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1 Context

The context of this work is the online verification of tem-
poral properties for embedded software. As an alternative
to solutions like the ones of [Havelund, 2008], [Drusinsky,
2000], [Navabpour et al., 2013], the AMfoRS team has de-
veloped the OSIRIS tool[Chabot et al., 2015] that auto-
matically generates assertion checkers from temporal prop-
erties and instruments C programs with these monitoring
components, together with an observation mechanism that
enables their event-driven activation during the program
execution. These properties are formalized in PSL (Prop-
erty Specification Language), IEEE Standard 1850)[PSL,
2005], for example:
always (y#SET() -> y > 0)
means that every time the variable y is set, it has to be
greater than zero.
2 Existing solution

As explained in [Chabot et al., 2015], OSIRIS takes as input
the binary file of the application and produces an infras-
tructure that enables surveillance during execution. This
infrastructure assumes a POSIX-compliant OS. It enables
to run two processes concurrently:

• one that executes the original application.
• and one (called the Tracer) that observes its execution

and activates the checkers when needed.
To that goal, the “ptrace” system call is used by the Tracer
to put breakpoints on observed events in the C application
(see for example [How debuggers work, 2011]) and to read
the values of its variables. Those breakpoints correspond
to statements on which one of the properties has to be re-
evaluated. For example the property of section 1 must be
re-evaluated at each statement that modifies y.
While runing, everytime the Tracer receives a signal be-
cause the tracee has stopped on a breakpoint, it notifies the
corresponding assertion checkers. Finally the Tracer orders
the tracee to resume its execution. To place a breakpoint
on an assembly instruction I at address A in the original
binary file, the Tracer has in fact replaced this instruction
I by a specific instruction INT 3 (on x86 processors). So,
before resuming the tracee execution, it must also order it
to execute the replaced instruction I.
This solution has several disadvantages : it requires an op-
erating system, creates two processes and uses ptrace for
process synchronization and memory inspection. Moreover
due to the temporary remplacement of instructions by INT
3, it has a huge CPU time overhead.
The goal of the magistere internship is to propose a less
restrictive (that does not require an embedded OS) and
more e�cient solution.

3 Contribution

3.1 Principle

The software interrupts[SWI, 2001] are signals that are sent
to the processor to make it suspend its current activity, save
the state and execute an interrupt handler. In the proposed
solution each assembly instruction (call it I) on which one
of the properties has to be re-evaluated will be definitively
replaced by a software interrupt instruction (SWI), such
that the processor will enter the interrupt handler. Then
the handler executes the replaced instruction I and calls the
assertion checker to re-evaluate the corresponding property.
Entering the handler function implies a change of context
(addresses, position in the stack, etc...). Therefore the code
generated by OSIRIS to execute instruction I must first
restore an appropriate context.

3.2 Interrupt handling

We specified the interrupt handler that will be generated
by OSIRIS, which is written in the C language and has two
tasks to perform : execute the replaced instruction and
call the assertion checkers to evaluate the corresponding
properties. The handler (which is called C SWI handler)
receives two parameters :

• The SWI number, used to identify the SWI position.
• The address of the top of the stack.

The C SWI handler uses the SWI number to identify on
which interrupt the program has been suspended hence
to know which instruction it has to execute and which
assertion checkers it has to wake up (it uses a classical
switch/case conditional structure).

3.3 Adaptations to ARM

OSIRIS was first designed for x86 processors. We have
also adapted its observation context to ARM processors.
To that goal, DWARF debugging information is used to
compute the addresses of the observed instructions[DWA,
2013].

3.4 Experiments

This new instrumentation model has been tested on
STM32F4 boards (equipped with an ARM Cortex M4
processor) on which instrumentation of small applications
works fine but not on bigger ones due to the lack of mem-
ory. The configuration of the interrupt handler has been
added to the startup file of the board[M4m, 2010], [Sim,
2010].
Other experiments have been made on Raspberry Pi 2
board (that has a ARM Cortex A7 processor). A “min-
imal kernel” has been adapted to make the C and C++
runtime usable on this board[Tut, 2014].
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Developing 3D nonrigid image registration techniques within CamiTK

CALKA Maxime
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Abstract
The aim of this internship was to implement 3D
image registration methods in the Open Source
platform CamiTK developed by the CAMI Team.
To implement this functionalities, we have used the
library Elastix developed by Stafan Kelin and Mar-
ius Staring.[3] This library is a toolbox permitting
the rigid and non-rigid image registration. Finally,
we have succeed to include the library in CamiTK
and to create an ”Action” operating the B-spline
Free-Form Deformation (FFD) based registration.
Keywords: Image Registration, CamiTK, Elastix

1 Introduction
1.1 CamiTK

CamiTK is a computer assisted medical interventions Tool
Kit developed by the GMCAO team. This software has been
created in the aim to gather the knowledges from several
research fields : perception (visualization, interaction, pro-
cessing and analysis), reasoning (3D geometries, interaction,
biomechanics), and action (tracking, navigation, robot con-
trol).

this software provides fast and stable tools for prototyping
medical applications for clinicians and the medical industry.

1.2 Nonrigid registration
The image registration is the process of transforming dif-

ferent sets of data into one coordinate system. On this mat-
ter, our Group has previously developed and employed non-
rigid image registration techniques on the basis of discrete
optimization.[1]

2 Aim
The aim of my internship was to embed the FFDs registra-

tion framework into the CamiTK.

3 Methodology
The principle objective of this internship was to embed

FFD registrations into CamiTK. Our group has previously
employed discrete optimization techniques for optimization

of nonrigid transformation. This method was primarily im-
plemented in Matlab and is now being developed within C++
language. Although, this implementation is not finished yet,
I have created a CamiTK Action that can bring this library
to the CamiTK in the future. On the side, a third party li-
brary so-called Elastix that employs conventional continues
optimization techniques for estimation of non-rigid transfor-
mation was chosen.

I have install Elastix 4.8 using CMake 3.1 and ITK 4.9. In
addition, I have link Elastix with CamiTK 4.0. I have create
an example program using the Elastix library who realise the
registration of 2 images.

I have created a CamiTK Action with the CamiTK wiz-
ard. Then, I have implement the image registration program
into the CamiTK Action. According to the registration pro-
cess being employed (i.e., similarity measure, interpolation
method, optimization technique, etc), some parameters must
be configured. I have developed an IHM with QT permitting
the parametrization of the image registration. This interface
has been linked at my CamiTK Action.

4 Results & discussion
Finally, a CamiTK Action realising the BSpline registra-

tion has been created with the possibility parametrize each
part of the nonrigid registration.

I have not tested the quality of the result because I don’t
know how make an efficient parametrization, but I have seen
that the quality of the result and the execution time are in
relation with the parametrization and the type of optimization.

The next step will be to compare the Elastix Optimization
(continuous optimization) and the Optimization developed by
our group (discrete optimization) in order to evaluate their
performance and simulation speed.

It is worth to mention that my implemented CamiTK Ac-
tion can be used to employ other image registration tech-
niques provided by Elastix. However, the most difficult and
time consuming step will be creation of an interface that
parametrizes each registration method.

5 Conclusions
The program could be used to apply the transformation on

finite elements meshes and to develop an another application
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realising the automatic generation of subject-specific finite el-
ement meshes.
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Developing 3D nonrigid image registration techniques within CamiTK
CALKA Maxime, L3 Informatics

TIMC – GMCAO, Université Grenoble Alpes

INTRODUCTION

1.CamiTK
• Open Source Platform
• Knowledge gathering
• Prototype medical application
• Cross platform
• Free and open source
• Easy integration of algorithms

2.Nonrigid image registration
• Consist in the image matching
• Use for medical images, to register a 

patient's data to an anatomical atlas
• Our Group has developed nonrigid

image registration techniques on the 
basis of discrete optimization.   

OBJECTIVE

Embed the FFDs registration framework 
into the CamiTK

METHODS RESULTS

CONCLUSIONS

• The program could be using for several applications because the 
image registration is very important in medical imaging

• Possibility to develop a program for the automatic generation of 
subject-specific finite element meshes thanks to the 
transformation obtained with the FFD program.

RESULTS

• Elastix library to implements the 
image registration methods

• Embed image registration methods 
in CamiTK with CamiTK wizard/IMP

• QT Creator to add an IHM to 
parameterize the registration

• Link the interface to the CamiTK
extension

• Creation of a CamiTK Action realising
the Bspline registration with the 
possibility parametrize each part of 
the nonrigid registration.

• The quality of the result has not been 
tested but we have seen that the 
quality and the execution time are in 
relation with the parametrization and 
the type of optimization.

• The next step : compare the both 
Optimization to evaluate their 
performance and simulation speed. 
(continous optimization and discrete
optimization)

Figure 1: Source image (moving) Figure 2: Target image (fixed)

Figure 3: Result image
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1 Introduction
The WalT platform allows to experiment network research. It
ensures repeatability and reproducibility of experiments.

WalT nodes (clients) are computers on which an OS (file-
system and kernel) packaged as a docker image can be de-
ployed for customization and sharing. WalT server is a pc
taking charge of communication between users and nodes.

With free software and standard components WalT plat-
form can be easily reproduced to validate results in various
real-world conditions. The platform can be set up on a desk
for debugging or transported for mobile demos. The remote
control over nodes is performed using a command line client
which sends requests to the server. It allows actions such
as node rebooting, shell sessions, experiment log manage-
ment, manipulations of OS images (deploying, modifying,
cloning from and pushing to docker hub). Due to the ver-
satility of the platform as well as its complete control over
WalT nodes, diverse experiment scenarios can be set up rang-
ing from Wi-Fi handover measurements to evaluating routing
protocols in wireless sensor networks.

Due to new developments the need of systematic testing
of diverse features and functionalities of WalT platform be-
comes necessary. Automating the testing of a distributed sys-
tem is a difficult task. In order to carry it out, rather than using
a real physical platform, virtual nodes running as vms are to
be designed and implemented. In some cases, virtual nodes
might also be useful in some research experiments.

Hence the objective of this internship is to introduce vir-
tual nodes into WalT server as well as implementing the test
module itself.

1.1 Physical Nodes and Boot Procedure
At the time the internship started, WalT physical nodes were
raspberry pi boards. They use a network boot procedure: first,
a network boot-loader stored locally on the node (SD-card) is
started; then, an OS (so-called ”WalT image”) stored on the
server and chosen by the user is started.

2 Problems and Solutions
It is easier to automate the testing of the platform using virtual
nodes, than real ones. Since the testing only makes sense if
virtual nodes function like physical ones, a virtual machine is
used: kvm.

Having several virtual machines running on the server may
cause performance issues. To minimize them, we decided to
design minimalist WalT images. Moreover, to avoid any CPU
emulation, we decided to implement virtual nodes using the
same architecture as the server (host machine), thus PC-type
virtual nodes.

2.1 Support of PC-type nodes
A first step was to add support for the PC-architecture to reg-
ular (i.e. physical) WalT nodes. This implied to implement a
network boot procedure for PC-type nodes, similar to the one
that already existed for rapsberry pi boards.

The creation of such boot procedure resulted in a bootable
USB device that allows turning any PC into a WalT node.
This USB device works by loading two bootloaders in turn:
grub and then ipxe.

2.2 Design of Minimalist Images
As explained above, we also designed minimalist WalT im-
ages based on buildroot in order to minimize the performance
impact of virtual nodes. Virtual nodes, being virtual ma-
chines, require large amount of computing resources on the
server, therefore it’s wise to limit the demands of the OS.

It was the first task of the internship, because it allowed to
understand various topics and internals related to the WalT
platform. At this time, PC-architecture support was not avail-
able, thus we started by designing minimalist images for the
raspberry pi boards. Later in the project, minimalist images
for the PC architecture were also implemented.

2.3 Support of Virtual Nodes
The use of kvm allowed almost immediately to turn physical
PC nodes into virtual nodes, by using the USB bootloader
image handing over to the minimalist WalT image.

The integration of this node type into the platform included
the launch of such virtual machines and running them on the
background.

2.4 Design of Test Module
The test module is designed in a way that regularly tests di-
verse features of WalT. It consists of sufficient quantity of
scenarios that would be otherwise performed by a user.
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Test Architecture

for Network Experimentation Platform WalT

Narek Davtyan - L3 Info UGA Supervised by Etienne Dublé

Description and objectives

• The network experimentation
platform WalT allows to
experiment network research.
It ensures repeatability and
reproducibility of such
experiments

• WalT nodes — computers
on which an OS (filesystem
and kernel) packaged as a
docker image can be deployed
for customization and sharing

• WalT server — a pc taking
charge of communication
between users and nodes

• The test architecture
• Due to new developments the
need of testing of diverse
features and functionalities of
the WalT platform becomes
necessary

• Automating the testing of
WalT consists of designing the
test module and virtual nodes

• The choice of virtual nodes
• Virtual nodes are easier to
manage in the context of an
automated module, and less
subject to failure

Support of PC-type Nodes

• USB boot image contains only a few files
• The customized grub2 bootloader has no menu and starts ipxe
network

• Boot procedure resembles greatly the one created for raspberry
pi boards
• Locally-stored grub2 bootloader starts ipxe with boot instructions as
arguments

• Ipxe network bootloader gets its IP (DHCP) from WalT server and
downloads (TFTP) a 2nd stage script stored on the server

• This scripts downloads the kernel and boots it
• The kernel mounts the OS stored on the server (NFS)

WalT Server

WALT IMAGES

PC X86-64
 MINIMALIST

pc-x86-64.ipxePhysical Nodes

PC
IPXE

GRUB1

2
3
4
5

Figure 1: The boot procedure for pc architecture is shown: 1 - grub2
launches ipxe network bootloader, 2 - ipxe sends dhcp request with its
identifier and receives an ip address and network configuration, 3 - the node
downloads a second stage script, 4 - the script downloads (via TFTP) the
appropriate kernel, 5 - the kernel is started and boots (via NFS) the OS
located in the chosen image.

Design of Minimalist Images

• Performance issues can arise, since virtual nodes are in fact
virtual machines running on the server, hence they need to
consume the least possible
• Minimalist images are used to limit the demands of the OS
• CPU emulation provided by qemu is avoided by choosing the same
architecture on both the server and the nodes, which is pc x86-64,
thus the corresponding images (pc type) are used

WalT Server
PC Virtual Nodes

PC
PC X86-64
 MINIMALIST

PC
PC X86-64
 MINIMALIST

PC
PC X86-64
 MINIMALIST

Figure 2: The indefinite amount of virtual nodes is shown. Both the
nodes and the server have the same architecture (pc x86-64). Virtual nodes
run minimalist images.

Support of Virtual Nodes

• Virtual nodes work like the physical ones
• kvm is used to instantiate nodes
• The same USB boot image is used to start the node
• The same minimalist images are deployed on the virtual nodes
• The same boot procedure is used to load the kernel to the vm
• Virtual machines run on the background and have the same
behaviour as physical ones

WalT Server

WALT IMAGES

PC X86-64
 MINIMALIST

Virtual Nodes

PC

PC
PC X86-64
 MINIMALIST

PC
PC X86-64
 MINIMALIST

Figure 3: The same boot procedure (simplified), which results in
obtaining the image, is shown with the same USB boot image and the same
minimalist walt images.

Design of Test Module

• Test module verifies the correct behaviour of the platform
• It deploys minimalist images and tries various predefined scenarios
on them, which results in verification of specified WalT features

WalT Server

TEST MODULE

TEST 1
TEST 2

Virtual Nodes

PC
PC MIN

PC
PC MIN

PC
PC MIN

Figure 4: Two tests applied to three virtual nodes are shown: the first
one (running on the node above) verified the correct behaviour of certain
features using the specified scenario, the second one (running on the two
nodes below) found an incorrect result for a certain test. Arrows
represent the application of a certain test to a certain virtual node or group
of virtual nodes running minimalist pc x86-64 images.



Modular Intruders and Stateful Protocols in ProVerif

Florian Marco - VERIMAG - Univ. Grenoble Alpes / Grenoble-INP, France

1 Introduction
In the context of industrial systems (or SCADA), devices can
be used for more than 20 years and are hard to patch in case
of vulnerability. Due to their central place, an attack could be
disastrous such as the Stuxnet worm against nuclear facilities
in Iran [Langner, 2011]. Industrial systems are well analyzed
in terms of safety but such properties are usually not consid-
ered in presence of attackers. Thus we aim to check the safety
properties of industrial systems in presence of an attacker.

1.1 Formal security proof and ProVerif
By creating a model of a cryptoraphic protocol, we’re able to
explicit the security properties that we want to be respected.
The attacker is modelized as an omniscient intruder, that got
all possible powers except breaking cryptography. This in-
truder named Dolev-Yao [Dolev and Yao, 1981] was used to
highlight ”Man In The Middle” attacks. We choose to use
ProVerif [Blanchet, 2001], an automatic cryptographic proto-
col verifier. It is using an extended form of Pi-Calculus, a pro-
cess algebra that allows concurrent computations and repli-
cation and is really powerful [Lafourcade and Puys, 2015].
Agents are communicating with each others using channels.
During this analysis it will try every possible situation in or-
der to determine if the security properties are violated or not
.

1.2 Modular Intruder
According to its knowledge, the Dolev-Yao intruder can lis-
ten, forge, replay or modify messages, and play multiple ses-
sions of a protocol. When we assess the security of an in-
dustrial system, we will find most of the time possible attacks
due to the weak protocols used (like Modbus). In order to test
our system against a realistic intruder, we propose to control
the capacities of our modular intruder.

2 Industrial System Modelling
Cryptographic protocols are a finite and fixed sequences of
messages aiming to guarantee some property at the end of
the protocol, like secrecy, that targets the global state of the
protocol. In industrial systems, we are studying potentially
infinite sequences of commands. We need to check logical
predicates on the variables of the system, which change de-
pending on the commands exchanged. In order to do that, we
need to model a global state of the system.

2.1 Limitation of ProVerif
We found that ProVerif is performing coarse abstractions that
prevents us from easily modelling our system. They are nec-
essary in order to verify cryptographic protocols. The Pi-
Calculus models are translated into Horn clauses where the
set of facts grows monotonically. Thus an old state cannot

simply be replaced by a new one. Moreover, no loop or re-
cursions are possible in ProVerif. Only replication is possible,
but it creates a new copy of the process in parallel of the older
one.

2.2 Construction encompassing those limitations
First, we encode memory as a chained list of variables and
values. A memory accessing function will look recursively
in order to retrieve the current value of a specific variable.
it also allows an observer to check logical predicates on
the variables. Secondly, in order to avoid mixed states and
messages when using replication, we always communicate
through fresh channels that we created for each replicated
process. Finally, we need to maintain an order in the exe-
cution of all copies for which we use counters modelled as
Peano numbers. Thus, all messages exchanged are tagged
with a counter in order to only be received by the intended
process. The association of these three modelling tricks al-
lows us to model a sound execution of the system.

3 Modular Intruder Model in ProVerif
In the appendix we added a representation of our system ar-
chitecture and the general topology of an industrial network.

3.1 Intruder definition
The Dolev-Yao intruder is generally assumed to control a sin-
gle public channel used by all agents when analyzing cryp-
tographic protocols [Cervesato, 2001]. In order to control
its behaviour all agents must communicate over private chan-
nels. Accordingly, the intruder cannot do anything. Thus we
need to provide him ”oracles” that will work as proxies and
let him access those privates channels.

3.2 Oracle implemantation
The oracles are communicating with the Dolev-Yao intruder
using public channels. We modelled each oracle to perform
a specific action, e.g. a wiretape oracle will broadcast all the
messages to the intruder in order to increase its knowledge.
a Modify Oracle will modify (parts of) messages exchanged,
etc. We faced limitations when trying to implement oracle
that act on their own (e.g. replaying or forging) and which
will not require a message sent by the client. We supposed
that the possibly infinite behaviour these oracles requires a
dedicated abstraction in ProVerifs algorithm.

4 Conclusion
We successfully used ProVerif to analyze the safety of indus-
trial systems. However the modelling tricks we needed to use
still do not scale to real examples. One of the future possibil-
ity is to use another tool such as Tamarin.

Proceedings of MIG’2017 - Magistère d’Informatique de Grenoble 11







Figure 1 : System Architecture
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Abstract
Scheduling threads on multicore machines remains
a challenging problem. Empirical evidence shows
that the thread placement strategy implemented in
the Linux scheduler is sometimes significantly less
efficient than simple static schemes. However, such
performance problems are currently difficult to ex-
plain because of two things. First, over the past ten
years, the lack of a documented overall design and
the frequent changes have turned the source code
of this strategy into a patchwork full of intricacies
and unclear heuristics that is hard to comprehend
and maintain. Second, given the complexity of this
thread placement strategy, new tracing facilities are
necessary to obtain detailed insight about the thread
placement decisions.
The main contribution of this work is an at-
tempt to address these two shortcomings regard-
ing thread placement decisions in Linux. We first
propose an exhaustive documentation of the over-
all thread placement strategy implemented in the
Linux scheduler. We then describe our own work-
in-progress tool created to gather runtime data
about the successive thread placement decisions
that are made during the execution of an applica-
tion. We believe this contribution is an important
first step towards the understanding of these ineffi-
ciencies which could eventually help improving the
Linux scheduler.

1 Introduction
General purpose schedulers were supposed to be a relatively
simple matter until the early 2000s: before the advent of mul-
ticore processors, the problem of scheduling threads was sim-
ply a matter of time sharing a single CPU between all the
running threads. On a multicore machine, while time slicing
remains necessary, a scheduler also has the responsibility to
choose the placement of threads on the available CPUs. De-
vising an efficient thread placement strategy is a complicated

issue because a scheduler must attempt to maximize the uti-
lization of all the available CPUs (by trying not to leave any
CPU idle and keeping the load balanced among the differ-
ent CPUs), while taking into account memory affinity con-
straints, i.e., differences in memory access costs depending
on the CPU. These memory affinity constraints stem from the
complex cache hierarchies and NUMA (Non Uniform Mem-
ory Access) effects1 of modern hardware architectures [Zhu-
ravlev et al., 2012; Diener et al., 2016]. In particular, mi-
grating a thread from a given CPU to another may hurt per-
formance because the data accessed by the thread may not
be found in the cache of the new CPU and may have to be
fetched from a remote cache, from main memory or on a re-
mote memory node. On their own, these concerns (using all
the CPUs, load balance, memory affinities) are already dif-
ficult to meet, but their combination raises even more com-
plexity. For one thing, the implementation becomes much
more intricate. More importantly, they are sometimes con-
tradicting: for one instance of a thread placement decision it
is difficult to assess beforehand which concern will have the
most impact on performance. As an illustration, moving a
thread farther away from its NUMA memory node in order to
improve the overall load balance might consequently improve
the performance. However this gain of performance can also
be negated by the overhead of memory accesses from a re-
mote NUMA node.

Our study focuses on Linux version 4.9 (released on 2016-
12-11), and more precisely on its general purpose scheduler
CFS (“Completely Fair Scheduler”) [Molnar et al., 2017;
Volker, 2013] which is its default and most commonly used
scheduler. The CFS scheduler2, first introduced into Linux
in 2007, was designed with the following goals: ensuring
fairness, maximizing performance and being a one-size-fits-
all solution. Since its inception, CFS has undergone various
changes to cope with user requirements (e.g., responsiveness,
virtualization) and hardware evolution. As an illustration,
the number of lines of code dedicated to the scheduler has
risen twofold from 2008 to 2016 (from 9,163 to 18,424 lines

1In these architectures the main memory is split into several
NUMA nodes with uneven access times from a given CPU.

2Even though it is not the only scheduler implemented in Linux,
further mentions of “the scheduler” or ”the Linux scheduler” in this
document refer to CFS.
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of code3). Some of these changes are either directly related
to, or have an influence on thread placements; among them:
scheduling domains, load tracking, cgroups and NUMA bal-
ancing. (i) Scheduling domains is the solution devised by the
Linux developers to take on the problem of uneven memory
affinities [Corbet, 2004]. (ii) The load tracking system which
keeps track of the load of each CPU and thus defines the way
threads have to be placed for the load to be balanced has been
changed several times. (iii) Cgroups, which are active by de-
fault, change the unit of fairness from threads to group of
threads. This change of unit directly affects the load tracking
system and the notion of load balance. (iv) NUMA balanc-
ing moves threads between CPUs to try to fix the remaining
issues with thread and memory co-location on NUMA archi-
tectures [Van Riel, 2014].

While the initial principle of CFS is simple and all these
accommodations make sense on their own, problems appear
when everything is combined. First, the documentation of
the overall behavior of the scheduler is not on par with its
complexity. Second, the decision process leading to thread
placement choices has become opaque, riddled with obscure
heuristics. Third, this complexity leads to bugs, as described
by Lozi et al. [Lozi et al., 2016]. These problems are fur-
ther aggravated due to the development model of Linux. In-
deed, the source code of the Linux kernel is complicated to
understand and evolves at a high pace. Besides, Linux lacks
a central documentation [Landley, 2008], and worse, the doc-
umentation that is available through different means (in the
source code tree [Kernel, 2017], in Git commit messages, on
dedicated websites [LWN, 2017; KernelNewbies, 2017], in
books [Mauerer, 2008; Love, 2010]) is not always exhaustive
nor up-to-date.

Because of these issues, the application developers and
users have become somewhat skeptical regarding the effi-
ciency of the Linux CFS scheduler. Thus, the recent years
have seen an increased usage of the so-called thread pinning
primitives (e.g., taskset, sched setaffinity). These
primitives let a developer/user manually enforce the mapping
of threads to CPUs: in other words, one can dismiss any kind
of thread placement decision made by the scheduler. Even
though pinning is found to improve the performance of one
application for a given architecture and workload, there is no
guarantee that this will remain true for all architectures and
workloads. Ultimately, pinning is just a static ad-hoc thread
placement strategy – in the general case, it cannot replace an
efficient, dynamic thread placement strategy implemented at
the operating system level, which has a global view and full
control on the machine.

The main contribution of the work presented in this docu-
ment is the study of the general strategy and the different cri-
teria used by Linux in its thread placement decisions. The re-
sults of this study is organized as a taxonomy of thread place-
ment decisions. We also present our work-in-progress tool,
which gathers runtime information about the actual thread
placement decisions taken by CFS relying on our taxonomy
to provide meaningful contextual insight.

3Measured using David A. Wheeler’s ’SLOCCount’ tool
https://www.dwheeler.com/sloccount/.

This document is structured as follows. §2 highlights the
empirical evidence driving our investigation of CFS. In §3
we discuss related work. §4 describes the main principles
guiding the design of the Linux scheduler. Our taxonomy
of thread migration decisions is presented in §5. The tool
we developed is described in §6. §7 gives the first results of
our investigation and discusses perspectives for future work.
Finally, §8 conclude the paper.

2 Empirical evidence
In this section, we present the empirical evidence that moti-
vates our work. §2.1 describes our testbed and §2.2 presents
our results.

2.1 Testbed
The pinning problem (i.e., the fact that some applications per-
form better when their threads are placed in a simple static
fashion in comparison to the placement of that results from
the Linux scheduler decisions) is observed with real produc-
tion setups and workloads. In order to simplify our inves-
tigation, we settled on simpler setups that exhibit the same
problem. Our testbed is composed of 11 multi-threaded ap-
plications from well-known benchmarks (Splash2 [Woo et
al., 1995], Parsec [Bienia, 2011] and Phoenix test programs
[Yoo et al., 2009]) with execution wall-clock times ranging
from 0.5s to 60s. Each of these applications is run alone
on a dedicated 64-core machine (a Dell PowerEdge R815
server with four 16-core AMD Bulldozer 6272 processors,
and four 64GB NUMA memory banks) running a Linux 4.9
kernel. Each application is configured to use as many threads
as CPUs. Given that our study is focused on maximizing per-
formance (i.e., lowest wall clock execution time), we choose
to disable CPU frequency scaling. Moreover, in order to
simplify our setup and inverstigations, we chose to disable
NUMA balancing , as this feature did not seem to have a sig-
nificant impact on performance during our early experiments.
Apart from these two options, all configuration options are
left to their default and prescribed values (with notably the
autogroup feature, which is enabled by default in mainstream
Linux).

For our experiments, the pinning configuration relies on
the PinThreads program [Lepers, 2017]. PinThreads’own
thread placement strategy is based on the following two poli-
cies: (i) Each new thread of the application is assigned to a
CPU in a round-robin fashion:

initial cpu of(ith thread) = CPU
i modulo nb(CPU)

(ii) The application threads are prevented from being mi-
grated away from their initial CPU.

2.2 Empirical results
All the details of our experiments are available online [Fer-
reira, 2017]. Figure 1 and Table 1 in the appendix display
the average execution time of the applications of our testbed
each ran 30 times. The light green color displays this average
when the threads are placed by PinThreads, the darker red
shows the average when CFS chooses the placement of the
threads. As illustrated in this figure, PinThreads improves the
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execution time substantially (with a maximum improvement
of 271% for volrend). . The standard deviation bars also high-
light that in most cases, PinThreads reduces the variability of
the execution time to almost zero.

3 Related work
Our work revolves around two aspects: thread placement is-
sues and performance analysis. The state of the art regard-
ing the issue of thread placement is discussed in §3.1. §3.2
gives details about the existing ecosystem of tooling for per-
formance analysis regarding these issues.

3.1 Thread placement problem
The importance of thread placement on performance has been
abundantly studied as illustrated by the existence of two re-
cent surveys [Diener et al., 2016; Zhuravlev et al., 2012].
The survey of Diener et al. deals with the problem of thread
and data placement in terms of memory affinity. It offers a
broad overview and classification of the techniques devised
to improve these placement problems, and encompasses tech-
niques that operate at different levels, ranging from source
code analysis to the operating system. In contrast, our work
is focused on all kinds of thread placement problems, con-
sidering not only memory affinity but also load balancing.
Another difference is that our study focuses on the role of the
operating system scheduler in the definition of this placement
because we believe it is the best suited to do so (given that it
has a global view and full control of the machine). Zhuravlev
et al. survey the scheduling techniques proposed to address
thread placement issues not only according to memory affin-
ity issues but also to memory contention issues. The survey
covers both propositions from the research community and
the solutions implemented in the Linux and Solaris sched-
ulers. However, the study of the Linux scheduler targets an
old version of the code (Linux 2.6.32 released on 2009-12-03)
and is furthermore very brief. Unlike our study, it does not at-
tempt to extensively describe the thread placement strategy of
CFS and only provides a quick overview of load balancing.

