waiting time.

3. STATE OF THE ART: AUTONOMIC COM-
PUTING

Despite all e↵orts to optimize the system robustness, an-
ticipating non desired behavior in complex infrastructure
without controlling it regularly can be tricky. The notion
of autonomic computing[9] was introduced by IBM in 2001,

but the concept of feedback loop was commonly used in en-
gineering. The aim was to tend toward a fully autonomous
infrastructure, with a self-management of work. A security
is added to control periodically system outputs and adjust
inputs when these ones exceed permitted values. A common
example is temperature control in machines: A controller
will check constantly temperature evolution. When this one
indicates an overheating, the controller adjust machine be-
havior by increasing its cooling system or decreasing energy
consumption. Adequate responses to an anomaly are not
necessarily based on a solid knowledge of the system, only
few elements are enough. In this way, a feedback loop pro-
vides several advantages without changing all the system.
Some models exist but we will focus on one of them: MAPE-
K [10].

3.1 MAPE-K
The main characteristic of Autonomic computing is to of-

fer self-management. The goal is to exempt system adminis-
trators from maintenance and to allow a continuous system
working without a drop of performance. Autonomic systems
adjust their behavior in the face of external changes. This
characteristic includes:

Self-configuration Adding a new component in the system
should not involve di�cult manual operations. In-
stead, it must incorporate itself seamlessly, and lets
the rest of the system to adapt to its presence.

Self-optimization The whole system has to improve its op-
erations, in order to be more e�cient. This process go
through a learning phase, where the system monitors,
experiments and adjust its behavior until a certain op-
timization level is reached.

Self-healing The system can detect and repair failures.

Self-protection The system must be prepared to handle ma-
licious attacks or accidental failures, by anticipate them.

To fulfill these objectives, a controller is grafted to the
managed system, forming a feedback look (cf Figure 6). The
aim of the controller is to ensure that the system converges
toward the desired behavior by controlling system when in-
puts are out of bounds, and without too large fluctuations
in responses. To ensure that, we will focus on one model:
MAPE-K. This model is divided in three main parts:

Monitor This part collects data yk at time k, via sensors,
and possibly makes some pre-processing. The main
challenge here is to know collecting data frequency.

Analysis This part includes data analysis by making some
estimations.

Planning This part makes an adequate action plan to ad-
just the system. To do that, controller follows control
laws based on the knowledge of the controlled system.
These control laws can follow various models based
on machine learning, rule-based systems or even basic
programming.

Executor This part applies decision-maker action plan, by
sending data to modify uk to the system, via actuators.

Figure 6: MAPE-K loop for control[10].

3.2 Control Theory as MAPE-K
On top of the MAKE-K model, control laws can be draw

from Control theory[10] ideas. As we said before, the deci-
sion part can be based on various models, depending on the
system needs, and the field of automatic control provides
many potential control laws. The main interests of this field
are:

Stability The system is considered as stable, if its inputs
and disturbances stay bounded. Simply speaking, the
system must converge toward the wanted behavior, by
detecting inputs out of its bounds. With this approach,
controller will naturally stabilize system, even when
this one is instable. In fact, when inputs stay bounded,
output and state will stay bounded too.

Robustness Because the system is periodically checked, with
few amount of time between each control, an anomaly
is quickly detected. With this method, we don’t need
all details about the system evolution. Only few data
but regularly collected allows to correct system with
enough precision.

Tracing of performance Controller checks first and adjust next.
Because of that, we can draw evolution of the system
at any moment.

Since the decision part is the controller core, and it will
define the e�ciency of this one. A bad decision will impact
directly the system, and it’s why the choice of control law is
important. However, even if systems are di↵erent, in most
case they follow the same rule: Only one variable is col-
lected, and if its value falls outside the accepted range, only
one other variable has to be changed. In the other hand,
the chosen model has to be simple. A complex model will
take time to compute and slow down the whole system. For
these reasons, the PID control law (for Proportional, Inte-
gral, Derivative) is the most used. The uk value is written
as a function of the error signal ek = rk � yk, where ek is
di↵erence between the measured value yk and the expected
value rk (also called reference value), at time k. We obtain
uk, expressed by the function:

uk = K.e(t) +KT
d
dt

te(t) +KTi

Z 0

t

e(x)dx

In this function, we can identifies three terms:

Proportional term K.e(t) where K controls the the rising
time.