The work of Lozi et al. [Lozi et al., 2016] is the closest to
ours. However, they differ in their goal and approach. The au-
thors highlight that, due to bugs, the scheduler fails at one of
its main objectives: being work-conserving (there must be no
idle CPU if some thread is ready to run). To explain the root
causes of the observed problems, they present a study of the
recent version of CFS (Linux 4.3 released on 2015-09-02).
However, unlike ours, their description is mostly focused on
load imbalance concerns (due to scheduler bugs), while we
aim at studying all kinds of performance problems related to
thread placement including inefficient heuristics. For exam-
ple, we consider initial thread placement decisions in addition
to thread migrations and we also discuss the (cache affinity
driven) placement criteria used upon thread wake-up.

3.2 Performance analysis and tooling
Our work is motivated by the will to understand why
the thread placement strategy of the Linux CFS sched-
uler can degrade performance compared to manual/static
thread placement approaches. To that end, Linux ex-
ports some statistics about its scheduler via a file interface

(/proc/schedstats) [Fields et al., 2017]. Among oth-
ers, this file contains several counters about different kinds
of thread placement decisions. We tried to rely on this tool
to understand the performance issues in our case studies but
found out that the provided statistics were insufficient for
this purpose: the breakdown of thread placement decisions
is very coarse grained and hides too many details regarding
the heuristics used within the scheduler. Besides the docu-
mentation of the schedstats file assumes the reader already
has a thorough understanding of the overall behavior of CFS
and we have also found that this documentation is sometimes
misleading.

Apart from schedstats, a plethora of tools exists for perfor-
mance analysis/debugging purposes on Linux [Gregg, 2014].
Among them, the main and most generic tool is perf [Weaver,
2013]. perf offers a consistent way to both access hardware
performance counters and to trace software events in the ker-
nel (static, predefined events with tracepoints and dynamic
events with kprobes). Among these static events, one of
them is triggered by thread migrations but it lacks impor-
tant contextual details: it provides the source and destina-
tion CPUs of the migration but offers no means to understand
the circumstances and motivation that triggered the migra-
tion. Nonetheless, perf can be used to understand the general
performance characteristics of an application on a machine
(e.g., CPU hotspots, memory bottlenecks or synchronization
events). For this purpose, perf can produce a trace of per-
formance events associated with the call stacks of the cor-
responding thread upon the occurrence of the event. These
traces can then be summarized and visualized using tech-
niques such as flame graphs [Gregg, 2016]. This kind of tools
is useful for our goal. We want to understand why the sched-
uler can degrade the performance of certain applications and,
to do so, we also need the insight that those tools can give us
regarding the application behavior to complement our under-
standing of the scheduler behavior.

Other tools are focused on the visualization of scheduling
issues: the perf sched command of perf, the visualiza-
tion tool created by Lozi et al. [Lozi et al., 2016], ViTE
[ViTE, 2010; Trahay et al., 2011], Paraver [Pillet et al., 1995]
and KernelShark [Rostedt, 2017]. All these tools summa-
rize scheduler events with a timeline visualization. The tool
of Lozi et al. can display the number of threads assigned
to each CPU or their loads while the other tools rely on a
color chart to display which threads were running on each
CPU. This way of presenting data facilitates the detection of
some kinds of scheduling problems: for example, it is easy
to notice if one CPU remains idle for too long. However,
even though these tools can highlight some problems with
the thread placement strategy, they are not sufficient on their
own and require an additional study of the scheduler behav-
ior because they do not give any insight into the scheduler
decisions to migrate threads.

4 The Linux scheduler
The Linux CFS scheduler is a scheduler tailored for fairness
and aiming at maximizing performance on a wide range of
machines: from simpler machines with one or a few CPUs
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up to machines with hundreds of CPUs. In order to support
machines with such a high number of CPUs, CFS (like most
schedulers implemented in recent operating systems) is based
on a two-level design [Zhuravlev et al., 2012]. The first level,
at the scale of each individual CPU, takes care of time shar-
ing the CPU between all the runnable threads placed on this
CPU. The second level takes care of space sharing, i.e., plac-
ing the threads on the different CPUs, to ensure that all the
CPU resources of the machine are used. This section gives
some insights into the overall design of these two levels in
§4.1 and §4.2. Then, some CFS details important for the un-
derstanding of the taxonomy proposed in §5, are described in
§4.3, §4.4 and §4.5.

4.1 Time sharing
The first level works as a regular time-slicing scheduler. For
each CPU, there is one runqueue that contains the list of
threads assigned to this CPU that are ready to run. At this
level, the responsibility of the scheduler is to choose: (i) when
to switch from a thread to another, and, (ii) which thread from
the runqueue should be run next.

The solution devised for the first question relies on well-
known and documented techniques (e.g., preemption on inter-
rupts, blocking system calls). In contrast, the solution used by
CFS to address the second question is rather original: Linux
schedules the thread that has spent the least time executing
on a CPU. In doing so, CFS approximates an ”ideal, precise
multi-tasking CPU” [Molnar et al., 2017], that is, a processor
that can run any number of threads in a truly parallel fashion.
Thanks to this scheme, CFS provides near-optimal fairness at
the scale of each CPU.

4.2 Space sharing
The second level, space-sharing, takes care of thread place-
ment (i.e., assigning threads to the CPU runqueues). This
section gives an overview of this level and §5 provides more
advanced details on this topic. Space sharing introduces two
main duties for the scheduler, in order to keep the amount
of work assigned to each CPU balanced: (i) the sched-
uler must decide on which CPU a thread will run when
the thread is created; (ii) the scheduler must decide when,
which and where threads should be moved [Volker, 2013;
Lozi et al., 2016]. Due to the dynamic nature of the work-
loads, imbalance between the runqueues may arise: threads
might start, die or block at any time and thus some CPUs can
become busier than others. For example, consider a scenario
with two CPUs. The runqueue of CPU1 contains four threads
while the runqueue of CPU2 contains only one. This would
defeat the fairness objective of CFS: the last thread will have
4 times more CPU time than the other 4 threads. This im-
balance can also be problematic for performance: suppose
that the thread on CPU2 is I/O-bound (i.e., it spends most of
its time blocked, waiting for I/O events). Then, CPU2 will
spend most of its time idle, waiting for the I/O-bound thread
to become ready to run again. In the meantime, CPU1 will be
busy slicing its time between its 4 threads. To address these
issues, the space-sharing level of CFS includes a load balanc-
ing logic, which tries to keep the runqueues balanced and to
maximize the utilization of all the CPUs.

4.3 Scheduling domains
Modern multicore architectures have varying memory access
times due to cache hierarchies and NUMA effects. These
caches and NUMA memory nodes are resources that are
shared among groups of CPUs, as depicted in Figure 2 in the
appendix. As an example, CPU1 and CPU2 share the same
first-level cache but CPU3 uses another first-level cache. An
efficient thread placement strategy has to be aware of these
memory affinities when placing threads. With our example
figure, if a thread were to be moved off from CPU1, CPU2

would be a better candidate to receive it than CPU3 (assum-
ing they are the two best targets to improve the runqueues
balance), because on CPU2 the thread would stay close to
its first-level cache. Keeping a thread close to its caches
and NUMA node tends to decrease memory access times and
thus to improve the overall performance. This is the reason
scheduling domains were introduced. §5 explain the role of
these scheduling domains.

Structure
Scheduling domains model the actual topology in terms of
memory affinity. From the point of view of one CPU, one
scheduling domain stands for the group of all the other CPUs
that share a topological property (e.g., direct access to the
same CPU cache or NUMA memory node or all the CPUs
are at the same NUMA distance from the NUMA node of the
reference CPU). These scheduling domains are stored per-
CPU (to minimize the overhead of concurrent accesses), as a
hierarchy from the most memory affinity to the least. Figure
3 in the appendix gives an example of the scheduling domains
constructed for a machine with both cache and NUMA mem-
ory.

Construction
The construction of scheduling domains relies on the shared
data structure sched domain topology level. Except
for NUMA levels, these levels are predefined in the source
code. NUMA levels are defined dynamically using the ma-
trix of memory node distances that is derived from hardware-
provided information. On our test machine, each CPU has
two NUMA scheduling domains: one for the CPUs of the
nodes directly connected to this CPU node (one hop), and one
for the CPUs of the nodes that have to communicate through
another intermediary node (two hops). When the scheduler
is initialized at boot time, for each CPU, one scheduling do-
main is then created from each of these levels.

4.4 Load metric
The work assigned to the CPUs is balanced according to a
metric called load which aims at reflecting how busy a CPU
is. In this section, we first give the intuition behind this metric
computation. We then describe the two metrics that Linux
actually uses. Finally, we explain the mechanisms that Linux
relies on to be “conservative” regarding load balancing.

Intuition
A naive version of the load metric could simply use the num-
ber of threads of the CPU runqueue. However the number
of threads does not account for threads that tend to block of-
ten. Consider the following example: a first CPU with two
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CPU-bound threads and a second CPU with two I/O-bound
threads. The two CPUs have the same number of threads and
appear balanced. However, the first CPU is actually spending
most of its time active while the second CPU is most often
idle, waiting for blocked threads. In order to account for
I/O-bound threads, the scheduler introduces a metric called
CPU utilization, which it uses to compute the load metric.
This CPU utilization of a thread is computed as the ratio be-
tween the actual time spent running and the time allotted for
the thread. A thread that tends to block often will have a lower
CPU utilization than a CPU-bound thread.

First metric
The first load metric is a sum of the averages of the CPU
utilization of each thread. To compute these averages, Linux
samples the CPU utilization over periods of 1024µs . We
denote u

i

the sample of CPU utilization of the thread over
the period i, with i = 0 being the earliest period, i = ✓ the
period the thread was created and i = c the current period.
The initial value threadlocal

✓

is initialized at a high arbitrary
value. Then the load of a thread threadload

t

after the period
t is computed as:

threadload
t

= u
t

+ y ⇥ threadload
t�1

with 0 < y < 1 being a constant value chosen so
that y32 ⇡ 0.5. An any point in time, the current value
threadload

c

for this metric is:

threadload
c

=
cX

i=✓

u
i

⇥ yc�i

In other words, the load of a thread is an average of its
CPU utilization samples with the most recent samples hav-
ing greater weights.

Then the overall load metric load1
t

of a CPU is expressed
as the sums of the load of the threads of its runqueue.

Second metric
The second metric is an exponential smoothing of the first
metric. The scheduler actually computes multiple versions
(denoted by index j whose value ranges from 0 up to 4) of
this second metric:

load2j0 = load10

load2j
t

=
1

2j
⇥ load1

t

+

✓
1�

1

2j

◆
⇥ load2j

t�1

For example:

load21
c

=
1

2
⇥ load1

c

+
1

2
⇥ load21

c�1

load24
c

=
1

16
⇥ load1

c

+
15

16
⇥ load24

c�1

As illustrated in these examples, greater values of j give more
weight to older values.

Conservative load balancing
The load balancing performed by CFS is described as being
conservative : when the imbalance is too small, the scheduler
favors keeping threads on their current CPUs to avoid thread

migrations whose cost (increased memory access time due
to the migrations moving threads away from their memory)
would outweigh the benefit. This also avoids a ping-pong
effect, where a thread could be moved back and forth in be-
tween two CPUs. This is implemented with two mechanisms.

The first mechanism relies on the two load metrics. When
comparing the load of two CPUs (one being the current CPU
of the task to be moved, the second being the considered des-
tination), CFS will: (i) consider the first load value load1
(ii) consider the jth value of the load2 metric. The value
of j is configured in the lowest scheduling domain that con-
tains the two CPUs4 (iii) either takes the minimum (for the
current CPU) or the maximum (for the destination CPU) be-
tween these two load metrics. The two values reflect the same
load metric but with varying importance given to the past. By
taking the minimum value for the current CPU, CFS might
underestimate the load. On the other hand, the maximum for
the destination will tend to overestimate the destination load.
This reduces the chances for the destination CPU to be con-
sidered less loaded than the current CPU and thus reduces the
chance for load balancing migrations to happen.

The second mechanism relies on an imbalance threshold.
When considering the imbalance, i.e., the difference of loads,
the scheduler only considers it significant if:

load
curr

� load
dest

> p⇥ load
curr

Where p is computed based on the imbalance pct config-
uration option of the enclosing scheduling domain:

p = (imbalance pct� 100)/2

The value of the imbalance usually ranges from 110 (for
smaller scheduling domain) to 125 (for larger domain), thus
p ranges from 5% to 12.5%.

4.5 Cgroup & autogroup
Control groups (abbreviated as “cgroups”) are a pervasive
feature of Linux which is not limited to the scheduler. At its
core, the cgroups feature allows the user to group processes
together and to apply various policies to all members of a
cgroup. Regarding CFS, cgroups change the unit of fairness.
When cgroups are in use, CFS tries to be fair to cgroups in-
stead of being fair to threads. Consider the following exam-
ple: the operating system is running four threads. Thread1
is in a cgroup cgroup1 of its own, the other three threads
are in the same cgroup cgroup2. For CFS to be fair in this
setup, it will have to give the same amount of CPU time
to cgroup1 and cgroup2 which means thread1 will get to
have three times more CPU time than the threads of cgroup2.
Similarly, the load metrics described earlier should account
for these groups to ensure a load balance that provides fair-
ness in terms of cgroups. To do so, CFS divides the load of
each thread by the number of threads of the corresponding
cgroups.

cgroups can be setup arbitrarily by the user, but they can
also be setup automatically with the autogroup feature. In

4With the default configuration of Linux, higher scheduling do-
mains will have higher value for j
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order to understand the motivation behind the autogroup fea-
ture, it is important to understand why fairness at the scale
of threads can be a problem: consider a simple setup with a
mono-threaded process p1 and a process p2 with 8 threads. If
the unit of fairness is the thread, p1 will receive significantly
less CPU time than p2. Now assumes that these are run on a
regular user desktop system and that p1 is a GUI application
while p2 is a source code compilation. Because it is starved
of CPU time, the GUI application might appear significantly
less responsive than usual.

The autogroup feature is meant to fix this issue. When en-
abled, each new process is placed in the cgroup of its par-
ent. When a process calls the function setsid (notably dur-
ing the initialization of a terminal emulator process), it is re-
moved from this cgroup and placed in its own new cgroup.
With this mechanism, in our example, p1 and p2 will end up
in different cgroups, and thus p1 will not be starved by the
large number of threads from p2.

5 A taxonomy of thread placement decisions
Thread placement decisions are made at multiple occasions
in Linux. These occasions can be grouped in three main cate-
gories: (i) per thread placement, for example when the thread
is created or when it wakes up; (ii) global load balancing,
which can move multiple threads to achieve load balance;
(iii) NUMA balancing, when the scheduler detects too many
remote memory accesses. As explained earlier, enabling or
disabling NUMA balancing did not have any significant in-
fluence on the observed performance difference, thus thread
placement decisions triggered by NUMA balancing are not
covered in this document.

5.1 Per-thread placement
Multiple occasions can trigger per-thread placement deci-
sions: (i) the thread just got created (e.g., process fork,
pthread creation, kernel thread creation); (ii) the thread calls
one of the system calls from the exec family; (iii) the thread
is about to wake up. The scheduler applies the same general
scheme for these three triggers, but thread placement on wake
up might use a different scheme called wake affine if some
conditions are met. The general scheme used in the three oc-
casions is explained first. The wake affine case and how it is
triggered is explained in a second time.

General scheme
When choosing the destination CPU for a thread, the sched-
uler considers its affinity with the previous CPU (in case of
a thread creation, the previous CPU is the CPU of the thread
that created it). The scheduler defines three flags, one for
each occasion (SD BALANCE FORK, SD BALANCE EXEC,
SD BALANCE WAKE) that can be set independently in the
configuration of each scheduling domain. To choose the des-
tination of the thread, the scheduler first finds the largest
scheduling domain that contains the previous CPU and has its
relevant flag set (SD BALANCE FORK, SD BALANCE EXEC
or SD BALANCE WAKE depending on the occasion that trig-
gered the decision). Once the scheduling domain has been
chosen, the scheduler then selects the target CPU among this
scheduling domain. It first looks for the idle CPU with the

smallest wake up time5. If there is no idle CPU, the scheduler
falls back to picking the least-loaded CPU of the scheduling
domain. The main motivation of this general scheme is to
keep the load balanced on each CPU to ensure fairness.

Wake affine
One occasion does not always follow the above-described
scheme: threads about to wake up. Wake affine is a spe-
cial case in the logic of the thread placement strategy of
waking threads. The motivation is to try to account for
cases of waker/wakee threads that have a certain degree of
cache affinity (e.g., a scenario with 1 producer thread and
1 consumer thread). For the wake affine case to be consid-
ered the scheduling domain has to be configured with the
SD WAKE AFFINE option. If this scheduling domain option
is set, then in order to decide if it should aim for load bal-
ance or for cache affinity, the scheduler checks the following
two criteria: (i) the waker does not wake many threads (the
threshold is tailored to the capacity6 of the LLC scheduling
domain of the waker thread), and (ii) the remaining capacity
of the waker CPU is enough to host the wakee (based on its
CPU utilization). If one of these criteria does not hold, the
scheduler falls back to the general scheme described earlier.
If these two criteria are met, then the scheduler places the
waking thread with cache affinity in mind. To achieve this,
the scheduler first selects the least loaded CPU among the
previous CPU and the waker CPU. It then places the thread
on the least-loaded CPU in the last level cache scheduling
domain of this selected CPU.

5.2 Global load balancing
Global load balancing is run by the scheduler to account for
load imbalance among all the CPUs of the machine resulting
from the evolution of the load. In order to do so, the load
balancing algorithm moves threads from the busy CPUs to
the least-loaded CPUs. This section describes: (i) how this
load balancing is triggered, (ii) what is the general scheme of
the algorithm, (iii) the considerations about cache affinity

Triggers
Two triggers exist for the global load balancing algorithm:
periodically and newly idle. (i) Load balancing is triggered
periodically for each scheduling domain, on the least-loaded
CPU. The period value is a configuration option specific
to each scheduling domain (with the default configuration,
larger domains have a larger period value). (ii) Load balanc-
ing can be triggered by a CPU about to become idle when it
tries to schedule a new task but its runqueue is empty. Be-
cause this idle load balancing is run in a critical section (with
interrupts disabled), it is limited to only one thread migration.

5Some processor hardware supports multiple idle states for CPUs
with varying power consumption and wake up time characteristics.

6The capacity is a metric used to represent the computational
power of a scheduling domain. In the case of fully independent
CPUs, the capacity is equal to the number of CPUs in the domain, in
the case of shared microarchitectural resources (Simultaneous Mul-
tiThreading), the capacity is less than that.
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General scheme
The scheduler attempts to balance the load inside schedul-
ing domains starting from the smallest (in our example the
first-level cache domain) up to the largest (the domain that
spans all the CPUs). In doing so, the scheduler minimizes the
number of thread migrations across largest domains, hence
it keeps threads close to their memory as much as possible.
The load balancing algorithm is designed in such a way that
its main part, deciding which threads to move and where, is
always executed by the least-loaded CPU of each scheduling
domain. Once the least-loaded CPU has been elected to run
load balancing on behalf of the scheduling domain, it then
executes Algorithm 1.

begin
dst current cpu ;
while load is still imbalanced
and not all busy CPUs have been considered do

src pick next busiest CPU inside the busiest
scheduling domain ;

while load is still imbalanced do
thread select one thread from src ;
if cancelled > cache nice tries then

proceed with migration ;
else if task has cache affinity then

cancelled++ ;
else

proceed with migration ;
end

end
end

end
Algorithm 1: Load balancing general scheme

Cache affinity
The scheduler considers the following cache affinity criteria.
If the thread considered for the migration is the last thread
that has run, then the migration is cancelled. Also, if the du-
ration between the last time the thread has run and now is
less than the sched migration cost ns configuration
value, then the thread is not migrated. In both cases, the mo-
tivation is that the first level of cache is likely to contain some
of the data of this thread hence it may be better for perfor-
mance to keep it on its current CPU.

6 Tool
In order to understand the actual behavior of Linux thread
placement strategy and the reasons that can explain why it
is sometimes worse than pinning we devised new tracing fa-
cilities. §6.1 describes their implementation, §6.2 and §6.3
presents the information that they can provide.

6.1 Implementation
Our tool is provided as a Linux kernel patch that implements
two tracepoints. Tracepoints are a tracing infrastructure im-
plemented directly in Linux. More precisely, tracepoints are
static hooks placed in the source code, which are optimized

so that they have almost no overhead if they are not in use.
Typically, a tracing tool will register itself as a consumer of
a tracepoint and will be called each time the tracepoint is
reached. Additional information relative to the specific tra-
cepoint context can also be provided to the consumer. As
an example the default Linux kernel provides a tracepoint
named sched switchwhich is triggered just before a CPU
change the process that is currently being run. It provides the
current and the next thread as additional information.

We chose to rely on tracepoints despite the fact that they
are static and requires the compilation of a custom kernel (in
contrast to less intrusive techniques such as kprobes [Kenis-
ton et al., 2017]) for two reasons. First, the fact that they are
static means that the kernel is able to optimize them in order
to minimize their overhead. Second, we think that it would
be a good idea to directly integrate these tracepoints in the
mainstream kernel source code given the performance prob-
lem described in §2.

Several methods exist to monitor these tracepoints. The
easiest and probably one of the most efficient is to use the perf
tool to obtain a trace of all the occurrences of the tracepoints
being reached in the code.

6.2 Thread placement
The first tracepoint implemented by our tool is triggered
each time a thread is either placed for the first time or
moved from one CPU to another CPU. This tracepoint
sched thread placement offers the following addi-
tional informations: (i) the name and PID of the thread be-
ing placed (ii) the origin CPU (iii) the destination
CPU (iv) the executing CPU (v) the trigger and mo-
tivation which lead to the thread placement decision (among
those described in section 5) (vi) the minimum level in the
scheduling domains hierarchy which contains both the origin
and destination CPU.

This new tracepoint has some advantages over the exist-
ing sched migrate task tracepoint. First and foremost,
it adds a new field trigger, which gives insight about the
circumstances and motivations that lead to the reported mi-
gration. Thanks to this additional information, we were able
to observe that, for most of the applications we have found
to be sensitive to pinning, the two prevailing kinds of thread
placement decisions were 1. load balancing triggered when a
CPU becomes idle and 2. the wake affine thread placement
strategy. Another advantage is that our tracepoint is not lim-
ited to thread migrations and also reports initial thread place-
ment decisions. This is important given that we have found
that about half of the applications of our testbed are sensitive
to the initial placement of threads. The level field is also
important, because it serves as a first indication of applica-
tions that could suffer from degradation of memory affinities.

6.3 Load update
It is important to be able to monitor the evolution of the load
metrics because of the influence of the overall load balance
on the performance of the system and the importance of these
load metrics in the Linux thread placement strategy. To that
end, we created a tracepoint sched load update that is
triggered each time one of the load metrics is updated.
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Thanks to this tracepoint, it is possible to get a trace with
timestamps of all the successive values that these metrics
take. With this trace, it is possible to create a temporal
heatmap visualization of the evolution of the load of each
CPU similar to the one proposed by Lozi et al. but with more
insight. More precisely, this tracepoint can be used in con-
junction with the sched thread placement tracepoint
to obtain one unified trace of these two tracepoints. With this
unified trace, visual hints that would depict the thread place-
ment decisions could be added to the visualization with colors
used to represent what triggered the migrations. With such
a visualization, it would be much easier to understand how
the migrations affect the load of the runqueues and pinpoint
occurrences of migrations which were harmful for the over-
all load balance. For example, with the wake affine strategy,
whose first concern is not load balance, we could discover
that, for some applications, this strategy is too aggressive.

7 Results and perspectives
The first thing that we discovered is that the autogroup feature
has the most influence on the performance difference. When
it is disabled, the performance difference drops significantly
(see Table 2 in the appendix). At this point, we are still un-
sure of the reasons that lead to this influence, but the fact that
this feature only interferes with the load metric calculation
indicates that the problem likely resides in this calculation.
One of the bugs described by Lozi et al. is related to this fea-
ture and, as of today, has not been addressed in mainstream
Linux. Due to lack of time and technical issues we have not
yet ported and tested the tools and fix provided by Lozi et al.
and cannot assess if the cause behind this influence of the au-
togroup feature is either partly or entirely explained by this
bug. Our second finding is that the initial thread placement
that results from the default Linux strategy is quite different
from the strategy implemented by PinThreads. It seems that
Linux fails to effectively spread the newly created threads on
the available CPUs as it intends to. Our first investigation in
this direction hints at a problem in the initialization of the load
metric of newly created threads which ends up underestimat-
ing the load contribution of these new threads. Ultimately,
this results in an initial thread placement with a few overpop-
ulated CPUs and many underused CPUs. Because this affects
the initial placement of threads, it is important to try to eval-
uate if this initial placement has influence on the overall exe-
cution or if conversely, its influence is limited to the start of
the application and thus a longer execution time of the same
application would have mitigated this influence. We plan to
update our testbed with varying execution times in order to
study this aspect.

The underlying issues behind the observed inefficiencies
remain unclear. In order to understand the causes of these is-
sues, we plan to continue the development of our tool. One
issue we will probably have to face is the computation of the
load metric. We have already shown that this computation
is complicated, but from our investigation of its numerous
changes during the past years of Linux development , we can
tell that it is a major source of issues (which is confirmed
by the fact that the two findings described above are probably

problems related to this computation) and that it is most likely
to change again in the near future. While being able to mon-
itor these load metrics remain important, our tool should not
rely solely on them to provide data about the load balance of
the system because if the load metrics are inaccurate, the tool
will also provide inaccurate and potentially misleading data.
The traces generated using our tracepoint are a good start but
the large amount of data they contain makes them hard to
use on their own. One possible solution to address this could
be to devise some meaningful metrics that aggregate these
data. For example, we could compute at any point in time the
instantaneous balance of the system by computing the stan-
dard deviation of the load metrics of all the CPUs. We could
then derive the overall balance of an application execution by
computing a temporal mean of these instantaneous balance
metrics. Another solution could be to leverage these traces
to produce a visualization that would simplify their analysis.
We already discussed one example of this with the temporal
heatmap visualization but many other kinds of visualization
exists and could be interesting [Heer et al., 2010].

We have not fully evaluated the overhead of our tool yet.
Our first experiments indicates that the execution time over-
head is relatively low for the sched thread placement
tracepoint (about +17% for an application with a large num-
ber of migrations) but high for the sched load update
tracepoint (almost +100%). More importantly, we plan to de-
vise a method to assess that the tool does not significantly
alter the behavior of the application (notably in terms of mi-
grations, but also by checking the number of context switches
and the memory usage) which would make the trace irrele-
vant.

8 Conclusion
The long-term goal of our work is to explain some of the in-
efficiencies of CFS related to thread placement issues. As
we found out, explaining these inefficiencies was difficult
because of two main shortcomings : the absence of an up-
to-date comprehensive documentation and the lack of proper
tooling. We presented our attempt to address this two short-
comings.

First, we proposed our own overall documentation of Linux
thread placement strategy. In order to create this documenta-
tion we relied on the existing but scattered sources of docu-
mentation and checked which parts were correct and up-to-
date with the latest versions of Linux. We also thoroughly
studied the Linux source code to fill in the gaps and get a
better understanding of the overall design of this strategy.

Then, we described our first steps towards the implementa-
tion of a tracing tool to address the second problem. We then
highlighted the first results we obtained thanks to this tool and
finally discussed perspectives for further improvements.
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Figure 1: Average wall-clock time in seconds of the applications (lower is better). The bars depict the standard deviations.

PinThreads Linux CFS Difference
word count pt 8.65 s ± 0.02 9.24 s ± 0.10 + 6.82 %
barnes 11.48 s ± 0.06 13.24 s ± 0.41 + 15.33 %
pca pt 12.99 s ± 0.14 15.65 s ± 0.63 + 20.48 %
lin reg mr 0.50 s ± 0.05 0.67 s ± 0.05 + 34.00 %
lin reg pt 2.38 s ± 0.03 3.60 s ± 0.41 + 51.26 %
lu cb 19.95 s ± 0.15 33.04 s ± 3.79 + 65.61 %
histogram mr 1.92 s ± 0.05 3.73 s ± 0.25 + 94.27 %
bodytrack 25.57 s ± 0.09 50.54 s ± 0.91 + 97.65 %
lu ncb 18.52 s ± 0.11 39.24 s ± 4.14 + 111.88 %
word count mr 15.57 s ± 0.10 53.48 s ± 0.92 + 243.48 %
volrend 14.95 s ± 0.06 55.57 s ± 11.07 + 271.71 %

Table 1: Average wall-clock time in seconds and standard deviations of the applications for both the PinThreads and Linux CFS

configuration. The last column is computed as :
Average

LinuxCFS

�Average
PinThreads

Average
PinThreads

⇥ 100
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Figure 2: A simplified architecture with two cache levels and two NUMA nodes

Figure 3: The scheduling domains derived from the architecture (from the point of view of CPU1)

With Autogroup Without Autogroup Difference
lin reg pt 3.60 s ± 0.41 3.94 s ± 0.33 - 8.63 %
word count pt 9.24 s ± 0.10 8.66 s ± 0.08 + 6.70 %
barnes 13.24 s ± 0.41 11.88 s ± 0.28 + 11.45 %
pca pt 15.65 s ± 0.63 13.95 s ± 0.82 + 12.19 %
lin reg mr 0.67 s ± 0.05 0.57 s ± 0.02 + 17.54 %
lu cb 33.04 s ± 3.79 20.50 s ± 0.62 + 61.17 %
histogram mr 3.73 s ± 0.25 2.28 s ± 0.07 + 63.60 %
lu ncb 39.24 s ± 4.14 23.92 s ± 0.78 + 64.05 %
bodytrack 50.54 s ± 0.91 23.57 s ± 0.20 + 114.43 %
word count mr 53.48 s ± 0.92 23.01 s ± 0.36 + 132.42 %
volrend 55.57 s ±11.07 15.92 s ± 0.33 + 249.06 %

Table 2: Average wall-clock time in seconds and standard deviations of the applications with and without the Autogroup feature.

The last column is computed as :
Average

With Autogroup

�Average
Without Autogroup

Average
Without Autogroup

⇥ 100
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Abstract
Synchrotron radiation computational tomography
allows to perform 3D medical imaging with high
spatial resolution in the nano scale. Although
this imaging technique raises many challenges as
huge amount of data is required which can af-
fect the sample during the acquisition and increase
the acquisition time. This research proposes to
use a compressed sensing reconstruction using split
Bregman in order to reduce the number of projec-
tions required to reach high resolution. Quantita-
tive performances of this approach on an ex-vivo
bone sample Synchrotron imaging are presented,
expressing the efficiency of the proposed recon-
struction in terms of data reduction and reconstruc-
tion time.

1 Introduction
Understanding the origins and development of some diseases
is still challenging today. It is the case for osteoporosis. In
order to understand and identify the causes of this illness,
studies on the bone structure must be done in the nano scale.
Nano synchrotron radiation computational tomography can
provide the necessary data. Research for higher resolution
imaging techniques is hence ongoing.
The project in which this research is involved focuses on
the development of a microscopic imaging technique for 3D
representations of bones samples. In order to reach higher
resolution reconstructed images, Synchrotron Radiation (SR)
phase contrast Computational Tomography (CT) imaging is a
good candidate as it allows to observe the phase shift induced
by the refractive index of the matter, which is in the order of
magnitude three times more sensitive than commonly used
absorption in standard CT. Hence, More information can be
acquired to optimize the reconstruction resolution.

The objective is to reconstruct images with a spatial
resolution close to the current theoretical limit of 10nm.
However, for hardware as well as software issues this

resolution is not yet possible. The European Synchrotron
Radiation Facility (ESRF) upgraded it’s nano beam-line in
2016 to a state-of-the-art technology and is currently able to
reach a spatial resolution of 60nm [Martinez-Criado et al.,
2016].
Reaching higher resolution requires to acquire huge amount
of data with an acquisition time reaching multiple hours,
during which the sample will be subjected to high radiation
doses as high as 8 ⇥ 107Gy [Langer et al., 2012]. In
the context of CT acquisitions, the data is composed of
volume projection acquired using the ESRF nano-beam-line.
4 ⇥ 3000 projections of the volume are necessary to have
a reconstruction of decent quality. This reconstruction
is performed using the Filtered Back Projection (FBP)
transforming data in the projection space to the image space.
Reaching this spatial resolution is particularly interesting
for studies requiring to understand the bone structure such
as osteoporosis study. Indeed, we do not know yet how this
disease progresses and where it comes from. Studying nano
scale images of bones at different stages of the disease would
allow to understand how the bone structure evolves.

Acquiring images at the ESRF allows to reach a high
definition reconstruction but is invasive to the sample.
Indeed, the exposition to high radiation for multiple hours
has an effect on the composition of the sample. After few
projections the sample can be subjected to motion, shrink,
and change of colors. At this level of resolution each little
change on the sample limits the quality of the reconstruction.
It is then important to reduce the radiation dose necessary
for the acquisitions. Another problem is the acquisition time.
Access to the ESRF is limited in time, as there is a high
demand for using this facility. The number of experiments
possible to do is then limited by the acquisition time. Along
with reducing radiation dose, reducing the acquisition time is
also necessary.
These two objectives lead to two axes of research in SR
CT imaging, phase retrieval, affecting the exposition time
during the acquisition, and tomography, affecting the amount
of data required for the reconstruction. Phase retrieval will
not be discussed here as the data used for the experiments
were provided using the method described by Langer in
[Langer, 2008], with an exposition time already close to the
theoretical limit. Although this research will focus on the

Proceedings of MIG’2017 - Magistère d’Informatique de Grenoble 24















tomographic part, with an objective of designing a scalable
algorithm allowing to reconstruct high resolution images of
good quality.
In micro SR CT, Compressed Sensing (CS) [Candes et al.,
2006] has been used to reduce the number of projections
needed for the image reconstruction [Gaass et al., 2013;
Li and Luo, 2011; Melli et al., 2016a; 2016b;
Yang et al., 2015; Zhao et al., 2012]. Among these re-
searches, it is worth to underline iterative algorithms using
Total variation (TV) minimization. These algorithms al-
lowed to use only 40% of the data and still preserve the
higher contrast edges in the images, resulting in a visually
blurry or noisy reconstructed image [Melli et al., 2016a;
2016b]. Research for CS on nano SR CT has mostly been
assessed in the phase retrieval [Liu et al., 2013]. To our
knowledge, no research assessed CS algorithms in nano-CT
reconstruction on bone samples. Moreover, neither micro nor
nano-CT solutions have assessed their scalability.

There are two main contributions in this project: 1)
contribution on the low dose reconstruction, 2) contribution
on the scalability assessment on the proposed algorithm.
We will propose in this paper to approach the CS reconstruc-
tion problem using the minimization of the total variation. To
address to this problem we aim at using the Split-Bregman
(SB) iterative algorithm [Bregman, 1967], allowing an
optimal approximation of TV minimization [Burger and
Osher, 2013].
This algorithm has been used for multiple medi-
cal imaging techniques [Abascal et al., 2011; 2016;
?] and we wish here to apply it to SR nano CT. We will
call along this thesis the proposed algorithm SB-TV-2D for
Split-Bregman with 2D Total Variation minimization.
We assessed the feasibility of low dose SR nano CT by
reducing the number of projections. We measured the effect
of data reduction on the image reconstruction quality on bone
images.

We target a scalable solution by using the PyHST2 func-
tions. Moreover, we foreseen a higher level of scalability by
splitting the bone sample into sub-volumes that will each be
reconstructed in parallel on different nodes of ESRF compu-
tational cluster. With this approach, we aim to reach a recon-
struction time of less than 24 hours.

2 Material and methods
2.1 Data acquisition
The dataset used in the experiments are composed of pro-
jections sinograms of a bone sample acquired in the beam-
line ID19 of the ESRF. The ID19 beam-line is devoted to 3D
imaging in the micro scale. With an energy between 10 and
250 KeV, the beam size ranges between 0.1⇥0.1 and 60⇥15
mm2.
The sinograms used are the result of a post-processing of
phase retrieval described in [Langer, 2008]. Indeed, in or-
der to perform phase contrast imaging, multiple acquisition
of the sample must be done at different distances, and a post-
processing allows to perform phase retrieval and build phase

maps.
The retrieved phase maps of each projection constitute our
data, which corresponds to the Radon Transform of the re-
fractive index that we wish to reconstruct.
The full sample is composed of 2000 projections of size
2048⇥ 2048 with a vertical and horizontal pixel size of 0.12
microns. The acquisition was performed in the range of 180
degrees with an angle between projections of 0.09 degree
and an energy of 33.6KeV . The rotation axis is set at pixel
1043.5 ⇥ 1043.5. The memory size of this dataset is in the
order of 60GB.

The sinogram data of one slice is represented in sub-figure
1a and the slice reconstructed with this data, of size 2048 ⇥

2048 is represented in sub-figure 1b. The fully reconstructed
3D dataset is of size 2048⇥ 2048⇥ 2048.

(a) One slice sinogram (b) One slice reconstruction

Figure 1: One slice of the 3D Micro SR-CT data used for the
experiment

2.2 Compressed sensing formulation
Compressed sensing is a signal processing tool allowing to ef-
ficiently reconstruct a signal. It was first introduced in [Can-
des et al., 2006] in 2006 and ever since has revolutionized
image acquisitions. Thanks to compressive sampling images
can be reconstructed from fewer data.
This method can be used under two conditions: the sparsity of
the image under some transformation and incoherence. The
image is then reconstructed as follows:

min
f

||Wf ||1 such that Ff = p (1)

where f is the image, W is a transformation of f into a do-
main in which it is sparse. The parameter p is the acquired
compressed data and F the transform from acquisition space
to image space. The l1 minimization ||Wf ||1 promotes the
sparsity and the constraint Ff = p enforces the data consis-
tency. In CT, the use of CS in ||Wf ||

n

with n  1 allows to
preserve borders, as ||Wf ||22 cannot preserve borders [Burger
and Osher, 2013].
As first proposed in [Rudin et al., 1992], we defined W = r

which lead to compute the total variation (TV):

TV = ||Wf ||1 = ||rf ||1 =
NX

i=1

|rf
i

| (2)

where N is the number of voxels in the image.
The incoherence assumption holds as previously shown
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[Candes et al., 2006], and an image is generally sparse in the
gradient domain. The two requirements are hence matched.
Although, (1) is a constrained problem and is hence not
straight forward to solve.

2.3 Split-Bregman iterative reconstruction
Scalable algorithms were presented by Presquet et al. for
compress sensing solving using Split-Bregman iterations in
[Combettes and Pesquet, 2011]. This algorithm was used by
Abascal et al. in micro CT [Abascal et al., 2016]. We wish to
describe here the split Bregman algorithm [Goldstein and Os-
her, 2009] which gives a solution to an L1 constrained prob-
lem in an efficient way and will be used in our algorithm to
minimize the L1 norm.

Split Bregman iteration
We wish to solve the constrained reconstruction optimization
problem described in the section 2.2

min
f

||rf ||1 such that Ff = p (3)

The constrained problem expressed by the equation (3) is dif-
ficult to solve directly so it is usually approximated by an
unconstrained problem as:

min
f

||rf ||1 +
µ

2
||Ff � p||22 (4)

The Bregman iteration allows us to solve 3 as a sequence
of unconstrained problems. These constrained problem can
be resolved iteratively as follows:

fk+1 = min
f

||rf ||1 +
µ

2
||Ff � pk||22

pk+1 = pk + p� Ffk+1
(5)

L1 regularization problem
Our compressed sensing reconstruction method is based on
minimizing the total variation. It is hence difficult to min-
imize using standard techniques as TV is not differentiable.
A splitting technique can be formulated to solve this issue,
and we will see how this can be done iteratively with split-
Bregman.
The idea is to ”de-couple” the L1 and L2 parts of our original
problem. We wish to minimize the Total Variation ||rf ||1 of
the image and a weight function H(). Splitting can be done
by introducing new variable and defining a new constraint:

min
f,d

||d||1 +H(f) such that d = rf (6)

Using Bregman iteration we approximate the constraint iter-
ativly:

(fk+1, dk+1) = min
f,d

||d||1 +H(f) +
�

2
||d�rf � bk||22

bk+1 = bk +rfk+1
� dk+1

(7)

SB-TV-2D reconstruction
The isotropic TV reconstruction problem is given as follows:

min
f

||rf ||1 such that ||Ff � p||22 < �2 (8)

where rf = (r
x

,r
y

)f , p represents the projection space,
F the projection operator, f the image domain and � repre-
sents the variance of the signal noise.

fk+1 = min
f

||rf ||1 +
µ

2
||Ff � pk||22

pk+1 = pk + p� Ffk+1
(9)

We fall here into an unconstrained problem which is not
straight forward to solve. In order to get a constrained prob-
lem we will insert a variable such that d = rf .
We can now use the Split Bregman iteration in order to solve
our new problem:

fk+1 = min
f,d

||d||1 +
�

2
||Ff � pk||22 such that d = rf

pk+1 = pk + p� Ffk

(10)
And get to a solution where L1 and L2 elements of our origi-
nal problem are split into two equations:

fk+1 = min
f

µ

2
||Ff � pk||22 +

�

2
||dk �rf � bk||22

dk+1 = min
f

||d||1 +
�

2
||d�rf � bk||22

bk+1 = bk +rfk+1
� dk+1

pk+1 = pk + p� Ffk

(11)

Now it is left to solve the minimization on the fk+1 and
dk+1 operations.

Solution for f
The solution for fk+1 is given by a quadratic problem. We
can hence get the minimum by differenciating and equating
to zero. We then get:

(µFTF + �rT

r)fk+1 = µFT pk + �rT (dk
x

� bk
x

)

Kfk+1 = rhsk
(12)

This can be efficiently solved by using a Krylov lin-
ear solver [Hestenes and Stiefel, 1952; Paige and Saunders,
1975].

Solution for d
The expression of dk+1 in 11 is given analytically. Hence the
solution will be computed thanks to the shrinkage threshold-
ing function:

shrink(x, �) =
x

|x|
⇥max(|x|� �, 0) (13)

so that:

dk+1 = shrink(rfk+1 + bk,↵/�) (14)
where ↵/� represents the threshold parameter.
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f o r k = 1 : n b I t e r a t i o n s
% up da te f k
r h s k = mu⇤FT ( p k )+ lambda⇤Dt ( d�b ) ;

f k = k r y l o v ( r h s k = Kf ) ; % s o l v e s ( 4 . 1 0 )

d = D( f k ) ; % g r a d i e n t o f f k

% up da te x and y
d k = s h r i n k ( d+b k , a l p h a / lambda ) ;

% up da te bregman p a r a m e t e r s
b k = b k +d�d k ;
pForw= F ( f k ) ;
p k = p k + p0�pForw ;

end

Figure 2: Pseudo code in Matlab: Iteration of the SB-TV-2D

Algorithm
The implementation of FB-TV-2D iteration in Matlab is pre-
sented in Figure 2.

2.4 Scalability
The second objective of this algorithm is scalability. This
scalability will be assessed using tools provided by the ESRF.
A software for tomographic reconstruction was developed by
the ESRF and a Cluster is also available. We will see along
this section how to take advantage of these tools.
The objective is to integrate SB-TV-2D to the ESRF recon-
struction methods accessible by using the software PyHST2
and to make it scalable using parallelization on the ESRF
cluster. We will first describe the PyHST2 software and then
present the ESRF cluster capacities.

2.5 Evaluation metrics
Assessment of image quality
The evaluation of the performances was done by executing
different scenarios of reconstruction with different number of
iterations. We defined three metrics to evaluate and compare
the reconstructed images. The aim of these metrics is to com-
pare each reconstructed image to a target. The targets will
be described section 3.1. The first metric is the Root Mean
Squared Error (RMSE) defined as

RMSE =
||f � f̂ ||2

||f̂ ||2
(15)

Where f is the target image and f̂ is the reconstructed im-
age. It is used to evaluate the global error of the image, and
gives an idea of the image noise. But this metric is not suf-
ficient. Indeed, the SB-TV-2D reconstruction method tends
to create patches in the image, these patches are not detected
by RMSE. Two other methods were then used, Strict Arti-
fact Measure (SAM) and Peak Signal To Noise Ratio (PSNR).
The SAM is defined as

SAM = TV (f, f̂) = ||r(f � f̂)||2 (16)
The PSNR is defined as

PSNR = 10 log10
L2

MSE
(17)

Where L is the range of the values of the image pixels and
MSE is defined as follows:

MSE =
1

N

N�1X

i=0

M�1X

j=0

h
f(i, j)� f̂(i, j)

i
(18)

For RMSE and SAM, lower values mean better quality,
when for PSNR, low values mean poor reconstruction quality.

Assessment of the scalability
In order to assess the scalability of the algorithm the com-
putation time for a full data reconstruction will be estimated.
The scalability of the reconstruction is already provided by
the integration of PyHST2 scalable reconstruction calls. But
here we wish to make sure that the reconstruction of a bone
sample can be completed within 24 hours.
To do so, we will estimate the number of PyHST2 calls neces-
sary for an iteration, make different scenarios of paralleliza-
tion and estimate how long each iteration would take. The
metric used for the evaluation will then be the execution time
with an objective of reconstruction within 24 hours.

3 Experimental results and discussion
In order to answer our problematic expressed earlier, we
made two hypothesis:
1) It is possible to use compressed sensing in order to
preserve bone image quality with less data.
2) We can assume that we can make an algorithm which can
be implemented at the ESRF so that using the ESRF software
PyHST2, this algorithm can be scalable and executed within
24 hours.

3.1 Image reconstruction quality assessment
Experiment setting
The experiments were performed in Matlab. We chose to
use Matlab for the implementation of our experiment as the
ESRF implementation has to be done in Octave in order to
be submitted to the Cluster. Running the reconstruction of a
2048⇥2048⇥2048 volume on Matlab is not feasible in prac-
tice. In order to assess the algorithm in simulated data we had
to work with smaller images. We then decided to extract three
targets from our data as displayed in Figure 3.
The first target (sub-figure 3a) represents an osteocyte lacuna,
the second target (sub-figure 3b) represents an osteocyte la-
cuna with calcium balls (healing process and the third target
(sub-figure 3c) represents an individual canaliculis.
These target images were chosen because they represent ac-
tual details we wish to preserve with our reconstruction.

Experiment scenarios
For the experiments, scenarios of Low dose on different tar-
gets were defined. The number of projections ranges from
1/2 to 1/10 of the number required for fully projected recon-
struction. An acquisition is considered fully projected when
the number of projections generated is equal to ⇡/2 times the
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(a) Target 1 (b) Target 2 (c) Target 3

Figure 3: Targets used for the Matlab experiments. Add description

image size.
In our case we performed reconstruction with 1/2, 1/4, 1/7
and 1/10 of the projections. Knowing that our target images
were of size 156 ⇥ 156 we used 125, 63, 36, 25 projections
as displayed in Figure
These reconstructions were performed using FBP and SB-
TV-2D reconstruction methods.

FBP and SB-TV-2D algorithms will be evaluated in
terms of errors measured between the image target and
the reconstruction and by visual inspection. We will also
compare the preservation of edges and feature points with
different number of projections.
The errors are expressed in terms of mean squared error
(MSE), peak signal to noise ration (PSNR) and total variation
(TV), computed between the target image and the recon-
structed image.
The edge preservation will be evaluated in terms of total
variation between the canny edge detection between the
reference Target image and the reconstructed image.

First we will evaluate the classical FBP algorithm which
will be used as a reference and then assess the improvements
that can be brought by our proposed algorithm, SB-TV-2D.

FBP
The expectation of this experiment is that the classical recon-
struction algorithm (FBP) is very sensitive to the variation of
the number of projections.
The errors for the Target 1 are displayed in Table 1. The
number of projections ranged between a half of a fully
projected sample (125 projections) with a 6% error to the
tenth (25 projections) with an error of 11%. The peak signal
to noise ratio raged from 68 to 62. We may note that an
image is considered as good quality with a PSNR ratio above
70dB. The SAM ranged from 6 to 18. This means that with
1/2 of the projections FBP is already considered noisy and
ends up very noisy with 1/10 of the projections.
These conclusion can also be verified visually looking at
reconstructed images Figure 6 as well as post processing
edge detection Figure 7. Without looking at the external
part of the reconstruction (the black part outside of the
circle) we can notice that the reconstruction seems noisier
the less projection we have. And comparing the target we
can notice that even with half of the projections, the edges

are less differentiated, details are lost. This affects the post
processing where we can notice that many edges are not
recovered.

number of projections 1/2 1/4 1/7 1/10
RMSE 6% 7% 9% 11%
PSNR 67.90 66.92 64.17 62.21
SAM 5.70 8.44 14.17 17.95

Table 1: FBP Errors on Target 1

These results allowed us to confirm that FBP reconstruc-
tion is highly sensitive to the number of projections. Alter-
native reconstruction methods are then necessary. We will
evaluate the errors using our proposed algorithm.

SB-TV-2D
Figure 5 displays the evolution of the MSE, PSNR and SAM
of the reconstructed image and the target image at each
iteration. The evaluation results are displayed in the Table 2.
Let us first focus on the MSE, Figure 5a. It is clear in this
plot that each number of projection converges between 150
and 250 iterations. The RMSE ranges from 1% for one half
of the projections to 2% for one tenth of the projections. The
RMSE is also least affected by the number of projections, as
showed in table 3, its variance is about 3 ⇥ 103 smaller with
SB-TV-2D than with FBP.
The maximum PSNR values ranges from 76.75dB for half
of the projection until 83.19dB. These values are globally
higher than the reconstruction using FBP which were the
maximum PSNR used was 67.90dB. The PSNR variance is
also slightly less affected by the number of projection, with a
variance of 6.73% with FBP and 6.01 with PSNR
The minimum SAM ranges from 1.39 to 2.47 the efficiency
ranges between 24% better with the lowest number of
projection, to 14% better with one half of the projections.
With a variance of 0.16 against a variance of 30.57 for
FBP, SAM is about 3 ⇥ 103 less affected by the number of
projections.

Visually, looking at 6 and 7 we can see that until 1/4 of
the projections most of the important details are preserved.
And then, as the number of projection decreases, the recon-
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(a) Profile of the complete line

(b) Constrast on the osteocyte lacunae

Figure 4: Profile of the mid-line of the images

number of projections 1/2 1/4 1/7 1/10
RMSE 1% 1% 2% 2%
PSNR 83.19 81.56 79.11 76.75
SAM 1.39 1.69 2.07 2.47

Table 2: SB-TV-2D best error evaluations on Target 1

Reconstruction method RMSE PSNR SAM
FBP 4.92% 6.73 30.57
SB-TV-2D 1.97⇥ 10�3% 6.01 0.16

Table 3: Errors varience

structed image become smoother, and real edges are lost and
false edges appear.
Looking at the horizontal mid-line of the target 1, we can
tell the difference of accuracy between 1/4 and 1/10 of the
projections. With 1/4 of the projections local peaks are pre-
served with 1/3 of the projections the reconstruction is sub-

ject to smoothing.

RMSE
The RMSE measures the average error. The results showed
that the SB-TV-2D algorithm, with values ranging between
1% and 2% was less affected by the number of projection
than the FBP reconstruction which RMSE ranges between
6% and 11%. In [Melli et al., 2016a] and [Melli et al., 2016b]
Douglas-Rachford Splitting was used with TV, which has
been shown to be equivalent to Split-Bregman TV [Setzer,
2009]. They evaluated the Relative Error (RE), equivalent to
the RMSE on canine prostate soft tissues. In [Melli et al.,
2016b] The best reconstruction of their algorithm allowed to
reconstruct the images with a RE of approximation 6% with
50% of the projections. Their worst reconstruction RE was
8% for 20% of the projections. On a femoral bone sample,
in [Melli et al., 2016a], their algorithm was assessed with
a number of projection ranging only between 5% and 15%.
With 10% of the projections they reached a RE of 15%.
Overall the SB-TV-2D has a very satisfying performance in
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(a) RMSE (b) PSNR (c) SAM

Figure 5: SB-TV-2D errors on Target 1

terms of RMSE. Our proposed algorithm showed to be up to
5 times more efficient the the classical FBP reconstruction.
Our results were better than those presented in [Melli et al.,
2016a] and [Melli et al., 2016b] but we must note that our
scenarios are based on removing projections with low noise
(Gaussian noise of 1% of the maximum of the image). Our
results are simulated from real images and further assessment
is needed on real data.

PSNR
The PSNR measures the noise of the reconstruction compared
to the target image. We may note that this metric can measure
the smoothness of the reconstruction. Our algorithm recon-
struction ranged between 83.19 and 76.75 dB. Such results
are expected as we use TV minimization within the algorithm.
We may note that this metric is subjected to the highest vari-
ance of 6.01. This variance results in the fact that with low
number of projections, the reconstruction is smoother, as dis-
played in the reconstructions profiles in Figure 4. However,
76.75 dB is already a good signal to noise ratio and largely
greater that the PSNR of the FBP reconstruction which never
reached 68dB in our experiments. Our results are close to
those presented in [Melli et al., 2016b] for the Shepp-Logan
phantom with a PSNR of 74.78dB for 10% of projections,
82.60dB for 20% and 84.83dB with 40%, on the other hand,
for experimental data they reached noisier reconstructions
with a PSNR ranging between 28.49 and 31.98 for 20 to 50%
of projections. On bone sample in [Melli et al., 2016a] a
PSNR of 30.74dB was reached.
The SB-TV-2D algorithm comes with a very satisfying sig-
nal to noise ratio. These results are far more promising than
those brought by FBP. The results also seem highly superior
to those found in [Melli et al., 2016a] and [Melli et al., 2016b]
for experimental data. However this metrics is affected by the
smoothness of the reconstruction, in this context we may re-
call that by comparing the image profiles in Figures 4a, 4b,
and 4 that our target sample is considerably smoother than
theirs, which can explain the difference of ratio. Nonetheless,
our results are similar to those found on phantom data pre-
sented in [Melli et al., 2016b]. We can then imagine that on
noisier data we would have similar results than for the exper-
imental data in [Melli et al., 2016a] and [Melli et al., 2016b].
Although the low values of PSNR in [Melli et al., 2016a] and

[3] highlights the smoothness induced by the TV minimiza-
tion.

SAM
The SAM measures the presence of artifacts in the recon-
struction. Our experiments allowed showed that SB-TV-2D
does not produce many artifacts. The value of the SAM
ranges between 1% and 2%. The FBP reconstruction showed
SAM values ranging from 6% to 18%. In the end, using SB-
TV-2D allowed to divide the SAM by 6 for 50% of the projec-
tions and by 9 for 10% of the projections. We can then state
that this method reduces significantly the presence of artifacts
for low dose reconstruction.

Visually
Visually in Figure 6 we notice that we have a perfect recon-
struction by using SB-TV-2D with 25% of the projections,
and have a smooth reconstruction with the stronger details
still present with 10% of the projections. FBP reconstruction
using 50% of the projections looks blurry and from 25% of
the projection becomes noisy, and with 10% of the projec-
tions lost most of the details.
Looking at the edge preservation on figure 7, we can notice
that most of the edges of the image are preserved by using SB-
TV-2D until 25% of the projections, but that the canaliculis
present to the right of the osteocyte lacunae are still present.
With FBP most of the texture edges are already lost with 50%
of the projections and with 14% of the projections many false
edges appear, and finally with 10% of the projections only the
osteocyte lacunae and one canaliculis contours remain.
Taking a visual comparison, SB-TV-2D allows a perfect re-
construction with 25% of the projections and has results of
significantly better quality than the classical FBP method.
The proposed algorithm leads to low dose reconstruction of
better quality and preserves more details.

With two of our metrics we showed thanks to these
experiments that 2 of our metrics were about 3 ⇥ 103 less
affected by the number of projections. And with scores of
RMSE equal to 1%, of PSNR above 80, of SAM bellow 2,
and based on visual inspection, we can consider that it is
possible with SB-TV-2D to reduce the number of projections
by 4 and still get an acceptable reconstruction for the first
target.
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Figure 6: Comparision of SB

Figure 7: Canny edge detection

We then fixed as objectives on the evaluations for the two
other targets with 1/4 of the projections, a reconstruction
with a RMSE of 1%, a PSNR above 80 and a SAM below
2. The results are displayed in table 4.
Visually, looking at Figure 8 we can compare SB-TV-2D and

FBP reconstruction performances with 1/4th of the projec-
tions. Almost no difference can be noticed between SB-TV-
2D and the fully projected FBP, when FBP with 1/4th of
the projections misses some details and has an image which
seems noisy.
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Metric Targer 1 Target 2 Target 3
RMSE 1% 1% 1%
PSNR 83.19 80.02 81.91
SAM 1.39 2.01 1.60

Table 4: SB-TV-2D evaluation for 1/4 of the projections

3.2 Scalability results
We will now verify our second hypothesis regarding the scal-
ability of the algorithm. We may recall that the previous ex-
periments were performed in Matlab.

Experiments setting
PyHST2 is a software for tomographic reconstruction. In or-
der to make our reconstruction more efficient, we need to
change our reconstructions and projection calls. With respect
to the reconstruction described in section 2.3, multiple for-
ward and backward projection calls will be done per itera-
tions. The objective of this experiment is to estimate the exe-
cution time of SB-TV-2D if it was integrated as a function of
PyHST2 software. We will then first estimate the number of
function calls necessary for a reconstruction and then assess
the execution time of the algorithm on the ESRF computa-
tional cluster. In the previous section we state that using the
proposed algorithm with 1/4th of the projection leads to a
loss less reconstruction. As it is our objective, we will assess
the execution time for a low dose reconstruction using 1/4th
of the projections.

Estimation of the number of function calls
In order to estimate the execution time of the SB-TV-2D algo-
rithm we had to estimate the number of PyHST2 call during
the reconstruction of a experimental sample.
We decided to reduce the dose by 25% by using 1/4th of the
projections. Looking at the Figure 5 we can see that with this
specific number of projections SB-TV-2D converges within
200 iterations.
Yet, as presented in the pseudo code in Figure 2 for each it-
eration one call of F and FT is done. This means that for
each iteration two calls of PyHST2 will be done. So far we
get to 400 function calls. But most of the PyHST2 calls are
done during the execution of the Krylov solver. Indeed this
solver is iterative and each of its iterations required a call to
F and FT . In average, for 200 iterations of TV-SB-2D, the
Kyrlov call requires 10 iterations. We then reach a number of
PyHST2 function calls of 4400 for a low dose reconstruction
as each function calls F and FT are called 2200 times.
The dataset used to evaluate the speed of the algorithm is the
complete bone volume described in section 2.1. This will al-
low us to evaluate the reconstruction of an actual experience
done at the ESRF.

Parallelization results
The speed of the reconstruction with different parallelization
scenarios are presented in Table 5. These result show that
scalability of the algorithm is of high importance to reduce
the computation time. By parallelizing the reconstruction on
10 different sub-volumes, the execution time can be about
7 times faster. The minimum reconstruction time was of

32.39h. We then reach a reconstruction within 1.35 days,
which is close to our objective of one reconstruction within
one day.