Derivative term KT
d
dt

te(t): this part, based on change fre-

quency, absorbs the oscillations and overshoots.

Integral term KTi

R 0

t
e(x)dx: this part ”memorizes” old val-

ues, to nullifies the static errors.

All factors (like K) are chosen depending on the system,
by testing di↵erent values and estimate the most adapted
ones. In many simplest models, only the proportional term
is used and completed by derivative and integral term when
it’s required. Of course, PID model is not always su�cient,
particularly if system behavior cannot be expressed by linear
models.

4. PROBLEM STATEMENT
Scheduling computing field gathers many optimization meth-

ods to distribute work across all resources. As we saw in
Graham notation, a precise representation of the system
should be relevant (number and characteristics of computing
nodes, description of the work...). But this representation
reflects partially the reality of the system, despite a worse
case analysis. Dues to this partial capture of the reality,
the representation implies uncertainties. This variability,
mainly explained by the architecture, can be captured with
an online approach. Autonomic computing community sug-
gests a more practical strategy, by adapting to the system.
It gives a compromise between a more simple model but
lacks of performance and stability guarantees.

In this way, autonomic computing and scheduling comput-
ing stay two distinct fields in computer science. However,
scheduling community would benefit from control loop con-
cept, autonomic computing community can use scheduling
techniques as decision-maker in controller, and the merge of
these two domains deserves further consideration. Schedul-
ing community uses worst case analysis to evaluate a schedul-
ing method, but these worst case can be avoided with a con-
trol loop. Some scheduling system already includes feedback
loops in the structure, but in an implicit way. Highlighting
these control loop in such a system will allow to fully ex-
ploit autonomic computing methods and formalize properly
this kind of approach. In this way, autonomic computing
community can bring a better expertise in scheduling com-
puting field. In this paper, we will present some case where
we can bring out a feedback loop in a scheduling system, by
identifying each part of the potential MAPE-K pattern.

5. COMBINING SCHEDULING AND AUTO-
NOMIC MANAGEMENT

The intersection between scheduling and autonomic com-
puting field can be seen in di↵erent ways. In this part, we
study existing cases and re-interpret them through the prism
of autonomic computing. Each example will focus on a cer-
tain abstraction level, from the fine grain at the scheduler
level to the Cloud infrastructure.

5.1 Feedback loop in a scheduling algorithm
context

A first approach in the merge of these two domains is to
reinterpret an online scheduler as a controller with MAPE-
K pattern and scheduling policies as control laws. To do
that, we will use Shmoys[5] technique seen previously: This
method consists to use an o✏ine scheduler at each cycle,
defined by the state of system queue at a certain time. The
controlled system is defined by a set of computing nodes
and a waiting queue of jobs. In the clairvoyant context,
released jobs and their execution times are known. Let us
consider sensors that capture queue snapshots described in
the section 2.2.2, allowing a monitoring of the queue state.
An execution time Cmax can be estimated (in the analysis
part) and a decision (the scheduling process itself) can be
made. This decision is injected directly on the nodes set
via implicit actuators, thus closing the loop (cf Figure 7).
MAPE-K pattern is clearly defined here, where the chosen
control law is an o✏ine scheduling algorithm.

Figure 7: Online scheduler as a controller. Dotted arrows
corresponds to possible additional monitoring. Plain arrows
constitute the main control loop.

This approach can be adapted to pure online algorithms,
by considering a sensor in the system queue and actuators
that apply scheduler decisions. Capture frequency can be
adjusted, depending on the computing cost of the schedul-
ing algorithm and the jobs themselves. In the case above,
capturing a snapshot not at each Cmax but earlier may end
up in a better result. It also may interesting to capture
more information during monitoring, like the state of each
node (green dotted arrow in the Figure 7). Knowing if some
nodes crashed, or if they are overloaded may lead to a finer
analysis, and thus to a better decision.

5.2 Feedback loop in a RJMS context
A scheduler can be interpreted as a closed loop, as shown

in the previous section. It is therefore natural to consider
feedback loops at the RJMS level, not only in the schedul-
ing part itself but at the jobs and resources management
level too. This approach was adopted in the HPC context,
to exploit unused resources in a cluster. Grid5000[11] is a
grid for computing experiments with more than 5000 cores
dispatched in 11 sites, mainly in France. OAR[12] is its as-
sociated RJMS, highly configurable and based on a batch

scheduler. Like many RJMS, OAR can use many queues
to place user tasks, depending on the characteristic and the
priority of the submitted task. This strategy allows to re-
spect QoS constraints, while exploiting the maximum of the
clusters capacity. However, some resources can remain un-
used despite these e↵orts. It’s why CiGri was implemented
in top of OAR.

Figure 8: Overview of Grid5000 RJMS[13].

Each OAR scheduler is configured with a dedicated queue
for CiGri. When a user submit a task, this task can be
placed directly in OAR priority queue, to be executed in
the best conditions possible. Otherwise, it can be placed in
the CiGri queue, particularly if the task is small and it has
a low priority. In this way, CiGri can place these numer-
ous small tasks on the remaining resources. At each cycle,
CiGri submits a number of tasks called rate to the clusters,
and wait the end of the execution of all these tasks. Then,
in the next cycle, Cigri submits an other number of tasks,
with an higher rate, and wait. This rate increases at each
cycle, depending on clusters availability. This method can
be seen as a tasks flow, where CiGri is the tap. This flow is
nevertheless mismanaged:

• CiGri submits tasks to OAR scheduler only if OAR
priority queue is empty. Therefore, resources might
remain unused while tasks in CiGri queue are still wait-
ing (cf red dotted arrow in Figure 10).

• Clusters (or the storage system) are overloaded be-
cause too many tasks are submitted by CiGri.

To avoid these problems, a feedback loop was implemented
(in green in Figure 9). This control loop reuses all MAPE-K
and control theory concepts by monitoring the load in clus-
ters queues and controlling the number of tasks submitted
by CiGri. We recognize all parts of the MAPE-K pattern,
with:

Monitoring The number of tasks yk in clusters queues is
measured.

Analysis The gap ek between yk and the expected value rk
is computed, giving the idea of CiGri behavior.

Planning Depending on ek, more or less tasks will be sub-
mitted by CiGri. To know how many tasks uk CiGri
should submit, the controller use PI control law.

Executing At the end, the final decision is injected to CiGri.

These decisions are drawn on system knowledge that give
the controller sensibility and responsiveness. This knowl-
edge is mainly based on experimentation. Adding a con-
troller in the system permitted to gain 8% in clusters usage,
and increase e�ciency of resources management.

Figure 9: Feedback loop in CiGri cluster[13].

Another way to see this infrastructure is to consider CiGri
as a single controller, and OAR as a basic RJMS. The con-
troller seen previously becomes a integral part of CiGri: The
number of tasks in clusters queues is monitored as before,
but here, the number of submitted jobs in OAR low prior-
ity queue is directly monitored (cf. Figure 10).The system
knowledge of this version is not static anymore, as long as
the number of jobs in CiGri queue changes. However, we
saw in the previous section that a scheduler can be seen
as a controller too. Similarly, OAR can be interpreted as a
feedback loop, where jobs and resources are monitored to in-
fluence scheduling decision. So here, the overall system can
be viewed as the cooperation of the OAR controller and the
CiGri controller. The OAR controller manages high priority
jobs that they can not be preempted (i.e they can not be
interrupted to be continued later by a possible other com-
puting node). CiGri controller injects small preemptive jobs
to maximize the resource usage without a↵ecting QoS con-
straints. It’s important to note that a feedback loop already
existed before adding the controller: CiGri controls clusters
and OAR state and injects more or less jobs in OAR low
priority queue, depending on this information. This loop
can be viewed in Figure 10 (with the red plain arrows).