Table 5: Execution time of F and FT PyHST2 calls with
different parallelization factors. A parallelization factor of 2
will mean that the volume is split into two and the function
calls are executed in two parallel nodes on the ESRF compu-
tational cluster

Function
call

Parallelization
factor

One call
(minutes)

All reconstruction
calls (hours)

5*F 1 1.16 42.53
2 0.65 23.83
4 0.4 14.67
8 0.28 10.27

10 0.23 10.27
5*FT 1 4.62 169.40

2 2.58 94.60
4 1.53 56.10
8 0.77 28.23

10 0.65 23.83
5*F + FT 1 5.78 211.93

2 3.23 118.43
4 1.93 70.77
8 1.05 38.50

10 0.88 32.39

We assess the scalability of the algorithm aiming to reach
a reconstruction that would take less than a day. To do so we
used PyHST2 software and parallelized the execution of the
algorithm on the ESRF cluster. The results are displayed in
the Table 5.
We showed that by parallelizing on the ESRF computational
cluster it was possible to reduce the computation time by 7.
Yet, even so we reached a best computation of 32h. Even
though this is above the 24h objective it is still a very good
result as it is in the order of one day.
In order to reach the 24h reconstruction we can parallelize
further the reconstruction, and optimize the algorithm. This
computation time is long because too many projection (F and
FT ) calls are required per iteration of SB-TV-2D. In aver-
age for a 200 iteration SB-TV-2D reconstruction, the Krylov
solver used to solve the equation (12) requires 10 inner itera-
tions. This means that in order to solve (12) we have to make
10 times more projection.
The algorithm could be optimized in two different ways. The
Krylov solver can be modified. It is currently based on linear
conjugate gradient. Preconditioned conjugate gradient could
be used and the threshold of the iterative solver can be opti-
mized. The second way is to take only few steps with steepest
descent and leave the rest for the next Bregman iteration.
The SB-TV-2D algorithm allows to perform low dose nano

CT reconstructions of higher quality. The number of projec-
tions can be divided by 4 and still get a perfect reconstruc-
tion. With lower number of projection the reconstruction is
still not affected by noise and artifacts and most of the impor-
tant features of the image are preserved. With FBP the low
dose reconstruction are quickly becoming noisy and most of
details are lost. In all of the metrics used this reconstruction
had significantly better results than the FBP and allowed bet-
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Figure 8: Reconstruction of all targets with 1/4th of the projections

ter reconstruction quality than the state of the art methods.
As the dose is decreased below 4 times, the reconstructed im-
age tend to be smoother than the target images. This lim-
itation affects the ESRF data less as the reconstructed data
tend be smoother than those used in the state of the art.
Other methods in terms of regularization functional can be
used based on the SB method one can easily change TV.
Other works proposed to use dual complex wavelet shrinkage,
non-local TV has been solved using Bregminized approach
[Zhang et al., 2010].

4 Conclusion
This project proposes SB-TV-2D algorithm for low dose
SR nano CT reconstruction. This low dose reconstruction
needs to be able to reduce the number of projection with-
out affecting the image quality. Reducing the number of
projections is important in order to reduce the invasivity of
SR CT acquisition on the bone sample. This could have a
direct effect on the image quality by reducing the artifacts
that appear due to long acquisition time and high dose used
during the experiment.
This research was motivated by two main objectives: 1) to
present a low dose CT reconstruction of bone sample which
does not impact the reconstructed image quality, 2) to make
an algorithm that can be implemented at the ESRF to make
the reconstruction scalable to reach the order of execution
time should be one day.
We proposed as solution for low dose compressed sensing re-
construction based on SB-TV-2D algorithm. The CS problem
is expressed using a constrained total variation minimization

problem which is difficult to solve. The Bregman iteration
is used to give an approximate of this solution iteratively,
splitting L1 and L2 elements of the problem.
The experimentation showed that truncated under-sampled
data could be reconstructed accurately using up to 1/4th
of the projections and the higher contrasts could still be
preserved with 1/10th. The SB-RV-2D reconstruction
showed to be less affected by the number of projection than
the traditional FBP reconstruction and had better results than
the state of the art solutions.
An implementation using PyHST2 software for tomographic
reconstruction provided by the ESRF made this algorithm
scalable and compatible with ESRF experiments data. We
also note that using the ESRF computational cluster it was
possible to make this algorithm more scalable by paralleliz-
ing the reconstruction over multiple sub-volumes. This way,
the computation could be done within 32h by parallelizing
the execution on 10 different sub-volumes. This is in the
order of one day and is hence close to our objective of a
reconstruction within a day.
Overall the results were promising. Yet some further
validation is necessary. The reconstruction quality was
assessed on truncated image for sake of feasibility on
Matlab. We still need to reconstruct real complete data
from the ESRF and verify if we get similar results. The
speed of the reconstruction could also be improved by using
alternatives to the conjugate gradient Krylov solver or even
using different approach such as Bregmanized reconstruction.
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Abstract

High performance computing (HPC) is moving
from the Petascale platforms to the Exascale ones,
meaning an increasing amount of computers are
involved in high performance centers. Moving to
the Exascale is a needed evolution to perform more
complex simulations but it brings many challenges.
Two of those challenges are the increased amount
of computer failures and a computational power far
beyond the I/O capacities. Workflow managers are
large pieces of software that couple steps together
in order to perform simulations. Usually this cou-
pling is done by using disks I/O. Nowadays, simu-
lations I/O are saturating HPC centers. To allow the
next platform generation to be fully used by work-
flow managers, new configurations and organisa-
tions need to be applied. At their core, such config-
urations require the ability to partition the resources
inside a job allocation, execute commands in those
partitions, build communication links between pos-
sibly distinct programs, handle reconfiguration and
failure events reliably, and let the user centralise
this information to take decisions. To solve these
issues, we are developing a scalable execution man-
ager. The core idea of our implementation is to use
aggregates of nodes as an execution unit. Linking
those aggregates together in a hierarchy allows us
to have a better scalability and to offer fine grained
feedback over executions. Our solution uses groups
to organise execution and to provide control plane
communications between remotely executed pro-
grams. Control plane communications bring a new
way for InSitu applications to plug their different
parts together. Our solution also aims at providing
sufficient functionalities to be used in a wide range
of domains – already using remote execution tools.
Integrating our solution into an InSitu application.
This integration confirms that our approach is rele-
vant, providing to it ways for its different sub parts
to discover each others on an execution plan.

I would like to express my sincere gratitude to
Olivier Richard, Guillaume Huard and Swann Per-
arnau for accompanying me during this internship
and for their help and comments in reviewing this
report ; to Théophile Terraz for his help understand-
ing Melissa’s code ; and to Françoise and John Bar-
ber for their precious corrections.

Contents

1 Introduction and motivation 3

2 State-of-the-Art 4
2.1 Context . . . . . . . . . . . . . . . . . . . . 4
2.2 Remote execution tools . . . . . . . . . . . . 4
2.3 Tasks/Jobs Managers . . . . . . . . . . . . . 4
2.4 Workflow Managers . . . . . . . . . . . . . . 4
2.5 DevOps . . . . . . . . . . . . . . . . . . . . 4
2.6 Reproducible Search and Tools . . . . . . . . 4
2.7 Common Requirements . . . . . . . . . . . . 5
2.8 Related Work . . . . . . . . . . . . . . . . . 5
2.9 High Level Interpretation . . . . . . . . . . . 5
2.10 Remote Execution and Platform Control . . . 6
2.11 Execution Management and Fault Tolerance . 6
2.12 Code coupling . . . . . . . . . . . . . . . . . 6
2.13 Summary . . . . . . . . . . . . . . . . . . . 7

3 Scalable Execution Management on Hierarchic
Group Organisation 9
3.1 Design . . . . . . . . . . . . . . . . . . . . . 9
3.2 Scalable Groups Hierarchy . . . . . . . . . . 9
3.3 Control Plane Communications . . . . . . . . 9
3.4 Propagation of Standard System Feedback . . 9
3.5 Chosen technologies . . . . . . . . . . . . . 9
3.6 Implementation . . . . . . . . . . . . . . . . 10

4 Integration on Melissa 19
4.1 Melissa . . . . . . . . . . . . . . . . . . . . 19
4.2 Melissa’s Communication . . . . . . . . . . 19
4.3 Solving the Connexion Issue . . . . . . . . . 19

Proceedings of MIG’2017 - Magistère d’Informatique de Grenoble 35





5 Discussion and Further work 20
5.1 Simulation Perturbations . . . . . . . . . . . 20
5.2 Linux Oriented . . . . . . . . . . . . . . . . 20
5.3 Auto Propagation . . . . . . . . . . . . . . . 20
5.4 Reliability . . . . . . . . . . . . . . . . . . . 20
5.5 Communication Bottleneck . . . . . . . . . . 20
5.6 Extra Parameters . . . . . . . . . . . . . . . 20
5.7 Performance Analysis . . . . . . . . . . . . . 20

6 Conclusion 21
*

Execution Management for Exascale Machines and InSitu Applications Thomas Lavocat

Proceedings of MIG’2017 - Magistère d’Informatique de Grenoble 36



1 Introduction and motivation
As platforms approaching Exascale, systems are expected to
provide hundred of thousands of computational units, each of
them running thousands of execution threads. Having such a
number of computation units leads to several issues.

On one hand, large-scale simulations are producing an
ever-growing amount of data which is already saturating the
disks bandwidth of current HPC centers. With the next gen-
eration platforms, researchers estimate than 1% of the data
produced by the simulation will be stored on stable stor-
age [Dreher and Peterka, 2016]. Post processing data anal-
ysis will no longer be an option. InSitu processing is a solu-
tion that, instead of using disks as a intermediary between
different programs, transfers data when it is still in mem-
ory. Solutions like Melissa [Terraz et al., 2016] can consume
experiment results on the fly in 1hr 30min, where it would
need more than 10hrs just to read data from a conventional
disk. Melissa is a non-common way to perform processing
on HPC computers. It requires client/server communications,
daemons, and a lot of small different jobs, all connected to
each other. This system can be qualified as highly dynamic
and has special needs. Those needs are not properly cov-
ered by the common message passing interface (MPI) and
Melissa brings its own solutions to couple clients and servers.
Even if it is an already working project, the way clients are
discovering the server execution node needs to be improved.
Researchers from PETS-C1 have troubles in launching and
monitoring machine learning and big data simulations. Their
applications focus on wide parameter exploration of machine
learning applications. In those configurations, depending on
the parameters, applications can never converge or simply
crash. Their applications need to have a constant feedback
over the running code to detect failures and also to have a way
to change at run-time parameters to correct potential prob-
lems. To change parameters at run-time an execution must be
contactable. To our knowledge no current platform exploita-
tion system is providing such communications facilities.

On the other hand, tools that configure, validate states, and
exploit those systems, need to be highly scalable and failure
resistant. On current High Performance Computing (HPC)
platforms, systems are experiencing failures every few days :
in the next generation, it will be several times an hour. To
couple simulations, most of the current applications are using
MPI. MPI is known not to be failure resistant. A single node
failing takes down the entire execution. To avoid restarting
from scratch on every problem, MPI applications can period-
ically checkpoint their states on persistent storage. If the ap-
plication fails during its execution, it will be restarted using
the last valid checkpoint as a starting point. Check-pointing
and restarting is still possible, even with a MPI application ex-
ploiting an entire Petascale platform. Because of the failing
ratio it will not be possible on an Exascale. Restarting many
times an hour the application would lead to an ever-ending
loop of checkpoint recovery without doing any proper com-
putations. Using something else than MPI to couple applica-
tions is a solution to enable exploiting an entire Exascale plat-
form, for instance, by having a global simulation made of sev-

1http://www.mcs.anl.gov/petsc/

eral steps independent of other’s failures. To our knowledge,
such a solution is not available, and to be built, it will require
a daemon oriented approach to control computers. Daemons
are not commonly used because they tend to impact running
simulation with some noise, but as platforms are gaining in
complexity with more cores, new configuration are available
to reduce the impact on simulations. The Argo project2 is
currently developing an operating system to exploit those Ex-
ascale platforms. This OS exposes light-weight containers to
be attached to some cores allowing control programs to run
without too much impact on the simulation. Such a solution
aims at providing dynamic reconfiguration of computational
units to host simulation code. Each computer of the simula-
tion need to receive the same container configuration and at
Argonne’s researchers have not found a proper remote execu-
tion tool to apply dynamically their solution.

To address the next generation issues, we propose a solu-
tion which integrate a notion of resources partitioning and ag-
gregation. Computational resources are aggregated in groups
that can be defined on the fly as opposed to more static solu-
tions. Partitioning in groups allows us to apply the same con-
figuration on every resource within a group, making a group
a container for configuration and execution. Our groups are
hierarchically organised and can exchange messages. As a
group has a constant contact over its computation nodes, and
as a group can receive messages, we can apply at run-time
reconfiguration over running simulations. By providing com-
munication capabilities between remotely executed programs
our solution can provide code-coupling capabilities. Groups
also provide units for failure resilience by gathering every in-
formation of their resource. A group handles failures inside
its resources set and thus can forward information to higher
levels in the group hierarchy. The information gathering pro-
vides a constant feedback to the upper layer and enables a
user to take apply failure resistant strategies. Our solution
uses a remote execution tool as a basic layer. Initially de-
signed to administrate platforms, remote execution tools are
a handy way to contact computation nodes and are used in
many contexts. Thus they are used in a wide variety of tools
to exploit and administrate computers.

Preliminary results shows that our solution has a linear cost
and a constant overhead regarding the remote execution tool
our solution embeds. We present in our experiments an anal-
ysis of the cost to launch groups which also has a linear cost.

The rest of this report focus on the building of our tool and
is organised as follows. We will first go through the state of
the art, then we describe our design and implementation. We
will evaluate our solution on Melissa, then we will discuss is-
sues, have a word on further work, and then finally conclude.

2http://www.mcs.anl.gov/project/argo-exascale-operating-
system
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2 State-of-the-Art
2.1 Context
Many domains are intensively using remote execution en-
gines : Workflow managers, tasks and jobs schedulers, De-
vOps, and reproducible research. Figure 1 shows a graphi-
cal representation of how those fields are related and table 1
summary the extracted functionalities we want to be able to
provide.

2.2 Remote execution tools
The core activity of a remote execution tool is to make distant
nodes execute programs. Those programs can be configura-
tion tools in order to prepare a platform for a specific execu-
tion, simulation/programs to be run or clean-up programs to
clean the computation units after executions. The most sim-
ple way to create a remote execution tool is to use a script
looping over an ssh command, making any computer in the
list execute a specific command. As this processing can be
heavily parallelised, one can use a sliding window in order to
work on x connections at the same time. A great majority of
tools are doing this, but it as been proved inefficient and a dis-
tributed mechanism is more profitable. A distributed mecha-
nism is one that uses particular nodes on the network in order
to increase the parallel window. Usually those nodes are also
in the bucket of those used for the remote execution. In the
remote execution field, those specific nodes hold a running
daemon running the same code as the root one and there are
different strategies to start the daemon on the remote nodes.
The daemon can be either always running on some key nodes
and contacted when a remote execution is needed or can be
started on demand. For those that are started on demand, two
strategies are applied. Or the remote execution tools send its
code on the distant node as an extra step or the code is al-
ready installed on the remote computer. The self-deploying
mechanism provides strong independence regarding the re-
mote computer. Lesser configuration is needed on the remote,
and, better the tool is portable and provide flexibility.

Many improvements have been made in the literature and
two main tools have been built. Clustershell [Thiell et al.,
2012] and Taktuk [Claudel et al., 2009] are made to offer
good properties such as scalability, reliability, efficient re-
mote command execution, results gathering and other. Thus
we will not present tools like pdsh [Claudel et al., 2009] that
are less efficient.

2.3 Tasks/Jobs Managers
Centralised or distributed resources and tasks managers are
tools used to manage large platforms. They come with
scheduling capabilities and their purpose is to exploit compu-
tation nodes, making scheduling, execution, and monitoring.
Those tools eventually use execution engines to contact and
make computers execute jobs.

2.4 Workflow Managers
A workflow is the automation of a process [Liu et al., 2015].
There are two kinds of workflows : business and scientific
ones. Business workflows are task-oriented and Scientific
workflows are data-oriented. Business workflows are a set

of activities linked together in order to optimise and orches-
trate execution. Scientific workflows are used to model and
run experiments on computational resources. The most gen-
eral representation of a workflow is the Direct Acyclic Graph
(DAG) which is a graphical representation of the tasks to ex-
ecute. DAGs are translated into tasks and later scheduled by
an external scheduler. Workflow managers are large pieces of
software made of several layers : presentation, user services,
workflow execution plan generation, and execution [Liu et al.,
2015]. The three firsts layers are used to prepare the exe-
cution plan that will be and compiled optimised before the
execution layer. The execution layer takes care in the general
case of the scheduling, tasks execution and the fault tolerance.
Fault tolerance can be classified in two kinds, proactive and
reactive [Liu et al., 2015]. Reactive failure tolerance is about
relaunching failed simulations. Proactive failure tolerance is
about redundancy to handle possible failures. As computa-
tion becomes more and more complex on supercomputers,
workflows have to deal with more and more steps and need
underlying layers able to deal with this increasing amount of
work. As examples of workflows we can find Pegasus3, Tav-
erna4, Kepler5, DIET6 and others [Deelman et al., 2015].

2.5 DevOps
DevOps is a practice involving fast and flexible development
and platform administration [Zhu et al., 2016]. A DevOps has
to efficiently integrate development, delivery, and operations
with fluidity between those separate competence fields [Ebert
et al., 2016][Zhu et al., 2016]. They are using a lot of tools
in order to achieve those tasks, from automatic tests bench,
to automatic deployment and reconfiguration to achieve very
short development cycles. In this field, cookbooks are used to
pilot orchestration tools like Ansible7, Puppet8, Chef9 among
others [Liu et al., 2016]. Those tools are remote execution
programs by themselves with flavours or policies dedicated
to them. An interesting idea from the DevOps field is the
philosophy deifying infrastructure as data. The physical layer
is abstracted. And we can use infrastructure the same way
that we use software [Johann, 2017]. Important points of the
DevOps field are traceability and auditability. [Johann, 2017]

2.6 Reproducible Search and Tools
In reproducible research, the key idea is to have a tool
able to understand a procedure and relaunch it every time
it is needed, tools like Expoi10, Plush/Glush11, Execo12,
XPFlow13 among others [Buchert et al., 2015]. All of those
tools are execution engines plus some policies that make them

3https://pegasus.isi.edu/
4http://www.taverna.org.uk/
5https://kepler-project.org/
6http://graal.ens-lyon.fr/diet/?page_id=551
7https://www.ansible.com/
8https://puppet.com/fr
9https://www.chef.io/chef/

10http://expo.gforge.inria.fr/
11https://www.planet-lab.org/
12http://execo.gforge.inria.fr/doc/latest-stable/
13http://xpflow.gforge.inria.fr/
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attached to specific kinds of platforms. Unfortunately, for
some authors, those tools suffer from coupling problems.
They are too attached to some grid philosophies to be used
in a more general way. And some researchers tend to use
their own scripts for remote execution[Stanisic et al., 2015].

2.7 Common Requirements
From workflow managers, DevOps, tasks/jobs mangers, re-
producible research, and InSitu applications, we can extract a
list of specific needed functionalities. We will briefly present
those here and summarise them in the table 1.

High Level Interpretation
High level interpretation mean to offer the final user "user
friendly" interfaces to setup its execution plan. A high level
interpretation language can either be a graphical view of an
execution as a Direct Acyclic Graph (DAG) or a description
using a Domain Specific Language (DSL). The DAG Inter-
pretation consists of extracting a list of steps to execute, to
validate their coherency, and to give them to an underlying
layer able to schedule the steps as tasks/jobs. Having user
need validation. Input validation means for instance to com-
pile user entry to ensure termination of its program or its cor-
rectness.

Remote Execution and Platform Control
Controlling a platform is knowing every characteristic of a
range of computers, to have control of them, such as, reboot,
making configurations, to be able to exploit them with some
job scheduling. Or to expose API for a tool to discover the
platform in order to ask resources reservations. Job and Task
scheduling is having a list of jobs/tasks to process, to choose
the right place at the right time to execute them. Complex al-
gorithms are used to optimise user waiting time and platform
utilisation. Jobs schedulers use specific platforms support
to be able to make node reservation or job monitoring. Plat-
form managers can expose Resources discovery APIs to help
other programs to make reservations and to schedule tasks.

Execution Management and Fault Tolerance
At a point, executions need to be managed. Results Analy-
sis allows a user to visualise using tools its execution results.
Interactive Execution helps the user to debug his applica-
tions. Provenance tracking allows one to gather informa-
tion about every configuration and hardware details on his
execution. It is used by computer scientists to understand im-
portant impacting parameters. For programs to be executed,
specific environments sometimes must be setup. Often used
by tasks/jobs managers in order to prepare nodes before exe-
cution, verification and configuration is checking the state
of a computational resource and configuring it.

Platforms and executed codes may suffer from failures
such as instabilities or bugs. Running large code on HPC
centers may take several days of computation and cannot be
restarted from scratch at every problem. Solutions are made
to provide fault tolerance. Checkpointing is a solution that
periodically saves the state of the simulation on disk. Upon
crashing, the simulation will be restarted from the last valid
checkpoint. Redundancy is another way to be fault toler-
ant. Redundance supposes that an execution is made several
times, then, if one fall other can still be used.

Code Coupling
Due to the increasing complexity of computations and to re-
duce disk usage, people are focusing nowadays on InSitu
computing. InSitu means "in place", which in the simulation
context means to keep the data close to its production source
and not to use a slow intermediary like disk storage for in-
stance. Those techniques consist in coupling existing codes
in order to transit information when they are still in memory.
Bredala [Dreher and Peterka, 2016] is a InSitu middleware
enabling simulations coupling with N to M patterns. Bredala
is using MPI as its communication layer to multiplex simula-
tions. MPI is not dynamic, and simulations cannot be added
on the fly to an existing coupling. This problem is highlighted
by Bredala’s author. Solutions like Melissa bring new ways
with client/server patterns to multiplex simulations.

2.8 Related Work
We will focus this related work using the required function-
alities highlighted in the previous section.

2.9 High Level Interpretation
High level interpretation helps users to translate their wishes
to script a remote execution engine. For instance, work-
flow managers translate DAGs to execution engines. The pa-
per [Deelman et al., 2009] gives a good overview of the ex-
ecution model for workflow managers. Pegasus maps work-
flows on different targets like, PBS, LSF, Condor, and indi-
vidual machines. Pegasus uses the DAGMan workflow en-
gine which interfaces to Condor scheduling queues. From
the DevOps world, Ansible, Puppet and Chef [Liu et al.,
2016][Ebert et al., 2016] are configuration management tools,
all working with recipes. Those recipes are sometimes writ-
ten in DSL languages, or sometimes directly in a program-
ming language (ruby for Chef). Due to their file-based con-
figuration files, they are static tools made for administration
purposes. Thus, if the group notion is embedded in those DSL
it is only made to serve general administration purposes. For
instance, a bunch of computers will be dedicated to run data-
base software, another bunch will be dedicated to run web
servers. Computers are not intended to move from a group to
another quite often. For reproducible research, domain spe-
cific languages (DSL) are often used as an interface for the
user. This is the case of EXPO, OMF, or XPflow per instance.
Plush/Glush, requires a XML configuration file, which is not
far from a DSL. Those tools are made to expose a research
oriented API. They provide facilities to interact with tasks
and resources managers, making them platform dependent.
For the rest of the interpretation, the remote execution script,
is mainly made of command line like Taktuk and clustershell.
As for Ansible, Chef and Puppet Clustershell which embed a
notion of group but need to be statically declared in configu-
ration files. TakTuk is more in the Unix philosophy, a Swiss
knife understanding complex command lines or interpreting
its standard input to receive commands.

Command line tools present the advantage to be more sim-
ple to interface with. Tools asking for static configuration
files to run may impact the dynamism of the tool we want to
build. We would prefer a tool interpreting commands at run-
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time on its standard input. Expo shows that it is possible to
interpret DSL and to translate it over command line tools.

2.10 Remote Execution and Platform Control
OAR [Capit et al., 2005], developed at LIG, uses Tak-
tuk [Claudel et al., 2009] to remotely contact nodes and pro-
vide a strong independency between OAR and the computa-
tion nodes. Taktuk is used to deploy images on nodes and
to make deep configuration of the software stack on each
computation node. Slurm [Yoo et al., 2003] another task
manager uses its own daemon-based architecture to control
computational node. Slurm is more administration dependent
then OAR as it needs to be installed on each computational
node. Flux [Ahn et al., 2014] asks the question of another
way to manage HPC centers with a scalable distributed ap-
proach. Flux offers job scheduling and execution and a way
for launched programs to access easily a distributed data base,
that may be used as a way for them to communicate. Flux
uses a tree-based topology to communicate between daemons
using Zmq14. In order to be scalable, Flux’s distributed ap-
proach seems natural. For Slurm – and for clustershell –,
having a installed daemon on each node increase the adminis-
tration cost of the platform. For Clustershell, not every node
needs to be installed in advance, only group leaders. We still
tend to prefer the OAR control on nodes using TakTuk as it is
mostly an administration less tool. Ansible also only requires
an ssh connexion to configure nodes. Like Flux, from a scal-
ability point of view Puppet is an interesting tool, because it
seems to be able to use a tree-based communication layer.

2.11 Execution Management and Fault Tolerance
In order to manage execution, remote execution tools need
to gather information about executions. It is done depending
on the needs of the upper layers. DAGMan used by Pegasus
does not interact with jobs independently but reads the logs
of the remote execution engine to keep track the status of the
jobs. Ansible, Puppet, and Chef suffer from a lack of con-
trol of the execution cycle. And they do not collect execution
results [Buchert et al., 2015]. They only offer information
about the success or the failure of a step. For reproducible
research, Expo, XPFlow, and Execo three related tools that
use Taktuk as a base layer to contact nodes and execute com-
mands, thus making those able to have a fine grain control
over executions. Fine grain control enables message sending,
standard input control, and life-cycle control of a remote pro-
cess. More closely, TakTuk and Clustershell, are two highly
parallel remote execution engines able to execute commands
on remote computers and gather execution results. Taktuk
gather every command results and node status to the its root.
This feedback gathering is important to take decisions on a
remote execution. Current workflow systems’ fault tolerance,
exception handling and recovery are ad hoc tasks undertaken
by individual workflow designers rather than being part of the
systems themselves. Triana passively warn the user when an
error occurs and lets him debug the workflow. Using a smart
re-run feature it can avoid unnecessary computation. Like Pe-
gasus, Askalon supports fallback, task-level recovery, check-

14http://zeromq.org/

pointing, and workflow-level redundancy. Plush/Glush has
the capacity to manage failures, through a constant stream of
information from every node involved. Taktuk detects nodes
failure and keeps a constant feedback about executed pro-
grams. Flux uses Zmq [Hintjens, 2011] as a communication
layer between its nodes. Zmq is a high level communication
library that provides some glue around TCP to make it more
reliable. It also provides high level communication patterns
that ease the development of distributed applications.

To apply different fault tolerance strategies, one needs at
least to detect faults. Having a constant feedback at a ba-
sic layer allows decision taking for fault tolerance. It brings a
failure detector by analysing timeouts on communications be-
tween nodes and by analysing remote execution return code.

2.12 Code coupling
Code coupling is a strategy to make InSitu programming. It
avoid useless writings and disk use to transfer data directly
from a program to another. Bredala [Dreher and Peterka,
2016] is an in situ middleware offering split and merge ca-
pabilities for data structures. It relies on MPI to connect dif-
ferent programs and this makes its weakness regarding flexi-
bility. FlowVr is a virtual reality middleware with interesting
design. Each node embeds a daemon to which sub-processes
will register in order to communicate with others through an
event-based programming model. FlowVr relies on a separate
launcher to deploy its daemons and is not dynamic, no appli-
cations can join the runtime after lunch. Melissa is an InSitu
library running as a server for parametric studies. Melissa
uses Zmq for the communication layer between client and
server application. Melissa’s main weakness is using the file
system for the client to discover the server. Melissa is dy-
namic, many clients can bootstrap and connect to the server to
send data without knowing when and where they will be ex-
ecuted. To multiplex simulations and/or visualisation tools,
different approaches are used, a common one is to build a
meta application using MPI to connect different MPI codes
into one big application, or less common is to use an exter-
nal communication library to link programs together. Both
solutions bring their challenges. From the MPI point of vue,
it is a complex task to associate existing codes into a large
fully functional one. Codes need to be coupling ready, for
instance, comWorld is forbidden. This solution also suffers
from a lack of flexibility at runtime, everything needs to be
prepared in advance and the running configuration needs to
be well setup. As MPI suffers also from a lack of failure
tolerance, a single sick node in the runtime takes down the
entire application and it may be very hard to build a correct
checkpoint mechanism for complex workflows. With Exas-
cale platforms the number of nodes involved in simulation
will continue to grow, increasing the probability of failures
per time unit, and the need of a more reliable way to connect
MPI codes will quickly emerge.

Using MPI to couple simulations together is not a solution
for the next platform generation. Coupled simulation’s part
need to be able to fall without restarting all the application.
TakTuk enables remotely executed programs to communicate
with each other on a common communication channel. Each
TakTuk’s launched program has an address on a special com-
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munication channel. Currently, for a remote program, there is
no way to discover the address of another one on the commu-
nication channel, thus, it does not allow two programs hav-
ing no knowledge about the run-time to exchange messages.
Adding some glue around may enable one to develop those
capabilities.

2.13 Summary
As a reminder, we want to be scalable in order to fill the
Exascale gap, to manage aggregates of computation units as
groups dedicated to executions, to bring control plane com-
munication facilities to enable easy implementation of InSitu
programs, to provide a centralised control point to have a con-
stant feedback over the whole execution plan, and to be highly
dynamic in order to add or remove aggregates at run time al-
lowing dynamic client server applications.