As we said previously, more sensors can be added, to cap-
ture more information about OAR state. CiGri already con-
trols the OAR high priority queue, but the only thing cap-
tured here is if this queue is empty or not. Rather than
monitoring only that, CiGri may check the queue content:
maybe some low priority jobs can be placed if this placement
will not disrupt the execution of the future high priority jobs.
The scheduling strategy adopted by OAR can be monitored
too: we assume that this strategy don’t change dynamically,
depending on the arriving jobs. If this point changes, check-
ing OAR behavior may be relevant, to adapt CiGri to each
new strategy.

5.3 Feedback loop in the Cloud context
In previous sections, we saw that control loop can be rep-

resented at the scheduler level and it can be well used in

Figure 10: CiGri as an unique controller. Red plain arrows
represent the CiGri control loop (even without the added
intern controller). The red dotted arrow is additional infor-
mation. Nothing excludes the possibility of monitoring more
information.

the HPC context. Finding this control mechanism will be
quite easy in a Cloud context in that autonomic comput-
ing was pretty popular in this kind of infrastructure. How-
ever, the previous section showed us two feedback loops
that cooperate but stay independents. We will try to show
in this section how control loops can cooperate e�ciently.
Cloud infrastructure benefits from the same RJMS model as
HPC infrastructure: A job manager, the scheduler and a re-
source manager that communicate each other, forming two
loops (see Figure 5). To show a possible finer interaction
between these two loops, the model described by Hadrien
CROUBOIS[7] in 2019 will be adopted. In his paper, the
author suggests a modular structure for a fully autonomous
workflow manager, with three main modules:

Static Analysis This module is in charge of the o✏ine op-
timization of workflows. This part is the equivalent
of the job manager seen in the RJMS section, apart
from the fact that a workflow is a set of tasks with
dependencies, and it can be viewed like an unique job.
The objective is to precompute meta-data that will
later help in the placement and execution of the rela-
tive workflows on the shared platform. In this part, all
tasks will be grouped, depending on the dependencies
and data locality, to optimize the execution.

Dynamic scheduling This module is based on the previous
module meta-data, to suggest a scheduling while tak-
ing into account system elasticity.

Autonomic platform management This module is in charge
of balancing the number of available machines to meet
users demand. It will therefore control periodically
state of the system and the workflows queue.

Figure 11: Overview of the system described in the paper[14].

One of the critical points is data-locality, which can be
improved by placing tasks in the same location as their data
dependencies, or by duplicating tasks that produce large
datasets. The challenge here is to find a e�cient placement
to reduce communication cost, while preserving workflow
structure. During the static analysis, tasks are grouped into
clusters, correspondingly to their dependencies with data
and other tasks: The aim is to execute one cluster in one
single machine to achieve good data locality. After the map-
ping of the clusters onto the nodes has been performed, the
nodes will be in charge of the scheduling of the tasks in
the clusters they were assigned. We distinguish two kind
of schedulers here: The core scheduler which assigns clus-
ters to machine, and the node scheduler (in each machine)
which assigns each tasks from the same cluster across all cpu
of the said machine. As we said before, each scheduler can
be viewed as a control loop.

On top of that, resources must be managed despite the
complexity of the work structure. An other control loop is
needed to manages all these resources in the highest level
(core scheduler level). The estimation of a cluster needed
resources is compared to the number of available resources.
When a node is unused, it turn o↵ itself. A single loop may
be enough, but a finer approach was chosen here: The core
scheduler is already aware of the resources state and the
workload distribution across the platform. Since it has a
global view of the system, information about machines can
be reused. Binding the scheduler control loop with the re-
source management loop seems to be a better strategy. In
the other hand, when more resource is needed, we should
allocate new nodes, this part is managed by a dedicated
control loop.

To keep it simple: the scheduler loop manage the work dis-
tribution and shut down useless nodes. The resource man-
ager loop allocates new nodes, according to the information
given by the core scheduler. In this way, these two loops
share the responsibility of managing the platform resources.

However, this configuration stays complex, and many loops
have to collaborate each other, adding more challenges. Rather
than distribute decisions across all nodes, maybe a more cen-
tralized approach may be more e�cient. Here, the decision
of activating or not a node is made by two loops. Merging
these two loops in one single loop may simplify the overall
structure.

Figure 12: Autonomic scheduling and allocation loops[14].

6. CONCLUSION
In summary, this paper presents some possible explorations

between scheduling and autonomic computing field. Al-
though the intersection of these two domains was not really
studied, a potential cooperation between these two fields
can lead to interesting results. Some scheduling algorithms
and RJMS already includes an autonomic approach with-
out formalizing their feedback loop explicitly. Likewise, a
scheduling algorithm can be seen as a control law by the
autonomic computing community. Formalizing this merge
allows a modular approach, quite appreciated in software
engineering. Instead of seeing a scheduler as a monolithic
constituent of an HPC or Cloud infrastructure, this one is
divided on several sections with the system itself on one
hand, and its controllers on the other hand. Proposing sim-
pler solutions for scheduling problems adds an other good
point at this collaboration. Adding a controller in an ex-
isting scheduler will not o↵er performance guarantees but
may nevertheless increase its e�ciency, by a constant control
of each instance, and some adjustments when the schedul-
ing doesn’t meet requirements. However, creating multiple
loops and trying to make them work together can make the
system more complex.

Despite that, scheduling and autonomic community has
much to gain by sharing their respective expertise, and this
exploration can lead to many perspectives: Which classes
of scheduling algorithms can be converted on control loop ?
Which properties are required to convert such algorithms to
control loops ? Which data can be added during monitoring
for a better analysis ? Cohabitation between several loops
must be more studied, and the feedback loops authentication
in schedulers, started in this work, may be continued in next
researches.

Acknowledgements
Since this project was performed during the covid-19 lock-
down, a simple ”I want to thank...” will be not enough to
describe the kindness and the patience of Raphaël BLEUSE,
who helped me and support me despite this context. He was
present and helpful, like no one, and I will definitely recom-
mend him to the futures trainees. His inspiring ideas and
valuable discussions led to progress on this research, and
his advice concluded my formation in style. I particularly

want to honor Eric RUTTEN for his teaching skills. His
clear approach, with a hint of humor, only highlight his un-
questionable expertise. His freshness was a breath of air in
these di�cult times, and I want to thank him for making me
discover the autonomic computing world with such an ap-
preciable approach. This section will not be complete with-
out mentioning all my colleagues, and particularly Quentin
GUILLOTEAU, who shared with me all the vagaries of this
internship. Thanks to him, my co↵ee times (during video-
conferencing included) was really qualitative.

References
[1] Ronald Lewis Graham. “Bounds for Certain Multi-

processing Anomalies”. In: Bell System Technical Jour-
nal (1966).

[2] Ronald LewisGraham, Eugene Leighton Lawler, Jan
Karel Lenstra, and Alexander Hendrik George Rin-

nooy Kan. “Optimization and Approximation in De-
terministic Sequencing and Scheduling: a Survey”. In:
Annals of Discrete Mathematics 5.2 (1979), pp. 287–
326. doi: 10.1016/S0167-5060(08)70356-X.

[3] Christoph Dürr, Sigrid Knust, Damien Prot, and
Óscar C. Vásquez. The Scheduling Zoo. url: http :
//schedulingzoo.lip6.fr (visited on 2019-06-07).

[4] Joseph Y.-T. Leung, ed. Handbook of Scheduling. Al-
gorithms, Models, and Performance Analysis. Chap-
man and Hall CRC, Apr. 2004. doi: 10.1201/9780203489802.

[5] David B. Shmoys, JoelWein, and David P.Williamson.
“Scheduling Parallel Machines On-Line”. In: SIAM J.
Comput. 24.6 (Dec. 1995), pp. 1313–1331. doi: 10 .
1137/S0097539793248317.

[6] RaphaëlBleuse.“Apprehending heterogeneity at (very)
large scale. (Appréhender l’hétérogénéitéà (très) grande
échelle)”. PhD thesis. Grenoble Alpes University, France,
2017. url: https : / / tel . archives - ouvertes . fr / tel -
01722991.