Tools interpreting DSL or DAG are too much dependent
on static configurations and our groups need to be dynamic.
Thus we cannot tend to use tools not providing strong inde-
pendence regarding configuration. TakTuk and ClusterShell,
two command lines tools are preferred choices because they
are able to contact ranges of computers with some parameters
on a command line and to keep connexions open in order to
be exploited on run time.

To be scalable we need to focus on a strategy like Flux,
Puppet, ClusterShell and TakTuk does. Having a communica-
tion tree between daemons should be as much administration-
less as possible in order to manage stock operating system.
This platform independence enables a future user to develop
specific platform support. Furthermore, TakTuk shows that
having a tool with few dependencies with auto-propagation
features can be efficient.

Regarding fault tolerance, Plush/Glush furnish a constant
feedback that allow one to develop every fault tolerance
mechanism over it. We should avoid the non-existent in-
formation collection of DevOps or workflow managers tools.
TakTuk also provides a way to have interactive executions on
remote nodes. Our remote execution tool should do the same.

TakTuk possesses a way for remotely executed programs
to discuss on an external communication layer. Flux seems to
offer a way for remotely executed programs to have access to
a distributed database. Both solution may enable to provide
code coupling.
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Figure 1 – Dependences between domains using remote execution tools.

functionality Reproducible
research

DevOps Workflow
managers

Tasks/Jobs
managers

InSitu

DAG Interpretation X
Job/Task Scheduling X X
Remote execution X X X X
Results Analysis X X X
Input Validation X X X
Platforms support X
Ressources discov-
ery

X X

Provenance tracking X
Checkpointing X X
Verification and con-
figuration

X X

Interactive Execution X X X
Code Coupling X

Table 1 – Functionalities repartition over the different fields
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3 Scalable Execution Management on
Hierarchic Group Organisation

3.1 Design

Our design isolates applications in groups of computation
units. Those groups are interconnected via routers which al-
low messages to transit between them. Having a messaging
protocol between groups enables a group leader to re-
ceive orders from a remote controller, to send feedback about
executed applications, and to provide a control plane mech-
anism.

3.2 Scalable Groups Hierarchy

A group is an isolated application, an encapsulation of a re-
mote execution tool. As groups are connected together, it al-
low us to use several times a different remote execution tool
instances. If the underlying remote execution tool is able to
handle a hundred thousands nodes, then with this nested de-
sign, our tool will be able to handle as many times this amount
of computers. A group is a high level representation of a set
of computers. Usually remote execution tools are able to de-
tect node failures, thus, enabling for a group, the detection
of falling nodes. The information about a failure can be for-
warded to a centralised place where a decision can be taken.
As groups are linked together they are able to communicate
with each other. The gateway for the communication is done
by the group leader, the root of its group. Building a group is
about two steps, to contact nodes in order to establish a sta-
ble communication tree between them and to use this tree to
execute commands. Those two steps are given by the under-
lying remote execution tool. The group leader is in charge
of controlling the underlying remote execution tool. A group
hierarchy is constructed by making groups deploy groups in-
side themselves. A group does not necessary inherit from
its parent resources. To be interconnected, nodes possess ad-
dresses. Those addresses are relative to the group. A node,
being group leader for a group, can be follower for another
one as shown on figure 3.

3.3 Control Plane Communications

The capability to exchange messages between two groups
aims at providing a control plane to remotely executed pro-
grams. Each of those is able to send short messages to others.
Control plane is a terminology from the networking commu-
nity, as opposed to data plane. In the networking community,
the data plane is the actual data exchange while the control
plane is the setup of this exchange. It means learning the best
routes to take to transfer data. Our capability let remotely ex-
ecuted programs contact each other without knowing the IP
address of their peers, this ability to contact another program
without knowing its actual execution machines. A program
can send its localisation information in order to be contacted
using a better communication layer to exchange data. Our
solution is not suited to exchange intensive data streams nor
large data chunks but gives the bare minimum to two foreign
processes to open high-speed communication pipes.

Figure 2 – We want to connect groups together on a meta
network. Each node within a group is able to communicate
with others. Our design allow out-of-group communications.

3.4 Propagation of Standard System Feedback
Because all nodes are linked through an SSH session, a group
is easily aware of nodes failures. Informations about execu-
tions is naturally gathered by remote ssh execution. Thanks to
the tree topology of the hierarchic group organisation, groups
can easily send feedback information to their parents. Thus
the root node can naturally gather information and take de-
cisions about life cycles. Having a centralised control point
in a distributed organisation enables adding/removing groups
on the fly making this solution highly dynamic.

3.5 Chosen technologies
We present in this section the two major choices made to im-
plement our design.

TakTuk
To achieve the best scalability, TakTuk offers the best choice,
with its work-stealing algorithm. Furthermore, it only re-
quires a Perl interpreter and a ssh daemon on the remote node.
Beside node connections, monitoring and remote execution,
TakTuk has a communication capability allowing remotely
executed processes to send messages to each other. This ca-
pability is achieved by opening on each node, for each exe-
cuted command, file descriptors. A child process only needs
to read and write on those files to communicate with its lo-
cal TakTuk’s daemon, TakTuk’s ship with a C library allow-
ing one to easily use this functionality and build MPI like
programs using only TakTuk as a communication layer. As
the communication is done over SSH, it is not made for high
performance data exchange and one should prefer RDMA15

links over Infiniband. But despite this performance issue, its
characteristics offer an easy way to exchange information be-
tween distinct programs by writing and reading through files
descriptors.

The Distem benchmark [Buchert et al., 2014] shows how
to emulate computational units using folding and advanced
configuration. In their evaluation they perform a perfor-
mance comparisons between TakTuk and Clustershell over
forty thousand folded nodes. In this configuration it takes 100

15https://en.wikipedia.org/wiki/Remote_direct_memory_access
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Figure 3 – Multiple groups connected through a tree topology.
Each group is a group instance. Groups are nested and due to
their access to TakTuk’s communication layer, they are able
to exchange messages between them.

seconds for TakTuk to complete the task and 600 for Cluster-
shell.

Python
TakTuk is written in Perl, and a natural choice would have
been to extend TakTuk in its language. But instead we used
Python for three reasons : Python is widely used in the scien-
tific community ; the context is more IO intensive than com-
puting intensive, and thus, an interpreted language is usable ;
and a modular approach allow to use another remote execu-
tion too than TakTuk if needed.

3.6 Implementation
This section highlights key concepts behind the implementa-
tion. Our solution is made of Groups and Routers as shown in
figure 4. The basic Python encapsulation of TakTuk will be
discussed first. This encapsulation will be referred as group
or network depending on the context. The router layer en-
ables message routing between different groups, and thus,
the ability to construct group hierarchy, the task processing
library abstract complex operations on the tree into an object-
oriented application programming interface.

Experimentation setup
All through this document, we will evaluate performances of
our solution on the Grid’500016 testbed. As we do not have
access to many computation units for out tests we are emulat-
ing a larger number of nodes by folding them over real ones.
In our configuration, to fold means to contact several time the
same computation units as if it is a different machine each
time.

The computers used for experiments come from Greno-
ble’s clusters Genepi and Edel. A Genepi node contains two
Intel Xeon E5420 QC working a 2.5GHz, has 8 GB of mem-
ory and gigabyte ethernet network. An Edel node contains
two Intel Xeon E5520 working at 2.27 Ghz, has 24GB of
memory and a gigabyte ethenet network. Those two clusters

16https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

Figure 4 – Internal components organisation.

are also able to work on Infiny Band but we are not using this
capability.

Group
At its core Groups use the Python Pexpect library to launch
and control TakTuk’s life cycle. TakTuk is able to connect
nodes and number them. Numbering allows messages to be
selectively sent to a node. Messages can be commands for the
node to execute or messages to deliver to a running program
on the remote computer. To enable receiving TakTuk’s com-
municator messages, Groups make TakTuk launch an extra
process called here a communication bridge. This process has
access to TakTuk’s communicator’s file descriptors. By com-
municating with a group on a Unix socket, a bridge allows
it to receive messages from TakTuk’s. As shown on figure 4
Groups are able to parse TakTuk’s feedback to extract mean-
ingful information. This information is routed to different
semantic callback functions. Groups give as an external API
a set of registration functions allowing to get notified about :
success or failures about operations, sub-process activity, or
messages received on TakTuk’s communication network.

Python has a global interpreter lock that forbids it to ex-
ecute several threads at the same time, even on multi-cores
computers. It is an advantage in the sense that it allows
us to limit the footprint on computation nodes but it impact
on the coding style. Because of the Pexpect library used to
manage TakTuk, we already are in a multi-threading scheme.
The library uses at least one thread to interpret TakTuk’s I/O.
We allow ourselves the use of a second thread in order to
fetch information from the Unix socket. Because informa-
tion about the tree manipulations can come from two inde-
pendent sources, there are potential race conditions. Because
of the global interpreter lock, only a thread can work at a
time, thus, there is no performance gain using multi-thread
to handle events from different sources. Furthermore, work-
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ing with locks may lead to deadlocks or performance issues.
We use an event-based programming model. When a thread
deals with an incoming I/O, it adds an event in a synchro-
nised queue, which contains for information, what to execute
on which data. This way, if the Python scheduler interrupts
an event execution to handle an incoming I/O it will only add
a new event inside the queue and never compromise the in-
ternal data structures. This scheme provides us with an easy
way to maintain codes by removing a lot of uncertainties due
to race conditions, which are well known to be hard to debug
especially on widely distributed software.

Groups are nested in a hierarchic tree topology. For a
nested group, its group leader belongs to its parent’s group.
Thus, group instances can have two roles, or to be leader of
a group or to be follower inside a group. Only group leaders
can give orders, non-group leader group instances can only
exchange messages.

Performance Evaluation A group is only a Python encap-
sulation of TakTuk. We need to set up an experiment val-
idating this implementation’s overhead. In this section we
provide a performance analysis for the group’s functionali-
ties through a simple setup. The experiment takes place on
10 computation nodes from the Genepi cluster, a Grid’5000
cluster from Grenoble. Figure 5 shows an increasing work-
load from 1 to 2000 nodes for TakTuk and a group. At each
iteration, the same work is performed, which is, starting, con-
necting nodes, numbering them, making them execute the up-
time command, and performing a shutdown on them. As we
do not have enough available computers to make a real 2000
nodes experiment, we fold them over ten real ones. The fold-
ing implies that we consider several times the same node and
contact it several times.

The experiment shows that the group overlay has only a
constant overhead compared to TakTuk. And without out-
liers to the 95 percentile we are able to compute linear regres-
sion 6 for both of them. The announced prediction for a forty-
thousand execution like this one is about 96 seconds for Tak-
Tuk and 102 for groups. Distem [Buchert et al., 2014] papers
who emulated forty thousand nodes on Grid’5000 with ap-
proximately the same folding ratio (around twenty instances
per node) reached similar numbers for a TakTuk deployment,
which let us claim that a group will be as highly scalable as
TakTuk.

Meta-Network and Routing
We now want to interconnect them together in a way that
they can exchange messages and achieve one of our primary
goals : having an execution engine allowing control plane
messages exchanged between launched programs. Group in-
stances are connected to each other inside router instances.
Routers take care of messaging transfer between groups. It
is used to forward feedback information to the root instance
and to send commands to leaf instances. Figure 4 shows the
internal organisation of a router. Groups gather information
and register events in a common synchronized queue. The
router’s job is to process those messages in a FIFO order. Fig-
ure 3 shows a configuration where three groups are connected
to each other.

Figure 5 – Execution time comparison between TakTuk and
the router with one measure per point. The experiment is
done using 10 nodes to emulate 2000 nodes. This experiment
shows the growing execution time as a function of the number
of nodes and shows the overhead of the router. In this config-
uration the router only contains a group and is equivalent as
an encapsulation of TakTuk. TakTuk and the router perform
the same work. Figure 7 shows the needed code – without the
task API – to generate this trace.

Figure 6 – Linear regressions based on data from figure 5
experiment.

As for groups, the router works in two modes. Root and
non-root modes. The root mode is reserved for the only in-
stance that is not launched by TakTuk. This instance has no
father among the communication tree.

Life Cycle The router is able to replicates itself on com-
puters. To achieve the configuration shown in the figure 3
the root instance, which in this case is 0@group1, boot and
start a group named group1 with two computation nodes
inside. The root instance then replicate itself on the remote
computers. 1@group1 is now a child of 0@group1. Fin-
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ishing its replication, the newly created instance will send a
message to its parent (with possible forwarding, until the root
instance) advertising that a new network is available. Prop-
erly configured, this notification will trigger some work to do
on the root node and 0@group1 will send some orders to
0@group3, in this case, asking it to connect some nodes.
The same is done for the second group. A router instance
needs to periodically check its parent health. This is done
through a heart-beat mechanism. In case of a potential failure
of the parent node, the sub tree is terminated. In the hierarchi-
cal group tree, higher groups have a higher responsibility, if
they fall, everything under them goes down. This is due to the
top-down approach we use to launch nodes. A workaround
would be, when a replication is done, to launch it as a dae-
mon, make it independent of the ssh session that hosts it, and
use another communication layer to connect router instances
together, like Zmq per instance. This way, router instances
may be able to be reconnected on a recovery mode.

Management Routers are hierarchically organized, the
root instance having the ability to remotely control the other
ones and is done through the use of trans-network messages.
Those messages takes the form of Makes node@group
do action. Still on the example figure 3, it can be used,
for 0@group1 to make 1@group3 execute the command
uptime and to be notified of its completion. A router sup-
port some high-level operations to manage groups and exploit
them. Here is a non-exhaustive list of what is available :

• Self replication
• Execute a broadcast command on a managed network
• Execute a command on one node on a managed network
• Ask a remote instance to execute a registered callback
• Spawn/delete a new group
• Expand, shrink, or re-number a group
• Deliver or route messages to a node on a managed net-

work
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1 c l a s s G r i d 5 0 0 0 T e s t ( F rameworkCon t ro l e r ) :

3 d e f s t a r t ( s e l f , n e t w o r k I d ) :
# A f t e r connex ion

5 d e f n e t w o r k _ r o o t _ u p ( e r r o r _ n o d e s ) :
# A f t e r number ing

7 d e f n e t w o r k _ r o o t _ u p d a t e ( d a t a ) :
# A f t e r B r o a d c a s t i s done

9 d e f done ( d a t a ) :
p r i n t ( " done {} " . f o r m a t ( d a t a ) )

11 s e l f . e r e b o r . t e r m i n a t e ( )
s e l f . c l o s e ( )

13 # Make each node i n t h e group e x e c u t e t h e
# up t ime command .

15 # Get n o t i f i e d on t h e t e r m i n a t i o n on done
s e l f . b r o a d c a s t _ e x e c _ o n ( " 0 " ,

17 " up t ime " ,
c o n s t s . TRUE,

19 " 0 " ,
" r o o t " ,

21 " 0 " ,
" r o o t " ,

23 done )
# Number each node i n s i d e t h e r o o t group

25 s e l f . n e two r k _up da t e _ on ( c o n s t s . TRUE, " 0 " , " r o o t " , " 0 " , " r o o t " ,
n e t w o r k _ r o o t _ u p d a t e )

27 # Makes t h e r o o t group c o n n e c t n o d e _ l i s t nodes .
# Get n o t i f i e d a t t h e end of o p e r a t i o n on n e t w o r k _ r o o t _ u p

29 s e l f . spawn_on ( " 0 " , s e l f . n o d e _ l i s t , c o n s t s . FALSE , " 0 " , " r o o t " ,
" 0 " , " r o o t " , n e t w o r k _ r o o t _ u p )

Figure 7 – Excerpt of the Router capabilities. This sample attach self.node_list nodes to the root group. After nodes
bootstrap a numbering is performed. Upon the success of the numbering, a each node will execute the uptime command. When
all the node have sent their results it is print on the standard out.
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Communications A router instance is made to transit mes-
sages between instances. As written in example figure 3, each
node on the graph has relative addresses. An address is rel-
ative because it belongs to a network. By default, inside a
network, sending a message from a node to another is done
by simply using the TakTuk communication layer. Trans-
network routing is different, it means, getting a message out
of its network and trying to find the right direction to send
it. The knowledge of which node is below is easily gathered.
When a child appears, it notifies its parent and this informa-
tion crosses to the root node. This way, every router instance
on the route is aware of the child’s existence and the gateway
to reach it. Taking a decision on where to send the message
is done by simply looking into the list of instances. If the
destination network is there, then send the message to the ap-
propriate gateway, that will execute the same algorithm. If the
destination is not in this list, then simply send the message to
the father, that will apply the same algorithm. Only the root
node can decide to drop a message or not. Of course, ev-
ery node can send trans-network messages. But to reach their
destination a message has to reach the local root first. This
can be inefficient in some situations. Having a default gate-
way to the address 0 enable building a system where parts can
communicate without a global view.

Performance Evaluation The figure 8 shows an experi-
ment that makes the router engine replicate itself on an in-
creasing workload from 1 to 2000 nodes by folding on 20
real ones. A replication means, bootstrapping, connecting the
right amount of nodes, numbering them, starting a router in-
stance over them, making them bootstrap an empty group,
wait for the new groups to be started, and then print "Repli-
cation Finished". One measure per point is shown. Due to
some perturbations, TakTuk may take more time on certain
measure, those cases are outliers. Each colour represent a
type of event, and a line is printed between the min and max
values. When outliers appear, it seems because a node at the
TakTuk layer is really slow to answer, and thus, delays the
rest of the execution. The labels show different moments in
the execution life cycle ; the label "Group ready" refers to the
moment where TakTuk has launched and numbered the entire
network ; the label "Replication Made" stands for each time
a new replication is done ; the label "Replication Finished"
stands for the final replication. We do not have comparison
points to know if the time to replicate is good or bad. We can
surely infer that the folding effect does not help us for this
execution. A slave router instance managing one network is
about 4 processes : the TakTuk process who launched the
router child ; the router child process ; the TakTuk instance
for the mastered network ; and the bridge. As we are folding,
at worst, 90 times on a node, we have 360 processes dedicated
to the execution. Even if they are not intensive for computa-
tions, those instances have messages to exchange and waiting
for the scheduler to handle a waiting message slow down the
all execution.

The label "Group ready" standing for the time where Tak-
Tuk has connected and numbered every nodes represent the
same state as the one shown on figure 5. But, the value in

Figure 8 – Analysis of the time needed to launch a router,
connect n nodes, and replicate the router on each of those
nodes. This graph is showing an increasing workload from
1 to 2000 nodes folded on 20 real ones with one measure
per point. The label "Replication Finished" correspond to the
time measure where every replication is done.

this figure is quite less (for 1500) than for the first one. We
are indeed going from 10 real nodes to 20 ones, and by re-
ducing the folding we improve our performances, going from
5 seconds for 1500 nodes to approximately 4. This effect is
not well pronounced and does not degrades the linear slope
of our experiment.

Control Plane Communications
A router is able to route messages between networks and de-
ploy complex topologies, at least, deep tree topologies. With
the communication capabilities, any program launched by
TakTuk has access to a communication layer allowing in-
group and out-of-group communications. In-group are not
a real challenge even if they are not to be used for send-
ing too much information. Out-of-group communications
are not used to exchange a large data volume. As messages
travel through an SSH pipe and in the general case without
a direct route between two nodes, we cannot expect a good
throughput. Due to the user-land nature of the routing and
several transfers through different independent processes, but
still, providing the ability for different remotely executed pro-
grams to communicate, is the main improvement of our solu-
tion. It lets different programs to discover, organise, contact
themselves, and is sufficient. For most setups once remotely
executed programs along with isolation in groups, are able to
establish communications, they can easily open high through-
put communication channels.

MPI Use Case TakTuk provides a communication layer for
each program it launches. This communicator is based on
private file descriptors between TakTuk and its children pro-
cesses. Those file descriptors act like a Unix socket will do.
One is reserved for receiving data and the other one to send
data.

This mechanism makes only a directly launched program
able to send and receive messages on the TakTuk layer. What
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if this program is a launcher itself ? To launch a MPI program,
one uses the mpirun command associated with a computer
list and a program to run. The launcher contacts each com-
puter on the list and associates, for each core of each com-
puter, a MPI process. MPI processes are pieces of codes
identified with a unique ID and aiming at computing things
and at exchanging information between them among differ-
ent communication layers.

In this configuration, only the mpirun command has ac-
cess to the TakTuk’s file descriptors. And none of the MPI’s
launched process has knowledge about TakTuk’s communi-
cation layer. Moreover, MPI has its own numbering mecha-
nism. It means it is impossible for a router to predict which
MPI rank will be hosted on which TakTuk’s rank.

Our objective is to provide a mechanism for a MPI process
from a MPI run to be able to exchange messages with another
MPI process from another MPI run. Our solution provides
what we call a "control plane container" to set this mechanism
in place.

Control Plane Container Let’s assume that we use the
graph on figure 3. We are now in a configuration where
group2 and group3 are dedicated for two distinct simula-
tions. Each computer is an 8 core computer, which means that
each of them will host 8 MPI processes. group2 is a parallel
server which gathers results from simulations. group3 is a
parallel simulation which sends its results to a known server.
To make this scenario work, we define the control plane con-
tainer (CPContainer) mechanism which comes in two parts :
a communication daemon on each node and a C library.

The idea between the CPContainer is to provide a gateway
for processes to enable them to send and receive messages.
This gateway needs to be easy to find and attached to the
TakTuk’s network. As this gateway will allow trans-network
communications, thus, it needs to embed a lot of code al-
ready written in the router code. To make the gateway easy
to find, we have two solutions, having a centralised daemon
for a simulation or decentralised daemon on each node. We
tend to prefer the second version in order to be more scalable.
For a process to communicate with the daemon, it needs an
address and a port. The address is easy to recover as it is lo-
calhost and the port is known in advance. For the port, we can
use Inter Process Communications (IPC) between the process
and the daemon. IPC allows ports to be files and communica-
tion to be efficient. Using files to exchange data lets us gen-
eralise the file name on all the computers and avoid useless
port lookup. By giving the file name relative to the execution,
we can avoid conflict over folding. We are using Zmq as our
communication link between the daemon and the lookup.

The daemon is simply an Erobor instance with CPCon-
tainer enabled. A daemon is setup on each node of the sim-
ulation. After bootstrap, the daemon waits for processes to
notify their bootstrap sequences. Upon a registration, the
daemon builds a local map between an ID and a socket to
contact the associate process. Then it sends a message to its
group master to notify it is in charge of this particular rank.
Upon a sending request, the daemon will build a router trans-
network message using the group and the ID of the destina-

tion and send it over the network. Upon a message to deliver,
the group master will send the trans-network messages to the
previously registered instance. The daemon on this instance
will then look into its local map and route the message to the
correct process. In order to setup a CPContainer, we need to
contact each node in a group and replicate over them. Once it
is done, he needs to start the component on each node. This
operation can be time consuming, according to the evaluation
performance on figure 8. We introduce a recycling function-
ality that flushes the routing tables of a group so they can be
reused for new simulations. It provides for large case scenario
a reactive way to use several times the same group.

This mechanism introduces extra routing needs. As dis-
cussed in the previous paragraph, a group leader router in-
stance is keeping a track of where to find specific IDs. We
introduced in the code the cpc-trans-network, which is an im-
proved version of the trans-network message. Because it is
always the group leader who decides where to route a trans-
network message, this new routing cost seems to be negligible
comparing to the previous one.

To ease the integration with existing codes we are provid-
ing a C library with a simple set of operations available, regis-
ter, send, receive, and close. As we are using Zmq, it enables
an advanced user to take care of the advantages of the flexi-
bility of this library to receive messages and use advanced
asynchronous functions to avoid blocking operations in the
middle of the simulation code.

Performance Evaluation We want to evaluate how long
a setup of a CPContainer over groups takes. The figure 8
shows the performance analysis of making a replication on
each node of a group which is equivalent to setup a CPCon-
tainer.

Task processing
The router provides some functionalities and exposes itself
through a Framework that eases its usage. The Framework
class is a Python abstract class containing every high-level
operation one can expect. Even if it is a high-level abstraction
of what is really going on, its usage is cumbersome. One
using it will develop again and again the same software parts
to deploy computers, to number them, to make them execute
programs, to gather results, and handle errors.

We would like a tool usable in DevOps use cases, for in-
stance by allowing the easy creation of recipes, usable by
workflow managers by, per instance, allowing native DAG
interpretation, or by researchers for their experiments. All
those fields need high-level error detection and handling. Our
API should provide these functionalities. The chosen way to
describe such an API is to setup a task processing library. In
this library the user defines tasks that will be deployed on a
router. Tasks may have dependencies upon startup and de-
pendencies upon cancellation.

Task A Task defines a global abstraction level representing
something to do. A task holds a current state which is pre-
sented on figure 9. A task can go from the initialisation state
to the running or canceled one upon boolean conditions.
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Figure 9 – Task life cycle represented as a state machine.

Figure 10 – UML synthesised representation of the user API.

Tasks are state machines and can be linked together to build
more complex state machines. For now, the API does not
take into account code validation, in the sense that, the user
code may never finish. A user can write impossible states
combinations, forget needed ones in case of errors, and end
up with a never-ending code. Nevertheless, we can express
DAG with this tasks engine. And thus be able to build, or
take an existing DAG tool, to adapt over it in order to have a
robust engine.

Tasks are processed by the task processor which is based
on router’s event loop. Tasks are registered in the initialisa-
tion state and starts to emit orders. Once the initialisation has
finished, the main loop takes effect and processes incoming
events. There are still no data race in the tasks processor due
to the event oriented model of the router. Thus there is no
ambiguity on tasks states.

The task processing library provides several task types.
They are separated in two categories, tasks that will create
groups and tasks which will use groups to execute something.
Those types are shown in figure 10.

Group tasks are the kind of tasks launching a new group

on a – newly created or not – router instance. They take a
node list as parameter, start TakTuk, and contact nodes. The
NumberedGroup is a Group where all nodes have a TakTuk
rank.

Executor tasks exploit Group tasks in order to execute
things on them. Ventilator tasks take a list of tasks to pro-
cess and assign them with a first come, first served policy.
Broadcasters have two flavors, one for which tasks are all ex-
ecuted in parallel and another in which they are executed in a
sequential way.

In terms of fault tolerance, every task can fail and the pro-
grammer get notified of those failures through callbacks. He
can add some code sequences to handle a failure such as re-
launching the task on a recovery mode per instance by reg-
istering functions to event callbacks. In the paper, A Per-
formance and Energy Comparison of Fault Tolerance Tech-
niques for Exascale Computing Systems [Dauwe et al., 2016],
authors introduce definitions for fault tolerances strategies :

• Rollback recovery : Periodically save the executing state
and roll back in case of problems to a known state. This
technique uses the concept of check-pointing.

• Redundancy : duplicate the computation.

Those two mechanisms can be implemented over our sys-
tem. For the redundancy it’s fast forward, one simply needs to
create several groups and make them execute the same thing.
For the state check-pointing and restart, the launched applica-
tion needs to be developed to do it, but, if it is the case, then
it’s easy to attach a callback to the execution’s failure to start
a new task taking over from where the previous crashed.