[7] Yiannis Georgiou. “Contributions for Resource and
Job Management in High Performance Computing. (Con-
tributions à la Gestion de Ressources et de Tâches
pour le Calcul de Haute Performance)”. PhD thesis.
Grenoble Alpes University, France, 2010. url: https:
//tel.archives-ouvertes.fr/tel-01499598.

[8] Albert Reuther et al. “Scalable system scheduling for
HPC and big data”. In: J. Parallel Distributed Comput.
111 (2018), pp. 76–92.

[9] Je↵rey O. Kephart and David M. Chess. “The Vision
of Autonomic Computing”. In: IEEE Computer 36.1
(2003), pp. 41–50. doi: 10.1109/MC.2003.1160055.

[10] Éric Rutten, Nicolas Marchand, and Daniel Simon.
“Feedback Control as MAPE-K Loop in Autonomic
Computing”. In: Software Engineering for Self-Adaptive
Systems III. Assurances - International Seminar, Dagstuhl
Castle, Germany, December 15-19, 2013, Revised Se-
lected and Invited Papers. Ed. by Rogério de Lemos,
DavidGarlan, CarloGhezzi, and HolgerGiese. Vol. 9640.
Lecture Notes in Computer Science. Springer, 2013,
pp. 349–373. doi: 10.1007/978-3-319-74183-3\ 12.

[11] Daniel Balouek et al. “Adding Virtualization Capa-
bilities to the Grid’5000 Testbed”. In: Cloud Com-
puting and Services Science. Ed. by Ivan I. Ivanov,
Marten van Sinderen, Frank Leymann, and Tony
Shan. Vol. 367. Communications in Computer and In-
formation Science. Springer International Publishing,
2013, pp. 3–20. doi: 10.1007/978-3-319-04519-1\ 1.

[12] N. Capit, G.Da Costa, Y.Georgiou, G. Huard, C.
Martin, G. Mounie, P. Neyron, and O. Richard.
“A batch scheduler with high level components”. In:
CCGrid 2005. IEEE International Symposium on Clus-
ter Computing and the Grid, 2005. Vol. 2. 2005, 776–
783 Vol. 2.

[13] Emmanuel Stahl, Agust́ın GabrielYabo, OlivierRichard,
Bruno Bzeznik, Bogdan Robu, and Éric Rutten.
“Towards a control-theory approach for minimizing un-
used grid resources”. In: Proceedings of the 1st Inter-
national Workshop on Autonomous Infrastructure for
Science, AI-Science@HPDC 2018, Tempe, AZ, USA,
June 11, 2018. ACM, 2018, 4:1–4:8. doi: 10 . 1145 /
3217197 . 3217201. url: https : / / doi . org / 10 . 1145 /
3217197.3217201.

[14] Hadrien Croubois. “Toward an autonomic engine for
scientific workflows and elastic Cloud infrastructure.
(Etude et conception d’un système de gestion de work-
flow autonomique)”. PhD thesis. University of Lyon,
France, 2018. url: https://tel.archives- ouvertes.fr/
tel-01988995.

https://doi.org/10.1016/S0167-5060(08)70356-X
http://schedulingzoo.lip6.fr
http://schedulingzoo.lip6.fr
https://doi.org/10.1201/9780203489802
https://doi.org/10.1137/S0097539793248317
https://doi.org/10.1137/S0097539793248317
https://tel.archives-ouvertes.fr/tel-01722991
https://tel.archives-ouvertes.fr/tel-01722991
https://tel.archives-ouvertes.fr/tel-01499598
https://tel.archives-ouvertes.fr/tel-01499598
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1007/978-3-319-74183-3%5C_12
https://doi.org/10.1007/978-3-319-04519-1%5C_1
https://doi.org/10.1145/3217197.3217201
https://doi.org/10.1145/3217197.3217201
https://doi.org/10.1145/3217197.3217201
https://doi.org/10.1145/3217197.3217201
https://tel.archives-ouvertes.fr/tel-01988995
https://tel.archives-ouvertes.fr/tel-01988995