API analysis The API does not provide an impact the per-
formances of the underlying code. Thus its evaluation is on its
usability as a high-level library. Figure 11 shows a code sam-
ple using the API. As opposed to the code sample figure 7,
this does not stack callback functions and express concisely
the operation made over the tree. For a second example fig-
ure 12 shows a code sample launching two programs inside
CPContainers.
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c l a s s Sample ( T a s k P r o c e s s o r ) :
2

d e f r e g i s t e r _ t a s k s ( s e l f ) :
4 # S t a r t a new group , w i t h compu te r s A and B . Group l e a d e r

# a t t a c h e d t o t h e r o o t .
6 g1 = Group ( " g1 " , " g1 " , "A, B" , " 0 " , " r o o t " )

g2 = NumberedGroup ( " g2 " , " g2 " , "A, A, A,A" , " 0 " , " r o o t " )
8

# Make a s i m p l e b r o a d c a s t on f i r s t group
10 # b1 t e r m i n a t i o n does n o t i m p l i e s g1 t e r m i n a t i o n .

b1 = B r o a d c a s t e r ( " b1 " , " up t ime " , g1 )
12 # t h e b r o a d c a s t w i l l s t a r t when t h e group g1 i s i n t h e r u n n i n g

# s t a t e
14 b1 . add_dependency ( { g1 : c o n s t s . RUNING} , True )

16 # s e r i a l b r o a d c a s t a f t e r b1 on g1 , w i l l c l o s e g1 a f t e r
# t e r m i n a t i o n

18 # b2 t e r m i n a t i o n i m p l i e s g1 t e r m i n a t i o n .
b2 = S e r i a l B r o a d c a s t e r ( " b2 " , [ " up t ime " , "pwd" ] , g1 , True )

20 # t h e b r o a d c a s t w i l l s t a r t when t h e b r o a d c a s t b1 i s DONE
b2 . add_dependency ( { b1 : c o n s t s .DONE} , True )

22

# Make a s i m p l e b r o a d c a s t w i th a t i m e o u t o f 30 s e c o n d s
24 b3 = B r o a d c a s t e r ( " b3 " , " s l e e p 1000 " , g2 , True , 30)

# b3 w i l l s t a r t when g1 i s done and g2 i s r u n n i n g
26 b3 . add_dependency ( { g1 : c o n s t s .DONE,

g2 : c o n s t s . RUNING} , True )
28

# r e g i s t e r a l l t h e g e n e r a t e d t a s k s
30 s e l f . t a s k s . append ( g1 )

s e l f . t a s k s . append ( g2 )
32 s e l f . t a s k s . append ( b1 )

s e l f . t a s k s . append ( b2 )
34 s e l f . t a s k s . append ( b3 )

Figure 11 – Excerpt of the task library API.
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# Compute c l i e n t and s e r v e r l o c a t i o n
2 p a t h = os . e n v i r o n [ "PWD" ]

s e r v e r _ p a t h = " { } / . . / c_wrapper / s e r v e r �C {} " . f o r m a t ( pa th , n b _ c l i e n t s )
4 c l i e n t _ p a t h = " { } / . . / c_wrapper / c l i e n t �R 1 �S {} " . f o r m a t ( pa th , " s e r v e r " )

6 c l a s s Sample ( T a s k P r o c e s s o r ) :

8 d e f r e g i s t e r _ t a s k s ( s e l f ) :
n b _ c l i e n t s = 10

10

# C r e a t e a CPConta ine r f o r t h e s e r v e r , on a computer l i s t
12 s c = CPConta ine r ( " j a i l _ s e r v e r " , ’ s e r v e r ’ , ’A, B , C ’ , ’ 0 ’ , ’ r o o t ’ )

14 # Launch s e r v e r
s e r v e r = CPExecutor (

16 ’ s1 ’ ,
s e r v e r _ p a t h ,

18 sc ,
True )

20

# s t a r t when t h e c p c o n t a i n e r i s r u n n i n g
22 s e r v e r . add_dependency ( { sc : c o n s t s . RUNING} , True )

s e l f . t a s k s . append ( sc )
24 s e l f . t a s k s . append ( s e r v e r )

26 # Launch n b _ c l i e n t s C l i e n t s
f o r i i n r a n g e ( 0 , n b _ c l i e n t s ) :

28 # C r e a t e a CPConta ine r f o r t h e c l i e n t
cc = CPConta ine r (

30 " j a i l _ c l i e n t {} " . f o r m a t ( i ) ,
" c l i e n t {} " . f o r m a t ( i ) ,

32 ’D, E , F ’ ,
’ 0 ’ ,

34 ’ r o o t ’ )

36 # Launch t h e c l i e n t
c l i e n t = CPExecutor (

38 " m p i _ e x e c u t o r {} " . f o r m a t ( i ) ,
c l i e n t _ p a t h ,

40 cc ,
True )

42

# Only s t a r t t h e c l i e n t when t h e s e r v e r i s r u n n i n g and when t h e
44 # c p c o n t a i n e r i s r u n n i n g

c l i e n t . add_dependency (
46 { cc : c o n s t s . RUNING, s e r v e r : c o n s t s . RUNING} , True )

s e l f . t a s k s . append ( cc )
48 s e l f . t a s k s . append ( c l i e n t )

Figure 12 – Setup of a CPContainer to enable two codes to exchange messages to each other. This client/server pattern will be
reused on the integration of the Melissa case.
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4 Integration on Melissa
4.1 Melissa
Melissa is an InSitu middleware able to create N to M com-
munications between a range of simulations and a server. The
server is gathering information about the simulations and pro-
duce statistics. Melissa is already integrated on Code_Saturne
which is a complex workflow engine for simulation devel-
oped by Électricité De France.

4.2 Melissa’s Communication
Melissa uses the Zmq request/reply pattern. In this pattern, a
request socket is a finite state machine which cannot receive a
message until it has sent one and the reply is the opposite. To
open a communication between two entities and regardless of
their types, one socket has to bind itself on an endpoint and
the other socket has to connect to this endpoint. Notice that
the binding on the network from one side is not needed for the
other side to connect and a process can start to send messages
to another one on an incomplete communication channel.

In the case of Melissa, the server job receives information
from the clients jobs. At bootstrap, the server writes its end-
point on a file. Assuming that every computation nodes share
the same file system, when a client appears, it retrieves the
server endpoint with the file and establishes the communica-
tion.

4.3 Solving the Connexion Issue
As illustrated on figure 13, using a shared file system to
exchange zmq’s endpoint may lead to lacks of usability
of Melissa. Shared file systems are not always available.
This information exchange belongs to control plane between
clients and the server. As our solution is providing control
plane capabilities, we can use it to make Melissa work with-
out using the file system. Melissa needs to be patched in order
to be used over our solution. In this case, the patch is really
small, around 30 lines of code for the client and the server.
The patch works as follows. To avoid using the file system,
when a client bootstrap, it sends a message to the server us-
ing router’s control plane facilities. The server sends back its
endpoint and the rest of the code takes place untouched.

Server Patch
The server is a MPI program with N process running the sta-
tistical analysis. The program consists of two phases. The
first one is to initialise the analysis and the second one is to
loop over Zmq events. MPI processes do not communicate
with each other after the initialisation phase.

Our patch consists of, initialising the connection with the
router in the startup phase, adding a socket to poll events list
and, upon event arrival in this list, replies by providing the
endpoint to the sender.

Client Patch
The client is a complex simulation code, different each time
and may be really complex to modify. Luckily, Melissa pro-
vide a library for client codes and it is where the patch takes
place.

As Melissa looks for a file to find the endpoint, we inte-
grate the patch here. Our patch does the following, if the file

Figure 13 – melissa

is not found, initialise the connection to the router, send a
message to the ID 0 of the server group and wait for the end-
point to come as an answer. Then continue the former code
untouched.
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5 Discussion and Further work
Some design choices can be discussed regarding their perfor-
mance impact on simulations or their practicability.

5.1 Simulation Perturbations
Our solution execute some daemons on each remote node. A
non-root router needs 2 processes to run plus 2 processes per
mastered network. Within a network, each computer embeds
at least one TakTuk daemon. In the best-case scenario, with a
mostly silent simulation – on stdout, stderr – and a only a sim-
ple control plane usage through our communication library,
those processes will be idle most of the time and will have a
small footprint on running simulations. If the simulation out-
puts a lot, as each line is gathered to the router instance, it will
suffer from CPU and memory usage and thus may result in a
certain slow down. Further exploration regarding the impact
needs to be settled in a future experimentation plan.

5.2 Linux Oriented
As we use Python, SSH, and Perl we aim at taking control of a
computation node, our solution cannot be deployed on super
computers like The Blue Gene machine. As we are using
epoll, a state of the art event oriented IO notification system
call, this solution only runs on Linux kernels. As Linux has
become the default choice for HPC centers, this decision can
be defended. Also work can be done to make a FreeBsd ready
implementation using the kqueues.

5.3 Auto Propagation
Because of the only dependency on Perl and SSH, TakTuk is
able to pipe itself on a remote Perl interpreter. This makes it
a very portable tool. Our solution uses Python3 and requires
some libraries to run. There is an ongoing work about the
self-replication of a router instance. The question is less sim-
ple than for TakTuk. The naïve way is to copy every needed
file in the temporary folder and then to execute. This solution
may be a bit time consuming and we would like to find a way
to pipe a router instance in the remote Python interpreter.

5.4 Reliability
Because a router uses TakTuk to spread itself on the comput-
ers, the lifetime of a router instance is dependent of its par-
ent lifetime. This may be a problem for scalability. We are
choosing this distributed approach in order to scale better and
partition resources, but with Exascale platforms, failure will
become more and more present. Our strategy may fail easily
if a node failure on the top of the tree mean a half-deployment
shutdown.

A workaround to this problem is to deploy non-root routers
as autonomous daemons and to isolate those from their Tak-
Tuk source, by making them discuss over another communi-
cation layer, Zmq for instance. This way a parent failure will
not impact a child lifetime anymore. This may open a way
for dynamic re-routing inside the tree.

This said, as there are fewer nodes at the top of the tree
than at the bottom, there is a small probability of failure and
retaking over failure may be very complex to setup.

5.5 Communication Bottleneck
Our solution deploys a hierarchic tree with message routing
capabilities between sub-trees. Routing is done by a router
nodes among the tree and it is done at the application layer of
the OSI model. To be routed, a message goes from ssh to the
TakTuk daemon, is given to the Python bridge that makes an
IPC to the router instance, then the router instance takes the
routing decision and forwards the message to another bridge
that will ask another TakTuk instance to send the message
over ssh.

The more a message has gateways to pass before a destina-
tion, the more time-consuming it will be for the whole tree.
Developers using the control plane capabilities should try to
minimise the distance between a source and a destination. An
extreme case where all applications from the left side of a tree
communicating with applications on the right side of the tree
will bring a terrible overhead to the root node. Thus, more
detailed exploration of those overhead will be a future work.

5.6 Extra Parameters
We need to test our Melissa patch on large scale platforms.
An ongoing work is the implementation over and the imple-
mentation should be fast forward. But in fact, as we need
extra parameters, we have issues with Code_Saturne and we
need to find a way to overcome this problem.

Those parameters allow a simulation to recover its router’s
endpoint. The real problem and the reason why parameters
are given to simulation is to be folding resistant. In real world
executions, we can expect only one simulation type per com-
puting node. On folding cases, many router daemons are de-
ployed on a same computer. To find its own, a simulation
needs an address to talk to. We are currently working on this
solution to have something folding resistant and with the least
less possible impact.

5.7 Performance Analysis
This work only reports basic performance analysis. This
shows that in its minimal configuration a router instance is
almost as fast as TakTuk with a constant overhead. Experi-
ments needs to be settled to study the impact on the startup of
a simulation and this on a wide variety of machines.
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6 Conclusion
With the Exascale approaching, because of the increasing
complexity and failure ration of such platform, there are
needs for scalable execution managers offering strong feed-
back over their execution plan, also Insitu applications want-
ing to exploit those platform may need failure resistant ways
for its subparts to connect to each others.

In this report we have presented the construction of a scal-
able execution manager. A tool able to manage large sets of
computational units, to provide resources isolation, and con-
trol plane capabilities between groups of computation units.
Using TakTuk as the underlying remote execution control
tool, each group can possess hundreds of thousands of com-
putations units. Experiment shows that the overhead of our
solution is constant over TakTuk and we were able to pre-
dict with linear regression its execution time. Those predic-
tions actually are matching experiments made on the Distem
benchmark. Having a scalable group unit enable stacking
groups, thus, building hierarchy to a great scalability. Hav-
ing a group hierarchy helps failure resistance, by having a
constant feedback among the tree. One having fine-grained
control on the execution and to apply failure resistant strate-
gies such as check-pointing or redundancy. And thanks to
the permanent node control, we can gather information and
keep track of the state of every computation unit. A high-
level API allow DevOps or workflow managers to use our
tasks execution model to plug our solution under jobs/tasks
schedulers, providing a way to implement DAG or DSL in-
terpretation. As our solution is platform independent, specific
platform support can be developed on top of it. OAR already
use TakTuk to manage its platform and we could be able to
uses advances made on Execo to provide plugins to our solu-
tion in order to control OAR or Slurm.

Finally, we are able to provide to the InSitu computation
world with a way to implement control plane communica-
tions, opening a road to enable for two remotely executed
programs to discover themselves and open high-speed com-
munication pipes. To validate our approach we’ve patched
the Melissa library, an InSitu framework for parametric stud-
ies analysis. Even without a complete run due to late adap-
tation on Melissa’s code, we are able to launch simulations
and to bring parts together in a more reliable and cleaner way
than Melissa does. Table 2 provides a view of functionalities
listed in the table 1, highlighting those that are embedded in
our solution and those that can be built on top of our solution.

In collaboration with the Argonne National Laboratory,
we will continue this work with integration on their inter-
nal project. And also this solution as been presented to the
Joint Laboratories For ExaScale Computing (JLESC) that
tooks place in July 2017 University of Illinois at Urbana-
Champaign USA. This was an opportunity to find research
collaborations and especially diverse uses case where our so-
lution may help.

This work has been finished at the Argonne National Labo-
ratory for some weeks in July 2017. It was an opportunity to
meet PETS-C developers and to discuss with them possible
adaptations of their code around our solution.

functionality Can be build on
top

Embded

DSL Support X
DAG Interpretation X
Job/Task Scheduling X
Results Analysis X
Input Validation X
Platforms support X
Ressources discov-
ery

X

Provenance tracking X
Checkpointing X
Verification and con-
figuration

X

Interactive Execution X
Remote execution X
Ressource isolation
(Groups)

X

InSitu via control
plane

X

Table 2 – Functionalities ready or buildable over ou solution.
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Abstract
The aim of this work is to perform formal verifi-
cation of cache coherence protocols for multipro-
cessor machines. We want to verify certain proper-
ties of these protocols, such as the absence of dead-
locks or the exclusivity of certain data. To formally
carry out this verification, we use automatic theo-
rem proving by formalizing protocols and proper-
ties to check. We apply this technique to two pro-
tocols, namely the MESI and H-NUCA protocols.
The latter is a new protocol based on the MESI pro-
tocol, but differs from it by a diffusion phase which
can lead to deadlocks. We verify these two pro-
tocols by exploiting their similarities and checking
that the differences do not violate the properties to
guarantee consistency. We limit ourselves to the
level of abstraction representing the protocols state
machine to remain independent of the architectural
details. This choice does not allow to verify all the
implications of certain properties and obliges us to
define hypotheses which will have to be verified at
the level of the implantation. It takes a lot of metic-
ulousness and thoroughness to verify that a prop-
erty is correct. Not only does the formalization of
the property require a good knowledge of the proto-
col and the domain of existence of the property but
also the generation of hypotheses to be verified at
implantation level requires particular attention. In-
deed, it is not necessary to generate hypotheses that
are false or not verifiable at low level without which
the property can not be verified correctly. Under
this condition, we achieved the verification of the
two protocols.

1 Introduction and presentation
Nowadays, the hardware processing devices follow two

trends. On one hand, we have thousands of heavily synchro-
nized single-instruction multiple-data (SIMD) cores, repre-
sentative of the GPU type of processing, that are well suited
to applications in which data is essentially private to each
core. On the other hand, we have tens to hundreds of general-
purpose processing cores, sharing a single memory, appro-
priate for the ”usual” posix-like programming model. In this

work, we are interested by the latter type of architectures, in
which the access to the memory is shared and coherent. To
hide memory access latencies, using a hierarchy of caches,
i.e. relatively small hardware controlled memories that con-
tain copies of the data in the main memory, is mandatory. We
take as example the Tilera-GX architecture [1], which em-
beds 72 processor cores, each having a L1 cache and sharing
several L2. Figure 1 shows the typical organization of such a
manycore architecture. Although necessary to limit latency,

L2 L2

L2 L2

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

L1
CPU

Figure 1: A typical manycore architecture

having multiple copies of a given data leads to incoherence
when the write of a new value occurs, unless a cache coher-
ence protocol is used. Our focus in this work is to formally
specify and verify properties of cache coherence protocols.

Our motivation comes from a study on optimized use of
memory resources in integrated multi-core processors, in
which we have been led to define a new cache coherence pro-
tocol which avoids duplication of data in upper cache levels
at the price of a higher latency when searching for data. This
protocol basically exploits the MESI protocol (the cache co-
herence protocol used in most systems today), but requires
special phases of search in all upper level caches by diffusion,
which is a new approach. The protocol is completely defined
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and implemented as a state machine in the SLICC language,
which is an ad hoc specialized language used to describe pro-
tocols [2]. It has been validated by testing (boot of Linux
SMP on 16 cores, and applications of the SPLASH2 bench-
mark), but absence of problems (races between accesses lead-
ing to dead locks or live locks or to erroneous results) is sim-
ply hoped for. The objective of this work is to formally vali-
date the protocol. We have several techniques at our disposal
to do this. The first one is Model checking that allows to do
static analysis of the protocol, second one is Temporal logic
which is also a static analysis technique, but based on traces
of a given execution and the last one is Formal verification by
theorem proving using a proof assistant.

Gerard J. Holzmann [3] describes processes for design and
especially validation of protocols. This textbook mainly ad-
dresses communication protocols because at that time they
were being widely deployed in all fields of computer science.
Nevertheless, since then the general approaches to protocol
validation in general did not change much: model checking,
theorem proving and test suite are advocated. New combi-
nations of these techniques were proposed to reinforce confi-
dence in the validation and also to corroborate results of dif-
ferent techniques. Indeed, it is possible to process parts of
some protocol with an automatic technique and another with
a more formal technique. Gerard J. Holzmann [3] begins by
describing conformance testing this way (section 9):

• “A conformance test is used to check that external be-
havior of a given implementation of a protocol is equiv-
alent to its formal specification.”

• “A validation is used to check that formal specification
itself is logically consistent.”

Holzmann separates functional testing from structural test-
ing which allows to differentiate tests which makes it possible
to verify behavior of a protocol which then makes it possible
to verify its structure. In section 11, it deals with validation of
protocol by manual and automated methods. Holzmann sep-
arates verification by formalization and verification by model
checking. Although these two techniques still exist and are
always differentiated, it is possible to find in literature more
and more confusions between the two as formalization comes
back to create a mathematical model. So it is normal that for-
mal verification encompasses both these techniques. In ad-
dition, there are numerous techniques that allow to analyze
a program or a protocol by combining several different tech-
niques such as testing, formal verification and temporal anal-
ysis. Several of these papers are presented section 4 of this
report.

In a multiprocessor system, having multiple copies in dif-
ferent places makes it challenging to maintain a consistent
state of the values as seen by the program threads. The pro-
grammer expects (somewhat naı̈vely), that any read on any
processor at a given address will return the last value written
by any processor at this same address. Due to race conditions
on the exact instant at which writes or read occur, the prob-
lem is usually simplified so that the read value will eventually
contain the value written.

Cache coherence protocols address this issue, and propose
different solutions to ensure coherence between the values of
the copies. The solutions vary in latency, required bandwidth,
number of messages exchanged, number of bits necessary to
maintain per block status, and implementation complexity.

Validation and verification of cache coherence protocol is
the purpose of this work. To achieve this several techniques
are possible like model checking, runtime verification or the-
orem proving. It is also necessary to decide on a level of
abstraction to be studied. Do we want to validate low-level
implementation of a protocol which is highly dependent on
used architecture or keep a higher level of abstraction in or-
der to verify its general behavior?

We focus on the level of abstraction corresponding to the
implementation of protocols in SLICC. Indeed this language,
which will be described later, is a cache coherence protocol
description language and this allows validating the behavior
of a protocol without modifications by the compiler or even
low level implementation dependent on the architecture. It is
obviously important to validate implementation of these pro-
tocols at low level in order to verify that the final implemen-
tation corresponds to description of the protocol in SLICC.
However, at SLICC level some properties are fixed and allow
to set up the general behavior of protocols as well as state ma-
chines that will be executed on each cache line according to
the cache level (L1, L2 or L3). Thus SLICC descriptions con-
tain FSMs, request and response messages that are exchanged
between components and a first level of implementation of the
general architecture. It is what will be analyzed and checked
in this work. For the current research, we study a hierarchy
with two cache levels and a memory that can be seen as the
L3 cache. We will focus on the cache coherence protocols
dealing with the two levels L1 and L2.

Then in section 2 we will describe SLICC language used
by two protocols namely MESI two level provided in simula-
tor gem5 and H-NUCA based on MESI. Section 3 will deal
with our contributions, namely mechanisms put in place to
realize proofs of these protocols. We provide a state of the
art on program and protocol verification in section 4 and fi-
nally we will conclude and enumerate possible future work in
section 5.

2 Description of two cache coherence
protocols

In this section, we detail the SLICC language in which
the existing MESI and the new protocol named Hybrid Non
Uniform Cache Access (H-NUCA) are written. Also, we de-
scribe each protocol and outline the main differences between
them.

2.1 SLICC language
SLICC[2] is a domain specific language for specifying

cache coherence protocols. SLICC is syntactically similar to
C or C++, but it is intentionally limited to the specification
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of hardware-like structures[4]. It is based on specifying in-
dividual controller state machines that represent system com-
ponents such as cache controllers and directory controllers.
Each controller is conceptually a per-memory-block state ma-
chine, which includes:

• States: set of possible states for each cache block,
• Events: conditions that trigger state transition, such as

message arrivals,
• Transitions: cross-product of states and events (based on

state and event, a transition performs an atomic sequence
of actions and changes a block to a new state),

• Action: specific operations performed during a transi-
tion.

In_ports Out_ports

SLICC
FSM

Figure 2: SLICC FSM

Each controller specified in SLICC consists of protocol-
independent components, such as cache memories and
directories[4]. MESI and H-NUCA protocols are written in
SLICC. So we use this language as a point of departure for all
our tools. At this level of abstraction, we skip the compilation
phase necessary to produce a model executable by the Gem5
simulator and we concentrate on protocol specifications.

SLICC language contains, among others, the keywords
necessary to specify the different parts of a finite state
machine (FSM). All FSMs receive request-response mes-
sages from the network in ports and send their messages on
out ports. Each message is pushed on a stack and the FSM
uses actions described in transitions to process messages and
to produce again, if necessary, messages to output ports to
communicate with the rest of network. This language pro-
duces C++ that can be compiled and linked to libraries to run
on the Gem5 simulator. We use only description written in
SLICC because we want to verify some properties at this ab-
stract level. Indeed, we want to evaluate certain properties,
deadlock freedom or state uniqueness for example, directly at
level of abstraction available in SLICC.

2.2 MESI Two Level protocol
The concept of MESI protocol, see Fig. 3, was introduced

in 1984 by Papamarcos and Patel [5]. Its detailed modeling
in SLICC, for the level 1 and level 2 caches is due to Binkert
et al. [6].

This cache coherence protocol contains 4 states described
below:

• Modified M : cache block has been modified, its value
is different from the one in main memory and it is the
only cached copy.

• Exclusive E : cache block is identical to what is in main
memory and it is the only cached copy.

Modi edExclusive

Invalid Shared

Local

Remote

Read

Write

Local

Remote
Write

Read

Figure 3: Basic MESI protocol

• Shared S : same value as main memory but copies may
exist in other caches.

• Invalid I : cache block data is not valid.

The variant that we use is called ”two levels”, so 4 stable
states of MESI are present in the automaton of the L1 cache
and we have a second automaton for cache L2. Fig. 4 is a
simplified view of the L1 cache FSM: the prefetch actions
have been removed, and transitions between states are merged
so as not to overload visualization.

In this FSM, NP state means that data is not present, this
state is weakly equivalent to state I and it is used for initial-
ization of cache block when Gem5 instantiates caches writ-
ten in SLICC. All other states present in this FSM are tran-
sient states between the stable states of MESI. These transient
states allow to indicate that the cached datum is in a certain
state and is in the process of being changed of state. Thus,
if the datum is accessed by the processor, the validity of this
datum is indeed decidable. If this datum is in a stable state
of MESI, we can take a decision of validity, but if it is in a
transient state, we have to wait until the block states reaches
a stable state to take a decision.

2.3 H-NUCA protocol based on MESI Two Level
Hybrid Non Uniform Cache Access (H-NUCA) is a new

protocol based on MESI Two Level and created by Hela Bel-
hadj Amor in the context of her thesis. The L1 cache of the
H-NUCA protocol is similar to MESI Two levels. On other
hand, the L2 cache is reworked and restructured. Indeed, in
case of MESI, the memory is partitioned in segments, and
each L2 cache is assigned a segment and only one, and caches
a subset of that segment. So there is no data redundancy at
this level. If two L1 caches request the same data, then it will
be same cache L2 which will deliver it. In case of H-NUCA
we have a network of L2 caches, a data can be in only one
cache, but it can be in any cache. This requires dialogs be-
tween the L2s and exchange of information. See [7] for more
details on this protocol.
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Figure 4: MESI protocol SLICC simplified representation

Non Uniform Cache Access (NUCA) has been described
by Kim et al. [8]. These designs embed a network into the
cache itself, allowing data to migrate within cache, clustering
the working set in cache region nearest to the processor that
makes use of it. Usually, there are two NUCA variants. S-
NUCA for static NUCA, a conservative approach that reduces
use of network and energy at expense of performance. D-
NUCA for dynamic NUCA, which negotiates use of network
and energy consumption for higher performances. H-NUCA
is a new form where H stands for hybrid. It seeks to achieve
two goals that are firstly to exploit efficiently the amount of
internal memory and secondly to ensure low latency for these
accesses.

H-NUCA is based on a point-to-point interconnection net-
work and has a memory hierarchy at several levels, just like
MESI Two Levels. Usually for systems based on this kind of
network there are two approaches to maintaining cache coher-
ence. Source snoop where a source diffuses a request to all
caches of the system. Second is home-based directory snoop
associated with the memory bank containing the cache block.
H-NUCA is based on an hybrid approach. It consists of mak-
ing a broadcast to the other L2s if the consulted home cache
does not cache the data.

These visualizations make it possible to observe differ-
ences at each level with MESI protocol but also the similar-
ities. Indeed, the automata corresponding to each level have
same structures but that of H-NUCA protocol contains again
eventually as Ack H or even Ack all up. These events are

therefore specific to the H-NUCA protocol, which will ne-
cessitate the generation of properties corresponding to them
and specific to this protocol.

3 Proving the two protocols
3.1 Methodology and tools

We are therefore seeking the verification of the protocols
described in SLICC by Theorem Proving. The protocol ver-
ification consists of listing and formalizing the properties we
wish to verify on the protocol. If a property is not verified, it
means that either the property is not true, or the protocol does
not verify the property, or the formalization of one of them
or both is not correct or is incomplete. Among the properties
that we wish to check, the absence of deadlock, i.e. the pro-
tocol does not contain any possibility of execution leading to
a deadlock, is a major one. We take it as an example. To ver-
ify it, we formalize what is a deadlock and we formalize the
protocol using the same formalism: COQ in our case. Then
it is enough to formalize that there is no presence of deadlock
in our protocol and finally we must verify that this property is
correct. We use the COQ proof assistant to verify this proof.
We do the same for all properties that we wish to verify then
we can make our verdicts. If all the properties are correct this
means that the protocols are correct on the set of properties
stated.

The formalization of the protocol itself consists in translat-
ing the representation of the protocol, here expressed in the
SLICC language, towards a formalism that allows to realize
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the formal proof of the properties. We use COQ because it
allows some automation of the evidence by the tactics it pro-
vides. Thus we use the same formalism between that of the
protocol and that of the properties to check and we can there-
fore realize the proofs easily using these formalizations. As
far as the protocols are concerned, the translation can be auto-
mated. So we first parse the SLICC implementation into the
form of an abstract syntax tree (AST). Then we translate the
AST to a representation accessible in COQ.

Figure 5 shows the approach we propose, that includes the
slicc2coq compiler, the tool that performs the compilation of
the SLICC files in COQ. In addition to the automatically gen-
erated files, we can see that other, external, files written in
COQ are added. These files contain the formalized descrip-
tions of the properties we want to verify, and are written by an
expert. A second library that allows to manipulate the nodes
of the ASTs was created to facilitate the proofs of properties.
Finally, we take the COQ files generated and the files con-
taining the properties and proofs and use the COQ analyzer
to provide a verdict. If the proofs are correct this means that
the protocols verifies the properties and therefore that it is
correct with respect to these properties. Otherwise, the COQ
proof wizard shows which properties are not checked. This
means either that the property is not respected by the protocol
or that the property is badly formulated and does not match
what happens in the protocol. In both cases, attention must be
paid to these properties and the formalization must be refined
if necessary.

All the tools have been written in the Objective Caml
functional language. Compilation is composed of two parts,
a SLICC parser as front end to parse the protocol descrip-
tion and create the corresponding AST, and a back end which
uses the AST to generate a desired implementation in a new
language, in our case COQ and graphViz.

A SLICC program consists of several modules and in order
to maintain a certain readability, we have to keep the hierar-
chy of modules. So if a SLICC program contains n separate
modules in a file, we will generate n separate ASTs. The
generated code in COQ or graphViz respects the hierarchy of
elements, and we therefore have a direct mapping between
original sources files and generated files. It should be noted
that in the graphViz back ends, which produces graphs to vi-
sualize finite state machines (FSM), only modules that con-
tain FSM are generated. So if the original sources consists of
several files but only a small part of them describe state ma-
chines, then only these files will be translated by the compiler
and the other ones will be ignored.

The listing 1 contains a part of the grammar used for
declaring types like Machines, Actions and Transitions. The
complete grammar is available in slicc parser.mly file.

The COQ back end of slicc2coq generates the AST in COQ
syntax. For each file, we create a COQ implementation with
an AST written on COQ. Then the proof file is created with
properties that are to be verified. Finally we compile the

COQ module and the compilation verifies if all properties
have been proved correctly.

A second tool slicc2gv, translates the SLICC implementa-
tion to a Graphviz representation for the FSM of given proto-
col. Graphviz is an open source graph visualization software.
Slicc2gv traverses the AST and translates all states as nodes
and all transitions as edges of a directed graph. This tool is
useful to represent FSMs and visualize the behavior of a pro-
tocol. ⌅

1 MACHINE LPAREN enumeration pairs RPAREN
COLON obj_decls

2 LBRACE decls RBRACE
3 {MachineAST($3, $4, $7, $9)}
4 | MACHINE LPAREN ident pairs RPAREN COLON

obj_decls
5 LBRACE decls RBRACE
6 {MachineAST((("MachineType", snd $3),

$3), $4, $7, $9)}
7 | ACTION LPAREN ident pairs RPAREN

statements
8 {ActionAST($3, $4, $6)}
9 | IN_PORT LPAREN ident COMMA itype COMMA

var pairs RPAREN
10 statements
11 {In_portAST($3, $5, $7, $8, $10)}
12 | OUT_PORT LPAREN ident COMMA itype,

COMMA var pairs RPAREN SEMI
13 {Out_portAST($3, $5, $7, $8)}
14 | TRANS LPAREN idents COMMA idents COMMA

ident_or_star RPAREN
15 idents
16 {TransitionAST($3, $5, Some($7), $9)}
17 | TRANS LPAREN idents COMMA idents RPAREN

idents
18 {TransitionAST($3, $5, None, $7)}
19 | TRANS LPAREN idents COMMA idents COMMA

ident_or_star RPAREN
20 idents idents
21 {TransitionAST($3, $5, Some($7), $10)

}
22 | TRANS LPAREN idents COMMA idents RPAREN

idents idents
23 {TransitionAST($3, $5, None, $8)}
24 | EXTERN_TYPE LPAREN itype pairs RPAREN

SEMI
25 {ExternTypeAST($3, $4, [])}
26 | GLOBAL LPAREN itype pairs RPAREN LBRACE

type_members RBRACE
27 {TypeAST($3, $4, $7)}
28 | STRUCT LPAREN itype pairs RPAREN LBRACE

type_members RBRACE
29 {TypeAST($3, $4, $7)}
30 | ENUM LPAREN itype pairs RPAREN LBRACE

type_enums RBRACE
31 {EnumAST($3, $4, $7)}
32 | STATE_DECL LPAREN itype pairs RPAREN

LBRACE type_states RBRACE
33 {StateAST($3, $4, $7)}
34 | type_member {TypeMemberAST($1)}⌃ ⇧

Listing 1: SLICC grammar declaration types
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Figure 5: Slicc2Coq Compiler

3.2 Formal verification with the COQ proof
assistant

Slicc2coq generates a COQ implementation of an AST. All
nodes types are inductive types, which allows to easily ma-
nipulate AST and extract information quickly. For instance, a
transition will have as type ”Transition of list ident ⇤ list
ident ⇤ option ident ⇤ list ident” where as we had previ-
ously presented, a transition contains a list of input states, a
list of possible events, an optional arrival state and a list of
actions.

As we said in the introduction we wish to remain at the
level of abstraction of SLICC without memory addresses rep-
resentation. Thus the ASTs written in COQ and generated by
slicc2coq tool contains only the corresponding to SLICC rep-
resentation without memory addresses mecanism. This leads
to focus strongly on constrains properties that we wish to
prove without the overhead of implementation. Indeed, if a
high level property needs a property available at low level of
implementation it will either have to admit the latter one by
hypothesis or try to construct an abstraction mechanism that
reflects the model low level behavior. At first we will admit
that necessary low level properties are available and true, and
this is our first strong hypothesis. Indeed, SLICC uses lower
abstractions that are assumed to ”behave as expected”, and
this can be verified only with a low-level execution check. In
order not to repeat this assertion for each hypothesis gener-
ated, it is necessary to assume these hypothesis and consider
at the SLICC level that the properties are correct if and only
if the hypothesis are verified in low level implementation.

To begin with, we verify determinism of FSMs, which fa-
cilitates understanding the behavior of protocols and ensures
that only transitions described have an effect on the execution
of the program and that any path in the automaton is reachable
in a distinct and unambiguous way. To verify determinism of
a FSM we use following theorem.
Property 1 An FSM is deterministic if there exists no two
transitions that comes out of the same state with the same
input words. ⌅

1 Require Import Get_Set_Slicc
MESI_Two_Level_L1cache_sm.

2 Definition transitionListL1 :=
3 getTransitionList

MESI_Two_Level_L1cache_sm.body.
4 Lemma L1isDeterminist : isDeterminist

transitionListL1.
5 simpl. (* simplify the call of

isDeterminist *)
6 intuition. (* solve the SAT clauses *)
7 Qed.⌃ ⇧

Listing 2: Cache L1 is deterministic proof example

It is enough to use machine description, or more precisely
its corresponding AST in COQ, to check if this theorem is
true for our protocol. We will go through the list of transi-
tions of the protocol and verify that determinism is ensured.
Concerning completeness, we assume that missing transitions
are so-called inert transitions. That is to say that we remain in
same state (i.e. there is an implicit self-loop arc on which all
missing conditions are or-ed) and also that the actions have
no effect on environment. We can convince ourselves that
this hypothesis is verified by observing the code generated by
the gem5 compiler. Indeed transitions that are not described
in SLICC are not generated and therefore the program will do
nothing on these missing transitions.

Listing 3 contains all the necessary functions to check if a
FSM is deterministic. The functions are implemented in COQ
and are used as follows. The ”isDeterminist” function takes
a transition list present in the FSM. This function verifies the
orthogonality of these transitions, i.e. in a given state there are
no two distinct transitions having the same input actions. The
”isDeterminist” function uses the ”itexist” function to check
that a transition is not present in a list. To verify that the L1
cache is deterministic we will retrieve the corresponding list
of transitions and then define the lemma L1isDeterminist as
in Listing 2. This lemma calls the ”isDeterminist” function
with the L1 cache transition list. The tactic simpl makes it
possible to simplify this call and thus to obtain the conjunc-
tion of the clauses to be satisfied. The tactic intuition allows
here to solve these clauses. If the clauses are satisfied, as
here, this means that the list of the transitions of the L1 cache
is deterministic and therefore that the FSM of the L1 cache is
also deterministic.
Property 2 The execution of the set of FSMs must not lead
to deadlocks or livelocks, that is to say all cache line FSMs
must be lock free.
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To check for deadlock during the execution of the proto-
col, it is necessary to analyze all the accesses in critical sub-
section and the dependencies between the processes with re-
spect to the taking of locks. The only nodes of the ASTs that
contain such a possibility are the In ports and Out ports, to
indeed add a message of request (or response) in these files
requires a request of atomicity so that the message is neither
disturbed nor forgotten by any interuption. Now at the level
of the SLICC there is no lock instruction to guarantee that
these accesses are atomic. This therefore creates the hypoth-
esis that at the level of the SLICC the input and output ports
have atomic access and that the mechanism of atomicity pre-
vents deadlock and livelock. This time again we must check
this property at the implementation level because at the level
of the SLICC it is impossible to verify it.

3.3 Verification of MESI two level
Following are specific propreties of MESI two levels.

These properties concern only the analysis of the MESI and
not of H-NUCA or another protocol. This shows that there re-
mains a part of the properties that is not generalizable because
they are specific to the protocol. Some of these properties
may be a concrete property of the system or a specific part of
a general property. Thus the properties which deals with the
coherence of the data in case of the MESI can be the property
that verifies the uniqueness for a given data to be in the ex-
clusive state E. This property is specific to the MESI protocol
but makes it possible to guarantee a more general property
that the data in the caches are coherente and warrants share
the cache coherence protocol. Let us therefore begin this part
by the properties of the MESI.

Property 3 For all data in a L1 cache line and in the E state,
no other copy of this data exists in other caches in lines with
a stable state (M , E or S).

In this case, stable state is one of the 3 stable states of the
MESI (M , E or S) for the L1 cache. Invalid state I is particu-
lar because if the data is present and is in the invalid state then
the property holds because the copy is considered irrelevant
in this state. Indeed the exclusive state E implies that only
the cache line being in this state contains the data and that
any other copy of this data that would still be present in the
caches is not clean or not terminal. To verify this, it is enough
to traverse the list of possible states present in the FSM of the
L1 cache. Then for any intermediate state it is sufficient to
verify if this state returns in the Invalid state in which case
the property holds. Otherwise it must be ensured that the exe-
cution of the protocol will not lead to another stable state. To
verify that no state leads to a stable state we verify for all the
states of the graph whether it is possible to arrive in one of
these states without going through the state of invalidation or
not. As we have just said, state I is the state of invalidation of
the given data considered as a state of start of the unfolding
of the automaton. So any passage through this state allows to
complete a cycle and start a new one. We therefore consider
that if a path passes through I then the property uttered is
true. In the case where a state allows the protocol to proceed
with one of the stable states other than I then by constructing

the protocol we assume that the property is true by hypothe-
sis and that the path is not actually reachable. Indeed, at the
level of the SLICC, we do not have enough information on
the results of the requests and the answers made during the
execution of the actions present in the transitions. ⌅

1 subsection determinist.
2 (* return true if src1 and src2 has a

common subset *)
3 Fixpoint hasinterIdent(src1 : list ident)
4 (src2 : list ident) := match src1 with
5 | [] => false
6 | e::rest => if(containIdent src2 e)

then true else
7 hasinterIdent rest src2
8 end.
9 (* return true if there exist same src on

t1 and t2 *)
10 Definition existsameSrc (t1: transition)

(t2: transition) := hasinterIdent
11 (getSrc t1)(getSrc t2).
12 (* return true if there exist same event

on t1 and t2 *)
13 Definition existsameEvent(t1: transition)

(t2: transition) := hasinterIdent
14 (getEvents t1)(getEvents t2).
15 (* return true if there exist same src

and event on transitions *)
16 Definition sameSrcandEvent(t1: transition

)(t2: transition):=
17 if(existsameSrc t1 t2) then
18 if(existsameEvent t1 t2) then true
19 else false
20 else false.
21 (* return true if there exist a

transition on l equivalent as t*)
22 Fixpoint itexist (l: list transition) (t:

transition) := match l with
23 | [] => False
24 | e::rest => if (sameSrcandEvent e t)

then True
25 else itexist rest t
26 end.
27 (* isDeterminist return true if l is

determinist, thus
28 * the FSM is determinist too if FSM is

complete *)
29 Fixpoint isDeterminist(l: list transition

) := match l with
30 | [] => True
31 | e::rest => ˜(itexist rest e) /\ (

isDeterminist rest)
32 end.
33 End determinist.⌃ ⇧
Listing 3: isDeterministic functions in Get Set Slicc.v
library

There exists an identical property of uniqueness for the
state modify M or it is enough to replace the state E by M
in the previous property 3. Here the property is similar to the
previous property because a given data being in the modified
state M must be unique as if it were exclusive. Modify state
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means that this data is the most up-to-date version of the sys-
tem and what has not yet been copied back into memory. On
the other hand, the proof and the conclusions of this property
are the same as before, this property is true if hypothesis are
verified on low level implementation.

The memory is distributed on the L2 caches with the fol-
lowing rule:

Property 4 The union of all the L2 caches address space is
equal to the memory address space and the intersubsection
between the L2 caches address spaces is empty.

This means that each L2 cache maps a given partition of
the memory address space and that there is no duplication of
data at this level. In order to verify this property and thus to
ensure the uniqueness of the data at the level of L2 caches,
it is necessary to verify the way the distribution of the data is
done in the implementation of the machine RubySlicc present
in gem5. It is this machine that is used to distribute the data
in the module RubySlicc ComponentMapping.sm are the
functions that allow to map the addresses to the correspond-
ing block. At the level of the SLICC the implementation of
these functions is not present because they are low level func-
tions. So the partition property of the memory must be as-
sumed at the SLICC level and checked again at low level. We
have nevertheless verified this at the low level and the corre-
sponding functions to distribute the data realizes many blocks
of distinct memory and associates different L2 cache without
repetition or cross-checking of the data. So the property is
true in the case of the MESI.

3.4 Verification of H-NUCA
Now let’s see properties specific to H-NUCA protocol.

What properties need to be checked in this protocol? As its
structure is based on the MESI protocol, this protocol has
similarities with the latter. Certain properties of the MESI
can be directly reused for H-NUCA, for example property 3.
Indeed, at the level of the L1 cache H-NUCA contains the two
exclusive E and modify M states and thus property 3 which
deals with the uniqueness of these states, remains true in this
protocol. Thus we must apply the same proof as MESI that
has been verified, hence the properties remains true. How-
ever, as well as in the MESI case, some properties are specific
to H-NUCA and can not be generalized.

Property 5 Each data in L2 caches is unique.

Although this property appears to be very close to property
4 of the MESI, the verification of this property in H-NUCA is
quite different. The distribution of the memory is not carried
out in the same way between MESI and H-NUCA. To ensure
the veracity of this property, we will consider the following
cases. If a L1 cache searches for a data that is not present in
that cache then it requests the data from the target L2 cache.
There are three possibilities :

• The L2 cache has the data then it transmits it to the L1
cache.

• Otherwise, if the L2 cache does not have the data then it
will broadcast a request and query the other L2 caches.
If one of them has the data then the L1 cache, which
requests the data is notified that other L2 cache has the
data.

• If no L2 cache has the data then the request falls through
to memory.

It is easy to see that at a given instant there is at most one L2
cache which possesses the data and in the worst case no cache
has the data. Thus we have uniqueness of the data at the level
of the L2 caches and the property is checked.

Some of the properties at the SLICC level can be proved
but sometimes it is also necessary to look for the low level
implementation in order to validate some assumptions neces-
sary for the properties to be true.

4 Related work
4.1 Automatic Verification

Stern and Dill [9] describes an ongoing effort to verify
cache coherence protocol of IEEE/ANSI Standard for Scal-
able Coherent Interface (SCI) using the Mur' verification
system. Mur' automatically checks if all reachable states
in the model satisfy given specifications. Stern and Dill [9]
constructs the model in three steps.

• Abstraction : extract details of SCI that are important for
cache coherence protocol.

• Simplification : make model construction possible in
a ”finite” amount of time. Strong ordering constraints
were assumed, not modeling of DMA reads and writes
and not modeling full set cache coherence protocol.

• Implementation : keep some parameters, like the num-
ber of processors, the number of lines in each cache, the
number of memories and the numbers of different data
values.

SCI C code includes many assert statements to detect er-
rors while running simulations with an in-house built exe-
cution environment. C code contains several statements for
detection of memory and cache inconsistencies. Stern and
Dill [9] adds some invariants to Mur' model to specify more
accurately cache coherence. They conclude by saying that
the abstraction done in modeling was relatively simple and
straightforward. Verification should be viewed as a debug-
ging tool. The task of modeling in a formal model should be
reducible because it takes a lot of time.

4.2 Correctness for Tardis Cache Coherence
Protocol

Yu et al. [10] prove correctness of Tardis, a cache coher-
ence protocol, by developing an intuitive invariants system.
Each memory operation in Tardis has a corresponding time-
stamp which indicates its global memory order. Every cache
line in Tardis has a read time-stamp (trs) and write time-stamp
(wts). wts is the time-stamp of last store and rts is the time-
stamp of last potential load to cacheline. Yu et al. [10] model
a two-level memory subsystem. They prove correctness of
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Tardis protocol specified by proving that it strictly follows se-
quential consistency and then they add deadlock freedom and
live lock freedom to analyze Tardis in parallel composition.
A parallel program can be seen as an sequentially consistent
if result of any execution is same for all processors. Thus
they create some properties to verify if the system satisfies
this consistency model. This approach is based on Lamport’s
classical time-stamp model. Then they prove deadlock and
live lock freedom on Tardis.

For Deadlock they define this Theorem :
Theorem 4.1 After any sequence of transitions, if there is a
pending request from any processor, then at least one transi-
tion rule can fire.
And for Livelock they define this Theorem :
Theorem 4.2 After any sequence of transitions, if there ex-
ists a pending request from any processor, then within a finite
number of transitions, some request at some processor will
dequeue.

These two theorems have been proved in their article and
thus they provide rigorous proofs of correctness for Tardis
cache coherence protocol.

4.3 Verified compilation
It is also possible to check programs directly in the com-

pilation chain. This is presented in the works of Leroy [11],
Blazy et al. [12] and Boldo et al. [13]. All these works aim
to improve the verification and validation of program during
the compilation of these program by adding some semantic
rules. Each compilation step contains verifiers which allows
to master the compilation chain and thus ensure that transla-
tions remain correct at all levels. Thus, a program compiled
in this way is verified and the guarantee of this verification
is ensured by the compiler and not by an external tool. The
main interest is therefore to simplify the task of the developer
who will have to make a minimum effort to ensure that the
program follows the specification associated with it. Blazy
et al. [12] defines a first syntax to abstract the program C to
be analyzed. This syntax is of the language Clight that is used
to realize the first stage. The dynamic semantics of Clight is
also described in their article. After this step it starts trans-
lating from the Clight to a new abstraction named C#minor.
And so on. Step by step it translates the program by adding
verification mechanism either directly in the semantic or in
the translation tools.

Boldo et al. [13] describes the verification of floating point
computations in compilers. They ensure in the compiler that
the computations remain correct after modification. This ver-
ification remains in the same spirit as the other compilation
phase, it tests to ensure the validation and verification of the
program at compilation time.

All these works made it possible to realize the CompCert
compiler which is a C compiler that aims at checking the
given programs and generating a verified compiled version

of them. This compiler is available at the following address:
http://compcert.inria.fr.

4.4 Formal Verification of Hardware Designs with
COQ

Braibant and Chlipala [14] present an implementation of
certified compiler for a high-level hardware description lan-
guage (HDL). And Vijayaraghavan et al. [15] presents a
new framework for modular verification of hardware designs.
Both uses Coq proof language to model and verify their sys-
tems. They developed a modular proof structure for dis-
tributed shared-memory hardware systems. They use labeled
transition systems (LTS), consisting of a set of states and a
set of transitions between those states. An LTS[16] is a tuple
(S,A,!, s0) where :

• S is a (finite) set of states;

• A is a set of actions;

• !✓ S ⇥A⇥ S is a transition relation;

• s0 2 S is initial state.

An LTS describes the behavior of some system or proto-
col: in any state of the system, a number of actions can be
performed, each of which leads to a new state. For exam-
ple, store atomicity can be described as an LTS that receives
load and store requests. And all other parts of their evidences
will use a description of LTS. Vijayaraghavan et al. [15] de-
fine sequential consistency (SC) property and they prove par-
tial correctness in Hoare logic of this consistency. Sequential
consistency [17] is one of many consistency models used in
concurrent systems.

“The result of any execution is same as if (read and write)
operations by all processes on data store were executed in
some sequential order and operations of each individual pro-
cess appear in this sequence in order specified by its pro-
gram.”

Andrew S. Tanenbaum and Maarten van Steen [18]

In addition to this mechanism Vijayaraghavan et al. [15]
use the COQ proof assistant. They have modeled all neces-
sary structures in their COQ library and then declared and
proved all properties in order to carry out verification of the
system.

Bidmeshki and Makris [19] describe a Verilog to Coq con-
verter to convert a hardware description language (HDL) to a
formal representation. Verilog (IEEE 1364) is a HDL used to
model electronic systems. It is used in design and verification
of digital circuits at register-transfer level (RTL). They con-
vert Verilog representation into an equivalent in COQ with
inductive type value corresponding to low (lo), high (hi) and
x (undefined) and all description of bus and elements in Ver-
ilog. VeriCoq creates axioms for modules and source code
represent module instantiation.
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4.5 Verification by temporal logic model checking
Clarke et al. [20] describe the formalization and verifica-

tion of the cache coherence protocol included in the IEEE
Futurebus+ standard draft. They construct a precise model
of the protocol in a hardware description language and then
use temporal logic model checking to verify if the model sat-
isfies a formal specification. They use symbolic model veri-
fier (SMV), a temporal logic model checker based on binary
decision diagrams (BDDs). SMV accepts specifications ex-
pressed in the computation tree logic (CTL) temporal logic.
Clarke et al. [20] conclude that all formal verification involves
making a model of system under consideration. Model check-
ing is not limited to finite-state models arising from hardware.
Formalization and analysis of other type of systems should
also be possible using SMV.

Hendriks et al. [21] use temporal logic and model checking
for system analysis. They use Metric Temporal Logic (MTL)
on execution traces. Checking validity of an MTL formula is
a fundamental problem in model checking and runtime veri-
fication. They use MTL for two reasons, first to check if the
system follows some properties and when some formulas are
not respected, and second to analyze performance and scal-
ability of the system. One can evaluate time complexity of
an execution trace with temporal logic. Hendriks et al. [21]
concluded that MTL provides a flexible mechanism to specify
quantitative properties of execution traces.

5 Conclusion and future work
Program verification is a difficult task, it is dependent on

the technique used and the level of abstraction chosen. In
this work we target the verification of complete cache co-
herence protocols described using the SLICC language, a de
facto standard for this task. The SLICC descriptions are at
a fairly high level of abstraction, as they rely on an API to
perform the actual implementation related actions. Working
at the SLICC level causes some problems. Indeed, properties
that are needing data or addresses associated with these data
generates hypotheses that can not be verified at this level of
abstraction. Nevertheless, the verification of protocol can be
realized directly by verifying their description. We can know
if the states that are described in the FSMs are reachable or if
the FSMs are deterministic. The formal verification by The-
orem Proving also allows us to quickly find bugs in the de-
scription of protocols and thus modify this protocol directly
at this level of abstraction.

We are interested in the complexity concerning the com-
parison between theorem proving and model checking. What
emerges from this work is that the amount of work the verifi-
cation engineer has to produce is almost the same between the
two techniques. Indeed, there is a (potentially large) gap be-
tween specification and implementation that has to be bridged
by model translation for model checking. And we have the
same discrepancy in the formalization of specification and
implementation in theorem proving. On the other hand what
the literature shows is that one can use the model checking

as first pass in order to check the top level of property and
for that which would not be checked, one could formalize the
system and these properties in order to be verified again with
theorem proving. The combination of the two approaches
makes it possible to have two different views of the problem,
therefore to reinforce the verification of the model.
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Properties
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Prover Result
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Compiler
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C
Files

Coq
Files

Theorem
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Slicc2Coq
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Files

Manual { Generated
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Figure 6: Two level verifier

Another possible approach would be to analyze as we are
currently doing the SLICC level and then retrieve the hy-
potheses verified at the level of the implementation as shown
on Figure 6. Then create a second tool that would do the same
work at low level with the previous hypotheses as low level
properties to check. Thus, using this two-phase technique
we could verify the protocols both at the level of the SLICC
and at the level of the implementation and thus reinforce the
validation of the protocols. This technique would be similar
to the one that was realized in the compilation checked by
Leroy [11] for the CompCert compiler. Theoretical study of
this new tool could thus be carried out as a future work.

Finally, we could modify the slicc2coq compiler so that it
automatically generates the necessary assumptions to prove
from a SLICC protocol and a list of properties checked. Thus
we would have the list of hypotheses to prove at the level of
implementation, and then check them manually because the
automatic verifier does manage to reach a conclusive result.
Thereby we would automate the verification part as much as
possible to concentrate on the sensitive points of the proto-
cols.

All the tools that we have realized and developed are avail-
able from the forge of the System Level Synthesis team of
the TIMA laboratory. The tools are written in Ocaml and the
available libraries are written in COQ without modification of
the languages and without other dependency.
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A Language for the Smart Home

Lénaïc Terrier

Abstract
This report presents CCBL (Cascading Contexts
Based Language), an end-user programming lan-
guage dedicated to Smart Home. We designed
CCBL to avoid the problems encountered by end-
users programming with ECA (Event Conditions
Actions), which is the dominant approach in the
field. We present the results of a user-based expe-
riment where we asked 21 adults (11 experimen-
ted programmers and 10 non-programmers) to ex-
press four increasingly complex behaviors using
both CCBL and ECA. We show that significantly
less errors were made using CCBL than using ECA.
From this experiment, we also propose some cate-
gorization and explanation of the errors made when
using ECA and explain why users avoid these errors
when programming with CCBL. Finally, we ex-
plore error reporting for CCBL by identifying two
specific errors and by developing a solution base on
Heptagon and ReaX to detect them in CCBL pro-
grams.

1 Introduction
[Mennicken et al., 2014] define Smart home as “a home

that either increases the comfort of their inhabitants in things
they already do or enables functionalities that were not pos-
sible before through the use of computing technologies”. As
said in [Holloway and Julien, 2010 ; Crowley and Coutaz,
2015] increasing comfort cover a wide range of tasks : saving
energy, increasing security, helping with every day chores or
providing distant control and awareness to users.
In this work we consider that inhabitants of smart homes

must have the control over the system. This means that inha-
bitants should be able to override the system behavior. More
fundamentally, we consider inhabitants not as mere consu-
mers of services provided by the home, but on the contrary,
in the same vein than [Fontaine, 2012 ; Dautriche et al., 2013 ;
Coutaz and Crowley, 2016], we consider that inhabitants are
also builders/makers. In order to support this underlying phi-
losophy, we aim at proposing a whole End-User Develop-
ment system in the long term. However, this work focus on
one aspect of such a system, namely the programming lan-
guage. In the first part of the report, we study which program-
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Actuators

Smart Home
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Network
Services

Effects

Physical
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Users

Figure 1 – Smart Home Summary Layout

ming language is the most appropriated to enable inhabitants
to program behaviors of their smart home. Based on that, in
the second part of the report, we study possible static verifi-
cation that can be checked when using such a language.
In the rest of this section, we first present smart homes from

a technical perspective, then from the perspective of its inha-
bitants. Last, we discuss how inhabitants can communicate
their needs to their smart home.

1.1 Smart Homes : a technical perspective
From a technical point of view Smart Home services are

provided by a Home Automation System which is based on
the conjunction of three types of elements : sensors (thermo-
meter, lightmeter, switch, clock…), actuators (lights, shut-
ters, sound system…), network services (weather, traffic,
synced calendar…). This view is summarized in the figure 1.
As observed in [Demeure et al., 2015 ; Brush et al., 2011],

in the industry there is two types of home automation systems.
What we could call heavy installations are installed when the
house or apartment is built. They rely on wired hardware fixed
in walls and ceilings such as KNX technologies. In recent
years, another type of home automation systems has emer-
ged, what we could call light installations are based on wi-
reless communicating technologies such as Z-Wave 1 or En-
Ocean 2.
Variety of technologies is a both a recurring theme and a

1.
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major issue in the home automation domain. Companies pro-
vide each their own technologywith their own standard.Many
standardsmeans high incompatibilities and users are currently
forced to rely on systems that aggregate some of those stan-
dards.
Again, there is two solutions to this standard problem. On

one hand, solutions like eeDomus 3, Zipabox 4 or Home-
Seer 5 that aggregate as much as standards as possible so they
can be compatible with most devices. On the other hand, so-
lutions likeApple HomeKit 6 andMicrosoft HomeOS 7 that
implement one standard. If a device constructor wants its pro-
ducts to be compatible, the device must implement the proper
standard. Only companies powerful enough to dictate their
conditions to the market can only provide this solution.

1.2 Smart Home from the perspective of its users
The users of a smart home are its inhabitants and that is

one of the reason it is a unique and complex environment.
A household is usually home to several inhabitants organi-
zed with specific sociological relations. Each inhabitant have
needs, desires and habits that can be similar, different or even
in contradiction with others. The smart home will not be the
solution to solve these contradictions but should at least consi-
der them. As observed in [Brush et al., 2011 ; Demeure et
al., 2015], inhabitants have different roles regarding the smart
home system. Usually, one inhabitant (the guru) is the only
one in the household to maintain and modify the home auto-
mation system. The others inhabitants merely provide feed-
backs to the guru. Although the guru is technically the admi-
nistrator of the system, observation shows that often another
inhabitant holds the final decision power. In a family, the guru
is usually the husband and must receive validation of the wife
to confirm a behavior of the system or the adoption of a new
device. In the literature, this is called the Wife Acceptance
Factor [see Demeure et al., 2015].
That being said, the guru is not always the husband. For ins-

tance, in [Coutaz and Crowley, 2016] the author experimented
home automation system on her own household and, although
being the wife, she rapidly emerged as the guru. In the paper
she explains that after a certain amount of time, the system
reaches a stability meaning the users will not edit its behavior
much. After they are used to the installed behaviors, they start
playing with them. In the paper, she gives the example of a
behavior the family designed to reduce energy consumption :
when the fridge is open for a certain amount of time the sys-
tem sends an email to alert the family members. Inhabitants
turned this simple rule into a communicating tool. The author
explains that they are using it as a “Hurry to get home, I am
cooking dinner” notification. This kind of misuse of a tool to
achieve a new goal can only emerge when the family knows
well its environment, including the automation part.
In [Davidoff et al., 2006], the author highlights the diffe-

rence between a family routine and a computer procedure.

3.
4.
5.
6.
7.

A routine is flexible and subject to improvisation and changes
whereas a procedure is not. Inhabitants do not really notice
the system when the routine flows normally. However, when
a routine breaks, if the systems does not acknowledge it and
continues as if the routine was continuing it becomes another
issue in the crisis. Being useful means that the system should
help the users solve the crisis.

1.3 Interaction between inhabitants and their
smart home

The simplest way of interacting with a smart home is pro-
bably the direct control (vocal or via graphical user inter-
faces). [Demeure et al., 2015] observe that, even in 2015,
it was frequent for inhabitant of Smart Homes to be equip-
ped with vocal recognition system that could control actuators
(e.g. “Close the shutters”, or “Turns the TV on”). This trend
continue nowadays with the apparition of assistants such as
Google Home 8 or Amazon Echo’s Alexa 9.
Automatic learning represents another strategy to inter-

act with smart home. In this approach, the system learns for
the users habits and behave accordingly. Several systems al-
ready use this technology. For instance, hot water recircula-
tion systems are useful for saving energy. They take the unu-
sed hot water from pipes to put it in the boiler again. When
they are coupled with automatic learning, the energy saving
are even greater because the hot water is produced by the boi-
ler just in time. Moreover, the system can place hot water in
the pipes just before the users need it so that they will imme-
diately get hot water without waiting [Frye et al., 2013]. Al-
though automatic learning works well for precise tasks with
few variables it does not cover all the use cases. For instance,
it is almost impossible for an end user to teach an automatic
learning system to change the color of a lamp depending on
the status of the train he uses to commute.
The approach for interacting with the system that we use

in this work is based on End User Development. It relies on
the idea that the smart home will enable inhabitants to pro-
gram the behavior they want. End User Development (EUD)
is defined in [Lieberman et al., 2006] as follows : “a set of me-
thods, techniques and tools that allow users of software sys-
tems, who are acting as non-professional software developers,
at some point to create, modify, or extend a software artifact”.
Because the user needs to code the behavior he wants from
the system, this solution is more demanding than automatic
learning. Programming is a process that consist in translating
mental representation of behaviors into a set of instructions
executable by a system. It has to be noted that the fundamental
motivation for using a smart home is not to learn how to pro-
gram but rather configure the system behavior to better sup-
port inhabitants (in terms of comfort, energy saving, security,
etc.). Developing is an even broader process, which include
finding interesting behaviors to program but also debugging
or evolving existing behaviors. Of course, end-user develop-
ment, automatic learning and direct control can be used toge-
ther to better assist the inhabitants.We choose to focus on end-
user development for two reasons : first, from a philosophical
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perspective, it considers the inhabitants as builders more than
mere consumers ; second, this approach is more mature with
respect to automatic learning while being still challenging in
terms of research [Crowley and Coutaz, 2015]. Of the many
aspects of end-user development for smart home, we choose
to focus on the programming language and on static verifica-
tions of programs.

2 Event Condition Action (ECA) and Trigger
Action Programming (TAP)

In the domain of end-user development for smart home
and internet of things (IoT), the highly dominant used type of
language is ECA; Event Condition Action. As observed in
[García-Herranz et al., 2010 ; Brush et al., 2011 ; Demeure et
al., 2015 ; Cabitza et al., 2015, 2016 ; Fogli et al., 2016], ECA
is used in most home automation systems on the market.
ECA programs are usually a set of rules in the form :

“WHEN event IF condition THEN action”. When the
occurs, if the system evaluates the boolean to true,
then it executes the . ECA programming languages are
derived from practice ; there is no unique formal definition
that we can refer to.
In this report, we will use the definition proposed by

[Pane et al., 2001]. The authors state that ECA programming
consists of specifying a set of rules where each of them “au-
tonomously reacts to actively or passively detected simple or
complex events by evaluating a condition or a set of conditions
and by executing a reaction whenever the event happened and
the condition is true”. This means that :
— A rule is activated only by events ;
— Its execution is independent of other rules in the sys-

tem;
— It implements a reaction to the incoming event ;
— It contains a guarding condition to execute such actions.
Trigger-action programming (TAP) is a variant of ECA.

Recent works [Ur et al., 2014 ; Huang and Cakmak, 2015]
used this term although authors do no explain in which way
it differs from ECA. [Häkkilä et al., 2005] seems to be the
first to refer to it. While [Dey et al., 2006] do not use the term
(they write about if-then rules), they propose a very similar
behavior and are cited in [Ur et al., 2014] as an example of
system that support trigger-action programming.
While none of the authors of aforementioned works do pro-

vide formal definition of trigger-action programming, we pro-
pose the following one, inspired by [Häkkilä et al., 2005] :
Trigger action is a variant of ECA, where it is possible to ex-
press rules of the form “IF conditions THEN actions”, where
conditions do not make any reference to an event. The seman-
tics of this form of rule, expressed in standard ECA, is “WHEN
conditions become true THEN do actions”.

2.1 ECA and TAP in existing tools
One of the most popular tool using TAP is also probably the

simplest. IFTTT is a online service that use
rules, as suggested by its name : IFTTT means If This

Then That. Rules are called “applet” and one event can be
bound to several actions in one applet. The strength of IFTT
relies in numbers. More than 400 services are connected to

IFTTT which runs more than 1 billion applets executed every
month 10. In 2016, IFTTT users enabled (started using) more
that 15 millions applets and was used over 102 countries 11.
Technically, IFTTT uses a degraded version of ECAwith only
one event and no condition. The programmable behaviours
are in theory lower than its competitors (low ceiling) howe-
ver, what it lacks with its language, IFTTT makes up with the
services connected.
Systems like eeDomus and HomeSeer offer capabilities

that are more advanced [Demeure et al., 2015]. They enable
end-user to combine multiples conditions and actions in a
same rule. Although we do not have access to a full descrip-
tion of their system (these are industrial products), it is inter-
esting to notice that manufacturers added functionalities such
as expressing duration for observed state (the temperature has
been lower than 10 degrees for 5 minutes). This is the result of
a capitalization of years of experience in the domain of home
automation, the eeDomus home automation system even re-
fined ECA into ECAN (N standing for notifications), expli-
citly stating that notifications are semantically different from
other actions (such as opening shutters). The programming
language used in these tools is ECA, although some of them
(Homeseer) also support TAP programming.
OpenHAB is an open source project for controlling and

programming Smart Homes. OpenHAB is quite popular in the
community ofDoItYourselfers. OpenHAB enable users to de-
fine ECA rules composed of a set of events and a block of
events. If the system triggers any event of the set of instruc-
tion, then the system executes the block of instructions. This
block of instructions may contain conditions and branches.
Consequently, OpenHAB only supports strict ECA program-
ming, it does not support the expression of TAP rules of the
form “IF conditions THEN actions”. OpenHAB provides a
high ceiling, it enables users to program with variables, but it
also has a quite high threshold for beginner to start program-
ming.
Tasker is a tool to program automation on Android smart-

phones. It can use almost every input of the phone as a trig-
ger and almost every output as an action [Lucci and Paternò,
2014]. The user can make ECA-like and TAP-like programs.
Although the possibilities offered by Tasker are great (high
ceiling), the user needs time to understand the application and
all its concept (high threshold). Tasker is oriented towards an-
droid hackers and power users. It has to be noted that Tasker
implements a non sequitur for TAP rules : it proposes to auto-
matically roll back the state of devices modified in the action
part of the rule when the conditions become false. For ins-
tance, if we consider the program “IF I am at home THEN
turn on Wi-Fi”, Tasker will turn on the Wi-Fi when I enter
home, but it will also turn it off when I exit home if it was
off before I entered home. This semantic is not part of TAP
programming ; however, it is useful and seems to have been
added to Tasker as an empiric response to a concrete problem.
AppsGate [Coutaz et al., 2014a,b ; Coutaz and Crowley,

2016] propose to structure rules into programs. Each program
contains a stub composed of actions that are executes once
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Figure 2 – Different types of triggers and actions (taken from
[Huang and Cakmak, 2015])

the program is activated. The core of each program is a set
of ECA rules that are active as long as the program is active.
In addition to ECA, AppsGate introduce a new rule to take
into account non sequitur reasoning. This new instruction is
an empiric response to the problems regarding non sequitur
reasoning observed in [Fontaine, 2012] in the same vein than
what [Huang and Cakmak, 2015] proposed later.
“While <state-condition> then keep <state> and as soon it
is not true anymore then IMPERATIVE-SECTION” For ins-
tance :
“While TV is ON then keep Lights OFF and as soon as it is
not true anymore then turn Lights ON.”
In spite of the structure in programs, the programming lan-

guage of AppsGate do not provide means for specifying prio-
rities among rules nor among programs. Consequently, Apps-
Gate propose a debugger with a “graph of dependency” that
explicit which programs access to which devices.

2.2 Identified issues with ECA and TAP
Non sequitur reasoning
In [Huang and Cakmak, 2015] the author studied the dif-

ferent types of triggers and actions in TAP programming.
They separated triggers in two categories : events and states,
and they separated actions in three categories : instantaneous
(sending an email), extended (brewing coffee) and sustained
(turning on a light). These triggers and actions are illustrated
in the figure 2. Based on that categorization, they observe that
many users tend to do non-sequitur reasoning. When working
with rules of the form “WHEN state THEN DO sustained ac-
tion”, they automatically associated this with the rule “WHEN
not state THEN DO reverse sustained action”. For instance,
the rule “WHEN I am at home, THEN lights are on” is inter-
preted as implying that “WHEN I am not at home, THEN lights
are off ”. This is probably what Tasker’s authors also observed
empirically. This was also noticed in [Fontaine, 2012].

Event enumeration
[Nandi and Ernst, 2016] studied 96 home automation rules

written by end-users for the OpenHAB framework. The au-

thors show that 77 of the 96 rules (80%) had a trigger part
that contains fewer events that necessary. This mean that it is
difficult for users to enumerate all the necessary events that
are relevant to trigger a rule.

Coordination problems
While aforementioned researches study rules quite in iso-

lation from each-others, [Cano et al., 2014] study the coordi-
nation problems in ECA rules. They propose three categories
for them :
1) Redundancy, when two rules will at least partially do the
same actions when an event occurs ;
2) Inconsistency when two or more rules send contradictory
actions to a same device ; and
3) Circularity when rules get activated continuously, without
reaching a stable state.

2.3 Conclusion
ECA and TAP are dominant languages in the domain be-

cause they are easy to use to express simple behaviors. Ho-
wever, we identified several problems with ECA and TAP ba-
sed on the literature. In order to overcome these problems, we
propose to define a new language with the objective to keep
ECA’s low threshold while providing a higher ceiling for ex-
pressing behaviors that are more complex. The next section is
dedicated to the presentation of this language.

3 Cascading Context Based Language
We have designed Cascading context Based Language

(CCBL) a programming language for end-users in the smart
home. This language is designed to avoid pitfalls observed in
ECA and in TAP, and to provide an alternative to it. CCBL
was design with two main goals in mind :

Low threshold What is simple to express in ECA should
be at least as simple to express in CCBL. In ECA, event small
programs with one or two rules can be a problem if the pro-
grammer uses non sequitur reasoning. We designed CCBL to
be fully compatible with this ind of reasoning. Since the re-
search shows that people tend to use it without noticing, we
think it should not be a source of errors but a functionality.

High ceiling Complex or big programs should be writeable
in CCBL. In ECA, more rules means less predictability : all
the rules have the same level of priority and the visual aspect
of ECA is a list of rules without any structure. Since we’re
doing EUD, the programmers are not professional developers,
we think the programs should be quickly readable. We desi-
gned CCBL so that the structure of the program is not just
cosmetic but plays a major role in the programming.

3.1 Principles
In the following sections, we illustrate CCBL concepts with

graphical and textual notations to make it more clear for rea-
ders. However, it has to be said that our aim is not to propose
a syntax nor a style for the language. We focus only on the
logic and expressiveness of CCBL.
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CCBL is defined in several layers of increasing complexity.
For the sake of the explanation, this paper stops at level

(see appendix).

3.2 Context
A context is made of two elements : a selector and a code

block. The former determines when the context is active, the
latter is a list of instructions to execute. The selector is an ex-
pression composed of states, events and operators which can
be reduced to a boolean value. A context can be either a state
context or an event context depending on the nature of its
selector.

State context
A state context is a active while the state described in its se-

lector is true. The code block can only be composed of values
to maintain. The code sample 1 illustrates a state context.

Code sample 1 – Concrete context example

Event context
An event context is triggered when the last event of its

selector is triggered. Its code block can only be composed
of punctual or extended actions. An event context is com-
posed by adding the keyword do at the end of its selector.
The code sample 2 illustrates event contexts. Note that in the
code sample 2b the notification is sent at the end of the state

. In CCBL a state is always com-
posed of two events : the starting event and the ending event.
Since an event context is triggered at the last event described
in the selector, it’s the ending event of the state that is used.

(a) The button sends an SMS
to Paul when it is pushed

(b) The systems send a no-
tification when the coffee is
ready

Code sample 2 – Event context examples

3.3 Cascade and non sequitur reasoning
State contexts can hold in their code block another context :

they can be nested. It’s important to understand that only state
context can have children contexts. Event contexts can be
child of another context but can not have children.
When a context is inactive its children are not awake, they

will not activate even if their selector becomes true. A context
is sensitive only if its parent is active. The code sample 3 illus-
trates a nesting. Here for the context “Martin.isHome” to be
active, the lamp have to be lit. We should note also that the

nesting is strictly equivalent to a conjunction in term of selec-
tor. In this case, we could have only one context with the se-
lector “Lamp.isLit andMartin.isHome”. Nested contexts form
a tree of contexts. We call this a cascade because of the simila-
rity of concept with the W3C’s Casacading StyleSheets. Each
context is a subcase of its parent, and inherits of its selector.
We call the total selector, the conjunction of the selector of a
context and the conjunction of the selectors of the ancestors of
said selector. The selector we build previously

is the total selector of the child context
in the code sample 3a.
In the code sample 3b, the parent and the child act upon the

same channel : the color of the lamp. Since the child represent
a subcase of its parent, its total selector is more precise, the-
refore the child have priority.

(a) The Lamp is lit in blue
while Martin is home

(b) The lamp is orange when
Alice is home but unavailable.
The lamp is green when Alice
is at home and available.

Code sample 3 – Nesting examples

At the root of the tree, there is a special context. This
context is called default context or root context and has the
special selector . This context is a state context which se-
lector is always true, meaning the context is always active. It
is used to describe the default state of the system. The code
sample 4 illustrates this context. In this example, by default,
the lamp is off. While Martin is at home, the lamp is on. In
CCBL, all states and channels have a default value defined
by the system, the default context is location where the pro-
grammer can specify a default value to override the system.
Because the default context is at the root of the tree, its ins-
tructions have the least priority in the tree, meaning any des-
cendant of the root context can override these instructions.

Code sample 4 – Root context example : the lamp is lit while
Martin is home

3.4 Priority and conflict resolution
Since several contexts might try to maintain one channel to

different values, it is important to define an order of priority
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to enforce predictability. We think it is important that this or-
der is constant and total to provide consistency (meaning it is
impossible for two context to have the same priority). In this
report we do not provide the final set of rule to define priority,
this matter is still under study. For now, we have implemented
the following strategy :

Lineage A child has higher priority than all its ancestors.
The reason behind this is, as we said earlier, because a child
describe a subcase of its parent. A child adds precision to the
context.

Order of declaration Because it is important that each
context have a unique level of priority so that all conflict are
solvable, we must provide a fallback absolute priority order.
We choose to say that the latter declared a context the hi-
gher the priority. This means a context added at the end of
a program would be the one with the highest priority. Also, in
conjunction with Lineage this mean, if a context A has prio-
rity over a sibling context B because A was declared after B,
then A has priority over all descendants of B.

These two rules add together describe a priority order that
corresponds to a depth-first tree search. We think, other prio-
rity rules can be interesting, either to add to the current stra-
tegy or to give choice to the end-user.

Complexity Since a nesting can be view as a conjunction
of selectors, this means the Lineage give higher priority to
longer total selectors. In a selector, the higher the number
of events, states and operators the more precise the situation
describe. We think more precise context should have priority
over less precise contexts.

Implication If a subcase have priority, this is also true for a
boolean implication. This means that if a context A implicates
a context B, then the context A have priority over B.

3.5 Expressive power of CCBL with respect to
ECA

CCBL has the same expressive power as ECA. An ECA
rule can be translated into structure composed of a state
context having C for selector and an event sub-context ha-
ving E for selector and A for actions. The way CCBL handles
a context having an event for selector is different from a se-
lector based on a state : When the event E occurs, actions A
are performed. The code sample 5 illustrate an example of
translation of one ECA rule.

4 User experiment
We performed a user experiment to test CCBL against

ECA. The main goal of the experiment was to see if users
were able to use CCBL to write programs without making er-
rors. We specifically chose to make them write programs that
associate states from devices to contexts since we know from
[Huang and Cakmak, 2015] that some users may build wrong
mental models of them.

(a) CCBL program (b) ECA program

Code sample 5 – Use the TV to notify the user when an email
is received

The experiment was set up in the winter 2016/2017, we
took 21 participants living in the south-east of France, aged
between 18 and 51 (average : 31.5 years old, standard devia-
tion : 9.7 years). None of them were equipped with a smart
home system. 11 are programmers, 10 have no programming
knowledge. Participants were split info four groups according
to their programming knowledge and the order in which they
used the languages during the evaluation (ECA and CCBL).
Each evaluation session last nearly one hour. The partici-

pants and the evaluator are alone during the whole session
time. It takes place either in the laboratory room or at the par-
ticipant’s home. The participant is placed in front of a com-
puter, sit at a desk or a table. They are allowed to have a pen
and a paper to draw or write at will.
Before the actual experiment, the participant plays around

in the editor and explore the possibilities offered by the tool.
The evaluator explains the key concept of the language the
participant is about to test, the participant manipulate and can
write programs. Before beginning, the evaluator asks ques-
tions to the participant to ensure he or she understands how
the language works.
We provide participants with a homemade graphical editor

to programwith ECA and CCBL. The editor is in the form of a
web application. The user interface of the editor is illustrated
in the figure 3 A header indicates who the current participant
is ; what the current step of the process is and it enables eva-
luator to go to the next step. The panel on the left lists the two
sensors and two sensors/actuators of the smart home
— Alice sensor : It detects if Alice is at home, at Martin’s

home and if she is available. Her availability is inde-
pendent of her location.

— Martin sensor : It detects if Martin is at home, at work,
if he is phoning and if he sits in his sofa at home.

— Volume of the music : It sets the volume to off, low, nor-
mal or high. It can also be used as a sensor that indicates
the state of the volume of the music.

— Lamp A : It sets the lamp to off, orange, green or white.
It can also be used to indicate the lamp’s state.

For each of them, the user interface lists related events (for
ECA rules) conditions and actions (for both ECA and CCBL).
The central part presents the program under edition. The foo-
ter part represent the exercise statements. As there is no stan-
dard way to represent ECA rules, we chose a representation
that was consistent in terms of colors with the representation
of CCBL programs. Figure 3 illustrates an ECA rule. Each
rule must have one and only one event. It can have zero or
several conditions and zero or several actions.
The four exercises consist of associating values of the state
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Figure 3 – User interface of the editor on ECA rules

of one device − either the color of the lamp or the volume of
the music − to different contexts. We defined the four exer-
cises to represent increasing levels of complexity. The com-
plexity refers to the number of contexts taken into account as
well as the number of possible transitions to switch from one
context to another.
The exercises were the following :
1. Exercise 1 : Martin wants the lamp to be lit in white if

and only if he is at home (lamp is off otherwise).
2. Exercise 2 : Martin wants the volume of the music to

be low when he is at home, except when he sits in his
sofa. In that later case, he wants the volume to be nor-
mal. When he is not at home, he wants the volume to
be turned off.

3. Exercise 3 : Martin wants the volume of the music to
be normal when he is at home, except when he is on
the phone, In that case, he wants the volume to be low.
When he is not at home, he wants the volume to be tur-
ned off.

4. Exercise 4 : Martin wants to use his lamp to be aware
of Alice when he is at home.When Alice is at home and
not available, he wants the lamp to be lighted in orange.
When she is at home and available, he wants the lamp
to be lighted in green. When Martin receives Alice, he
wants the lamp to be lighted in white. In all other cases,
the lamp should be off.

4.1 Experimentation results
First, we show that participants do not always respect the

ECA semantics and tend to express rules with a TAP seman-
tics. Second, we show that evenwhen taking into account TAP
semantics, participants make fewer errors when programming
with CCBL than with ECA. Third, we analyze the errors made
by participant when using ECA and ECAwith TAP semantics.
Finally, we analyze the structures of CCBL programs and dis-
cuss the users’ point of view.

From ECA to TAP semantic
We identified two programmers and two non-programmers

who expressed at least one ECA rule in which they added a
redundant condition that can only be true when the system
triggers the event. For instance, we observed the following

Figure 4 – Correctness of programs. We use ECA and TAP
semantics to evaluate correctness of ECA programs.

rule : “WhenMartin enters home and if Martin is at home then
set the volume of the music to low”. For these participants the
semantics difference between an event and a condition is not
clear. These participants used ECA before CCBL, thus CCBL
cannot have influence their mental model.
Several participants said during the sessions that they had

problems to distinguish between events and conditions when
programming with ECA. Sometimes, when reading the ECA
programs, they transformed the event into a condition. For ins-
tance, “Martin enters his home” was pronounced “Martin is
at home”.
As stated before, an ECA rule is triggered by one event.

When the event occurs, then conditions are evaluated. If
conditions are evaluated as true, then actions are executed.
However, we cannot understand several of the proposed ECA
programs when using this semantics. Instead, we observe that
participant blurred the distinction between event and condi-
tion. Participant considered the event as a condition. They
used the following semantic : “If the conditions become true,
then execute the actions”. This is actually the semantics used
in TAP.

Comparing CCBL and ECA (including TAP semantics)
Figure 4 summarizes the correctness of the programs speci-

fied by participants per exercise, language and programming
knowledge. It takes into account that an ECA program can be
correct either with the ECA semantics or with the TAP seman-
tics. Non-programmers who correctly programmed exercises
3 and 4 used the TAP semantics, which suggest that this se-
mantics better support users in programming behaviors that
associate devices states to contexts. The correctness percen-
tage is calculated from the number of programs produced wi-
thout error.

Errors made by using ECA
From related work, we know that several types of errors

exists when programming with ECA : non sequitur reaso-
ning, using fewer triggers that necessary, redundancy, incon-
sistency and circularity.We observe no errors of inconsistency
nor circularity.We observe only one error of redundancy (by a
programmer in exercise 4). As the most complex exercise ne-
cessitates eleven rules to behave correctly, we postulate that
this is not sufficient to produce this kind of errors.
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Figure 5 – Example of reasoning in terms of general case (rule
at the top) and particular case (rule in the middle).

Despite the fact that the evaluator tried to ensure that parti-
cipants understood ECA semantics well before starting exer-
cises, we observe that two non-programmers used non sequi-
tur reasoning for exercise 1. This suggest that this is a very
instinctive way of reasoning. We observed other cases of non
sequitur reasoning in exercise 2 : participant specified what
to do when Martin sits down on the sofa but forgot to mention
what to do when he leaves the sofa. We observed similar er-
rors in exercise 3 : participants tend to forget to specify what
to do when Martin hangs up the phone.
Many errors implied the use of fewer triggers than needed.

This was especially the case for exercise 3 and 4. For instance,
in exercise 4, the lamp lights in green when Martin is at home
and Alice is at her home and available. This imply conside-
ring three events : “Martin enters home”, “Alice enters her
home” and “Alice becomes available”. Most participants for-
got about at least one of these events, which is consistent with
what [Nandi and Ernst, 2016] observed.

Errors made by using ECA with TAP semantics
We observe two types of errors when programming with

TAP : 1) Reasoning in terms of general and particular cases
and 2) Forgetting to specify what happens when contexts are
exited, which can be related to non sequitur reasoning. Fi-
gure 5 illustrates a participant using TAP semantics. Remem-
ber that every event has to be replaced with its related state
in order to be interpreted correctly. The participant expresses
a general case (Martin is at home) and associates it with the
volume being normal. He then expresses a particular case
(Martin is at home AND he is at phone) and associates it with
the volume being low. However, this program is incorrect. In-
deed, whenMartin hangs up the phone, if he is still at home, no
rule will trigger so the volume will stay low instead of being
set to normal.We observe this error for 5/9 non-programmers
that used TAP semantics for exercise 3 (three programmed
it correctly and one made another error). Programmers were
less likely to use TAP semantics, only two of them did it for
exercise 3, and one of them made the same error (the other
programmed it correctly).
The other type of errors consists of forgetting to specify

what happens when contexts are exited. We observe this type
of error mainly for exercise 4. As illustrated in figure 6, par-

Figure 6 – Example of program where participant missed to
express correctly when to turns light off (Miss the case when
Alice is not at her home not at Martin’s home).

ticipants were able to specify (with TAP semantics) when the
lamp should light in orange, green or white. Every participant
also mentioned to turn it off “when Martin was not at home”
(it was explicitly stated in the exercise) but forgot to men-
tion that it was also the case when Alice was not at her home
nor at Martin’s home. There are two possible explanations for
this type of error : 1) Participants applied non-sequitur reaso-
ning or 2) Participants were not aware of all possible contexts
(“Alice is not at her home nor atMartin’s home” fox example).

4.2 Conclusion
The experimental results suggest that CCBL provides a

threshold as low as that of ECA for simple problems. There
was no significant difference observed between programming
with ECA and with CCBL. This suggests that the CCBL cas-
cade mechanism and the notion of sub-context do not intro-
duce difficulties for the user that could lead to a higher thre-
shold than for ECA.
Only two non-programmers made an error when using

CCBL. Both did it at exercise 4. The first one forgot to men-
tion that Martin had to be at home to light the lamp in orange,
green or white. The second non- programmer expressed a very
different behavior than what we asked him to do. We suspect
that he was tired of the exercises and wanted to finish as soon
as possible (it was his last exercise and he answered very qui-
ckly to the ending questions).
We analyze the structure of CCBL programs proposed by

participant with respect to the errors made when they used
ECA (with or without the TAP semantics). A source of er-
rors when programming with ECA is non sequitur. In CCBL,
there is always an active context, and the set of active contexts
specifies the state of all devices. Consequently, users can al-
ways knowwhat would be the state of a device when a context
ends. Indeed, participants said that they preferred CCBL be-
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cause “it is not necessary to think about reverse actions as it
is with ECA”.

5 Verification
End-user development means neophyte users will have to

manipulate code. Since these programmers are not professio-
nals developers, the editor should help them as much as pos-
sible. In this section we focus on the work we have done on
providing means to check CCBL programs for errors. More
precisely we focus on unreachable code and dead code.
It is a kind of error that is specific to the language and does

not depend of the implementation or the presentation ; whe-
ther a section is reachable depends only of the logic. These
errors are likely to appear as programs get longer and more
complex.

5.1 Types of errors
Unreachable context
The first kind of unreachable code we identify is quite

straightforward : unreachable context. It is when a context will
never be active because its selector and the selector of at least
one of his ancestors can not be true at the same time.

Inapplicable instructions
The second kind of error we want to address is what we

call an inapplicable instruction. As said earlier, if the selec-
tor of a context A implicates the selector of a context B, we
think A should have priority over B. But, if for some rea-
son, B have priority over A, then inapplicable instructions can
emerge. This is shown in the code sample 6. In this example, B
has priority over A, but since the selector of A implicates the
selector of B, whenever A is active, B is active. This means
that when the instruction in A is applicable, in fact it is never
applied because the instruction in B have priority. The only
time when the instruction in A is applicable, there is always
at least one instruction with higher priority, the instruction is
never applied.

Code sample 6 – Inapplicable instruction : B has priority over
A and A =) B. Radio volume will never be set to 20.

5.2 Detecting errors
Heptagon
Heptagon 12 is a synchronous dataflow language develo-

ped both at INRIA 13 by the Ctrl-A team 14 and at the ENS 15

by the PARKAS team 16. Its grammar is based on Lustre

12.
13.
14.
15.
16.

Code sample 7 – Simple Heptagon sample

which is presented in [Raymond, 2008]. As opposed to Lustre,
Heptagon can handle states machines and include a very po-
werful behavioral contract system. In any Heptagon node we
can specify a contract. It is composed of an optional assume
part which describe behaviours of variables, a mandatory ins-
truction and an optional with part who list editable variables.
The instruction can either enforce a boolean equation stays
true or a state of a state machine is reachable for example. Af-
ter compilation, the resulting files can be used by other tools.
We use ReaX a controller synthesis tool developed at IN-

RIA by the SUMO team 17. It is based onReaVer a tool deve-
loped by Peter Schrammel 18 [Schrammel and Jeannet, 2011].
ReaX can use the result of a Heptagon compiled program to
produce a controller which uses the editable variables to en-
sure the contract is respected.
For our needs we are only interested in the verification part.

Before producing a controller, ReaX performs verifications to
ensure the contract can be respected, if not, the controller syn-
thesis will fail. Without editable variables, ReaX must ensure
the contract is respected as is. By using contract without va-
riable, we can use ReaX as a verification tool.
The code sample 7 provide a simple example. At lines 5 to 7

is the description of a simple state machine. At lines 2 and 3 is
the contract. It is part of what we called earlier the assertion
system. In this example, the program is a state machine, with
two states that switch at each input on the inputEvent channel.
The program’s return channel is true when the state is A and
false when the state is B. To sum up, it is a basic switch.

Finding dead contexts
Checking CCBL dead or unreachable code, in CCBL,

means finding specific relationships among contexts. For the
unreachable context kind, we want to find contexts that can
not be active at the same time and that are on the same branch.
For the inapplicable instruction kind we want contexts with
selectors that implicates one another with a reversed priority
and that share at least one variable in the instructions of their
code block.
The diagram in the appendix details the process describe in

the next paragraphs and provide further details on the steps
of the process. To proceed, we first developed a translator
that converts CCBLjson programs into Heptagon state ma-
chines. CCBLjson is a standard we have developed for des-
cribing CCBL programs using json files. Then we developed
checkers in python that performs verifications on the transla-
ted programs.

17.
18.
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Code sample 8 – CCBL program before translation into code
sample 9

The code samples 8 and 9a provide an example with paral-
lel states machines. The heptagon code extracts come with a
diagram of the state machine for better understanding.

Unreachable context Basically, the operation is to add a
contract that checks the reachability of all positive states in
the state machine. The checker, begins at the root of the tree
and checks every context in the tree. The exploration of each
branch stops at the first unreachable state as this means all its
children are unreachable as well. For now, the checker has a
minimal user interface, it only tells the user if there is dead
code or not. In the future, we want it to be able to precisely
tell the user which context is unreachable and which is not.

Inapplicable instruction For this operation, we needed to
develop two others pieces of software : a program that which
provide the list of contexts sorted by their respective priority
level and a program that provides the list of all the ancestors
of all contexts. The checker uses another contract to check
boolean implication between selectors. For now, this program
checks all the pairs of contexts possible in the tree but we al-
ready have another pieces of software that list common va-
riables that will be soon plugged int that checker to optimize
the search. As for the first checker, the user interface of this
one is very limited and only returns the pairs of contexts with
implication and reversed priority.

6 Conclusion and future works
In this work we identified flaws in end-user development

languages for the smart home used in the industry. We de-
signed a new language, CCBL, designed to overcome these
flaws and provide a new approach to the field. This has lead
to the publication [Terrier et al., 2017b] in the 2017 edition
of the conference ISEUD held in Eindhoven, Netherland (see
appendix). We developed a simulator and a code editor. We
performed a user based experiment that showed that non pro-
grammers do fewer errors with CCCBL than with ECA. This
has lead to the publication [Terrier et al., 2017a] in the 2017
edition of the conference EICS held in Lisbon, Portugal (see
appendix). Finally, we designed and begin to develop tools to
provide error correction support to users of CCBL.
For the future, our priority is to finish the verification tools

and to plug them into our code editor in order to perform a
user based experiment to attest of their usefulness. We think

(a) Heptagon program after translation from code sample 8

(b) Hierarchical state machine of the code sample 9a

Code sample 9 – Processed state machine in Heptagon form
and graphical form
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CCBL still misses features, in particular in the event based
edition of variables, we want to explore the possibilities in
order to provide the possibility to, for example, increment or
decrement variables in event contexts. We would also want to
make an automatic translator of ECA to CCBL and if possible
translate from CCBL to ECA. In the long term, we would like
to explore the social and temporal aspects of End-User Deve-
lopment in the Smart Home.
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